共查询到20条相似文献,搜索用时 15 毫秒
1.
Petrovich M Jonsson AL Ferguson N Daggett V Fersht AR 《Journal of molecular biology》2006,360(4):865-881
The 37-residue Formin-binding protein, FBP28, is a canonical three-stranded beta-sheet WW domain. Because of its small size, it is so insensitive to chemical denaturation that it is barely possible to determine accurately a denaturation curve, as the transition spans 0-7 M guanidinium hydrochloride (GdmCl). It is also only marginally stable, with a free energy of denaturation of just 2.3 kcal/mol at 10 degrees Celsius so only small changes in energy upon mutation can be tolerated. But these properties and relaxation times for folding of 25 micros-400 micros conspire to allow the rapid acquisition of accurate and reproducible kinetic data for Phi-analysis using classical temperature-jump methods. The transition state for folding is highly polarized with some regions having Phi-values of 0 and others 1, as readily seen in chevron plots, with Phi-values of 0 having the refolding arms overlaying and those of 1 the unfolding arms superimposable. Good agreement is seen with transition state structures identified from independent molecular dynamics (MD) simulations at 60, 75, and 100 degrees Celsius, which allows us to explore further the details of the folding and unfolding pathway of FBP28. The first beta-turn is near native-like in the transition state for folding (experimental) and unfolding (MD and experiment). The simulations show that there are transient contacts between the aromatic side-chains of the beta-strands in the denatured state and that these interactions provide the driving force for folding of the first beta-hairpin of this three-stranded sheet. Only after the backbone hydrogen bonds are formed between beta1 and beta2 does a hydrogen bond form to stabilize the intervening turn, or the first beta-turn. 相似文献
2.
The giant protein titin, which comprises immunoglobulin (Ig) domains, acts as a bidirectional spring in muscle. The unfolding of Ig domains has been extensively studied, but their dynamics under native states have not been well-characterized. We performed molecular dynamics simulation on a single titin Ig domain and multi-domains. Mobile regions displaying concerted motions were identified. The dynamics of Ig domains are constrained by evolutionary pressures, in such a way that global dominant motion is conserved, yet different flexibilities within Ig domains and in linkers connecting neighbouring domains were observed. We explain these heterogeneous conserved dynamics in relation to sequence conservation across species and the sequence diversity among neighbouring Ig domains. 相似文献
3.
Muscle contraction is driven by a cycle of conformational changes in the myosin II head. After myosin binds ATP and releases from the actin fibril, myosin prepares for the next power stroke by rotating back the converter domain that carries the lever arm by 60 degrees . This recovery stroke is coupled to the activation of myosin ATPase by a mechanism that is essential for an efficient motor cycle. The mechanics of this coupling have been proposed to occur via two distinct and successive motions of the two helices that hold the converter domain: in a first phase a seesaw motion of the relay helix, followed by a piston-like motion of the SH1 helix in a second phase. To test this model, we have determined the principal motions of these structural elements during equilibrium molecular dynamics simulations of the crystallographic end states of the recovery-stroke by using principal component analysis. This reveals that the only principal motions of these two helices that make a large-amplitude contribution towards the conformational change of the recovery stroke are indeed the predicted seesaw and piston motions. Moreover, the results demonstrate that the seesaw motion of the relay helix dominates in the dynamics of the pre-recovery stroke structure, but not in the dynamics of the post-recovery stroke structure, and vice versa for the piston motion of the SH1 helix. This is consistent with the order of the proposed two-phase model for the coupling mechanism of the recovery stroke. Molecular movies of these principal motions are available at http://www.iwr.uni-heidelberg.de/groups/biocomp/fischer. 相似文献
4.
5.
Peter W.A. Howe 《Journal of biomolecular NMR》2001,20(1):61-70
One important problem when calculating structures of biomolecules from NMR data is distinguishing converged structures from outlier structures. This paper describes how Principal Components Analysis (PCA) has the potential to classify calculated structures automatically, according to correlated structural variation across the population. PCA analysis has the additional advantage that it highlights regions of proteins which are varying across the population. To apply PCA, protein structures have to be reduced in complexity and this paper describes two different representations of protein structures which achieve this. The calculated structures of a 28 amino acid peptide are used to demonstrate the methods. The two different representations of protein structure are shown to give equivalent results, and correct results are obtained even though the ensemble of structures used as an example contains two different protein conformations. The PCA analysis also correctly identifies the structural differences between the two conformations. 相似文献
6.
Zhuravleva A Korzhnev DM Nolde SB Kay LE Arseniev AS Billeter M Orekhov VY 《Journal of molecular biology》2007,367(4):1079-1092
NMR spectroscopy and computer simulations were used to examine changes in chemical shifts and in dynamics of the ribonuclease barnase that result upon binding to its natural inhibitor barstar. Although the spatial structures of free and bound barnase are very similar, binding results in changes of the dynamics of both fast side-chains, as revealed by (2)H relaxation measurements, and NMR chemical shifts in an extended beta-sheet that is located far from the binding interface. Both side-chain dynamics and chemical shifts are sensitive to variations in the ensemble populations of the inter-converting molecular states, which can escape direct structural observation. Molecular dynamics simulations of free barnase and barnase in complex with barstar, as well as a normal mode analysis of barnase using a Gaussian network model, reveal relatively rigid domains that are separated by the extended beta-sheet mentioned above. The observed changes in NMR parameters upon ligation can thus be rationalized in terms of changes in inter-domain dynamics and in populations of exchanging states, without measurable structural changes. This provides an alternative model for the propagation of a molecular response to ligand binding across a protein that is based exclusively on changes in dynamics. 相似文献
7.
Fangfang Yan Shaolong Zhang Jing Su Qinggang Zhang 《Journal of biomolecular structure & dynamics》2013,31(14):3583-3595
AbstractAdipocyte fatty acid binding protein (A-FABP) is a potential drug target for treatment of diabetes, obesity and atherosclerosis. Molecular dynamics (MD) simulations, principal component (PC) analysis and binding free energy calculations were combined to probe effect of electrostatic interactions of residues R78, R106 and R126 with inhibitors ZGB, ZGC and IBP on structural stability of three inhibitor/A-FABP complexes. The results indicate that mutation R126A produces significant influence on polar interactions of three inhibitors with A-FABP and these interactions are main force for driving the conformational change of A-FABP. Analyses on hydrogen bond interactions show that the decrease in hydrogen bonding interactions of residues R126 and Y128 with three inhibitors and the increase in that of K58 with inhibitors ZGC and IBP in the R126A mutated systems mostly regulate the conformational changes of A-FABP. This work shows that R126A can generate a significant perturbation on structural stability of A-FABP, which implies that R126 is of significance in inhibitor bindings. We expect that this study can provide a theoretical guidance for design of potent inhibitors targeting A-FABP.Communicated by Ramaswamy H. Sarma 相似文献
8.
In order to mimic the surface of parenteral nutrition emulsion droplets, the first molecular dynamics simulation of a palmitoyloleoylphosphatidylcholine (POPC) monolayer at a water/triglyceride (trilinoleoylglycerol, LLL) interface was performed. Triglyceride influence was evaluated by comparing computed phospholipid properties to the ones in a similarly modelled hydrated POPC bilayer. As expected, polar head properties (molecular area, lipid hydration, headgroup orientation) were not affected by triglycerides. In contrast, slight differences were observed on phospholipid alkyl tail region (order parameter, diffusion, Van der Waals interactions). This first approach can reasonably be extended to a further more realistic multicomponent model of clinical nutrition emulsions. 相似文献
9.
Ayuso-Tejedor S García-Fandiño R Orozco M Sancho J Bernadó P 《Journal of molecular biology》2011,406(4):604-8711
10.
Ferro N Bultinck P Gallegos A Jacobsen HJ Carbo-Dorca R Reinard T 《Phytochemistry》2007,68(2):237-250
An computational-biostatistical approach, supported by ab initio optimizations of auxin-like molecules, was used to find biologically meaningful relationships between quantum chemical variables and fresh bioassay's data. It is proven that the auxin-like recognition requires different molecular assembling states. We suggest that the carboxyl group is not the determining factor in explaining the biological auxin-like conduct. The biological effects depends essentially on the chemical condition of the ring system. The aim to find active molecules (quantum objects) via statistical grouping-analysis of molecular quantum similarity measures was verified by bioactivity assays. Next, this approach led to the discovery of a non-carboxylated active auxin-like molecule (2,6-dibromo-phenol). This is the first publication on structure activity relationship of auxin-like molecules, which relies on highly standardized bioassays of different auxins screened in parallel as well as analysed by multi-dimensional scaling. 相似文献
11.
Ming Lei Alexandra Gardino Martin Karplus Dorothee Kern 《Journal of molecular biology》2009,392(3):823-836
Recent advances in experimental methods provide increasing evidence that proteins sample the conformational substates that are important for function in the absence of their ligands. An example is the receiver domain of nitrogen regulatory protein C, a member of the phosphorylation-mediated signaling family of “two-component systems.” The receiver domain of nitrogen regulatory protein C samples both inactive conformation and the active conformation before phosphorylation. Here we determine a possible pathway of interconversion between the active state and the inactive state by targeted molecular dynamics simulations and quasi-harmonic analysis; these methods are used because the experimental conversion rate is in the high microsecond range, longer than those that are easily accessible to atomistic molecular dynamics simulations. The calculated pathway is found to be composed of four consecutive stages described by different progress variables. The lowest quasi-harmonic principal components from unbiased molecular dynamics simulations on the active state correspond to the first stage, but not to the subsequent stages of the transition. The targeted molecular dynamics pathway suggests that several transient nonnative hydrogen bonds may facilitate the transition. 相似文献
12.
Whittaker SB Spence GR Günter Grossmann J Radford SE Moore GR 《Journal of molecular biology》2007,366(3):1001-1015
Previous work shows that the transiently populated, on-pathway intermediate in Im7 folding contains three of the four native alpha-helices docked around a core stabilised by native and non-native interactions. To determine the structure and dynamic properties of this species in more detail, we have used protein engineering to trap the intermediate at equilibrium and analysed the resulting proteins using NMR spectroscopy and small angle X-ray scattering. Four variants were created. In L53AI54A, two hydrophobic residues within helix III are truncated, preventing helix III from docking stably onto the developing hydrophobic core. In two other variants, the six residues encompassing the native helix III were replaced with three (H3G3) or six (H3G6) glycine residues. In the fourth variant, YY, two native tyrosine residues (Tyr55 and Tyr56) were re-introduced into H3G6 to examine their role in determining the properties of the intermediate ensemble. All four variants show variable peak intensities and broad peak widths, consistent with these proteins being conformationally dynamic. Chemical shift analyses demonstrated that L53AI54A and YY contain native-like secondary structure in helices I and IV, while helix II is partly formed and helix III is absent. Lack of NOEs and rapid NH exchange for L53AI54A, combined with detailed analysis of the backbone dynamics, indicated that the hydrophobic core of this variant is not uniquely structured, but fluctuates on the NMR timescale. The results demonstrate that though much of the native-like secondary structure of Im7 is present in the variants, their hydrophobic cores remain relatively fluid. The comparison of H3G3/H3G6 and L53AI54A/YY suggests that Tyr55 and/or Tyr56 interact with the three-helix core, leading other residues in this region of the protein to dock with the core as folding progresses. In this respect, the three-helix bundle acts as a template for formation of helix III and the creation of the native fold. 相似文献
13.
《Structure (London, England : 1993)》2020,28(2):259-269.e8
- Download : Download high-res image (92KB)
- Download : Download full-size image
14.
The colicin immunity protein Im7 folds from its unfolded state in 6 M urea to its native four-helix structure through an on-pathway intermediate that lacks one of the helices of the native structure (helix III). In order to further characterize the folding mechanism of Im7, we have studied the conformational properties of the protein unfolded in 6 M urea in detail using heteronuclear NMR. Triple-resonance experiments with 13C/15N-labelled Im7 in 6 M urea provided almost complete resonance assignments for the backbone nuclei, and measurement of backbone 15N relaxation parameters allowed dynamic ordering of the unfolded polypeptide chain to be investigated. Reduced spectral density mapping and fitting backbone R2 relaxation rates to a polymer dynamics model identified four clusters of interacting residues, each predicted by the average area buried upon folding for each residue. Chemical shift analyses and measurement of NOEs detected with a long mixing-time 1H-1H-15N NOESY-HSQC spectrum confirmed the formation of four clusters. Each cluster of interacting side-chains in urea-unfolded Im7 occurs in a region of the protein that forms a helix in the protein, with the largest clusters being associated with the three long helices that are formed in the on-pathway folding intermediate, whilst the smallest cluster forms a helix only in the native state. NMR studies of a Phe15Ala Im7 variant and a protein in which residues 51-56 are replaced by three glycine residues (H3G3 Im7*), indicated that the clusters do not interact with each other, possibly because they are solvated by urea, as indicated by analysis of NOEs between the protein and the solvent. Based on these data, we suggest that dilution of the chaotrope to initiate refolding will result in collapse of the clusters, leading to the formation of persistent helical structure and the generation of the three-helix folding intermediate. 相似文献
15.
Immunophysical properties and prediction of activities for vaccinia virus complement control protein and smallpox inhibitor of complement enzymes using molecular dynamics and electrostatics
下载免费PDF全文

We present immunophysical modeling for VCP, SPICE, and three mutants using MD simulations and Poisson-Boltzmann-type electrostatic calculations. VCP and SPICE are homologous viral proteins that control the complement system by imitating, structurally and functionally, natural regulators of complement activation. VCP and SPICE consist of four CCP modules connected with short flexible loops. MD simulations demonstrate that the rather complex modules of VCP/SPICE and their mutants exhibit a high degree of intermodular spatial mobility, which is affected by surface mutations. Electrostatic calculations using snapshots from the MD trajectories demonstrate variable spatial distribution of the electrostatic potentials, which suggests dynamic binding properties. We use covariance analysis to identify correlated modular oscillations. We also use electrostatic similarity indices to cluster proteins with common electrostatic properties. Our results are compared with experimental data to form correlations between the overall positive electrostatic potential of VCP/SPICE with binding and activity. We show how these correlations can be used to predict binding and activity properties. This work is expected to be useful for understanding the function of native CCP-containing regulators of complement activation and receptors and for the design of antiviral therapeutics and complement inhibitors. 相似文献
16.
Structural information for mammalian DNA pol-beta combined with molecular and essential dynamics studies have provided atomistically detailed views of functionally important conformational rearrangements that occur during DNA repair and replication. This conformational closing before the chemical reaction is explored in this work as a function of the bound substrate. Anchors for our study are available in crystallographic structures of the DNA pol-beta in open (polymerase bound to gapped DNA) and closed (polymerase bound to gapped DNA and substrate, dCTP) forms; these different states have long been used to deduce that a large-scale conformational change may help the polymerase choose the correct nucleotide, and hence monitor DNA synthesis fidelity, through an induced-fit mechanism. However, the existence of open states with bound substrate and closed states without substrates suggest that substrate-induced conformational closing may be more subtle. Our dynamics simulations of two pol-beta/DNA systems (with/without substrates at the active site) reveal the large-scale closing motions of the thumb and 8-kDa subdomains in the presence of the correct substrate--leading to nearly perfect rearrangement of residues in the active site for the subsequent chemical step of nucleotidyl transfer--in contrast to an opening trend when the substrate is absent, leading to complete disassembly of the active site residues. These studies thus provide in silico evidence for the substrate-induced conformational rearrangements, as widely assumed based on a variety of crystallographic open and closed complexes. Further details gleaned from essential dynamics analyses clarify functionally relevant global motions of the polymerase-beta/DNA complex as required to prepare the system for the chemical reaction of nucleotide extension. 相似文献
17.
Sharma S Gong P Temple B Bhattacharyya D Dokholyan NV Chaney SG 《Journal of molecular biology》2007,373(5):1123-1140
Mismatch repair proteins, DNA damage-recognition proteins and translesion DNA polymerases discriminate between Pt-GG adducts containing cis-diammine ligands (formed by cisplatin (CP) and carboplatin) and trans-RR-diaminocyclohexane ligands (formed by oxaliplatin (OX)) and this discrimination is thought to be important in determining differences in the efficacy, toxicity and mutagenicity of these platinum anticancer agents. We have postulated that these proteins recognize differences in conformation and/or conformational dynamics of the DNA containing the adducts. We have previously determined the NMR solution structure of OX-DNA, CP-DNA and undamaged duplex DNA in the 5'-d(CCTCAGGCCTCC)-3' sequence context and have shown the existence of several conformational differences in the vicinity of the Pt-GG adduct. Here we have used molecular dynamics simulations to explore differences in the conformational dynamics between OX-DNA, CP-DNA and undamaged DNA in the same sequence context. Twenty-five 10 ns unrestrained fully solvated molecular dynamics simulations were performed starting from two different DNA conformations using AMBER v8.0. All 25 simulations reached equilibrium within 4 ns, were independent of the starting structure and were in close agreement with previous crystal and NMR structures. Our data show that the cis-diammine (CP) ligand preferentially forms hydrogen bonds on the 5' side of the Pt-GG adduct, while the trans-RR-diaminocyclohexane (OX) ligand preferentially forms hydrogen bonds on the 3' side of the adduct. In addition, our data show that these differences in hydrogen bond formation are strongly correlated with differences in conformational dynamics, specifically the fraction of time spent in different DNA conformations in the vicinity of the adduct, for CP- and OX-DNA adducts. We postulate that differential recognition of CP- and OX-GG adducts by mismatch repair proteins, DNA damage-recognition proteins and DNA polymerases may be due, in part, to differences in the fraction of time that the adducts spend in a conformation favorable for protein binding. 相似文献
18.
19.
Amrita Roy Choudhury Andrej Perdih Špela Župerl Emilia Sikorska Tom Solmajer Stefan Jurga Igor Zhukov Marjana Novič 《生物化学与生物物理学报:生物膜》2013
Membrane proteins represent about a third of the gene products in most organisms, as revealed by the genome sequencing projects. They account for up to two thirds of known drugable targets, which emphasizes their critical pharmaceutical importance. Here we present a study on bilitranslocase (BTL) (TCDB 2.A.65), a membrane protein primarily involved in the transport of bilirubin from blood to liver cells. Bilitranslocase has also been identified as a potential membrane transporter for cellular uptake of several drugs and due to its implication in drug uptake, it is extremely important to advance the knowledge about its 3D structure. However, at present, only a limited knowledge is available beyond the primary structure of BTL. It has been recently confirmed experimentally that one of the four computationally predicted transmembrane segments of bilitranslocase, TM3, has a helical structure with hydrophilic amino acid residues oriented towards one side, which is typical for transmembrane domains of membrane proteins. In this study we confirmed by the use of multidimensional NMR spectroscopy that the second transmembrane segment, TM2, also appears in a form of α-helix. The stability of this polypeptide chain was verified by molecular dynamics (MD) simulation in dipalmitoyl phosphatidyl choline (DPPC) and in sodium dodecyl sulfate (SDS) micelles. The two α-helices, TM2 corroborated in this study, and TM3 confirmed in our previous investigation, provide reasonable building blocks of a potential transmembrane channel for transport of bilirubin and small hydrophilic molecules, including pharmaceutically active compounds. 相似文献
20.
Natalia Karska Małgorzata Graul Emilia Sikorska Igor Zhukov Magdalena J. Ślusarz Franciszek Kasprzykowski Andrea D. Lipińska Sylwia Rodziewicz-Motowidło 《生物化学与生物物理学报:生物膜》2019,1861(5):926-938
The transporter associated with antigen processing (TAP) directly participates in the immune response as a key component of the cytosolic peptide to major histocompatibility complex (MHC) class I protein loading machinery. This makes TAP an important target for viruses avoiding recognition by CD8+ T lymphocytes. Its activity can be suppressed by the UL49.5 protein produced by bovine herpesvirus 1, although the mechanism of this inhibition has not been understood so far.Therefore, the main goal of our study was to investigate the 3D structure of bovine herpesvirus 1 - encoded UL49.5 protein. The final structure of the inhibitor was established using circular dichroism (CD), 2D nuclear magnetic resonance (NMR), and molecular dynamics (MD) in membrane mimetic environments. In NMR studies, UL49.5 was represented by two fragments: the extracellular region (residues 1–35) and the transmembrane-intracellular fragment (residues 36–75), displaying various functions during viral invasion. After the empirical structure determination, a molecular docking procedure was used to predict the complex of UL49.5 with the TAP heterodimer.Our results revealed that UL49.5 adopted a highly flexible membrane-proximal helical structure in the extracellular part. In the transmembrane region, we observed two short α-helices. Furthermore, the cytoplasmic part had an unordered structure. Finally, we propose three different orientations of UL49.5 in the complex with TAP. Our studies provide, for the first time, the experimental structural information on UL49.5 and structure-based insight in its mechanism of action which might be helpful in designing new drugs against viral infections. 相似文献