首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, we investigated the inhibitory effect of three catechol-containing coffee polyphenols, chlorogenic acid, caffeic acid and caffeic acid phenethyl ester (CAPE), on the O-methylation of 2- and 4-hydroxyestradiol (2-OH-E2 and 4-OH-E2, respectively) catalyzed by the cytosolic catechol-O-methyltransferase (COMT) isolated from human liver and placenta. When human liver COMT was used as the enzyme, chlorogenic acid and caffeic acid each inhibited the O-methylation of 2-OH-E2 in a concentration-dependent manner, with IC50 values of 1.3–1.4 and 6.3–12.5 μM, respectively, and they also inhibited the O-methylation of 4-OH-E2, with IC50 values of 0.7–0.8 and 1.3–3.1 μM, respectively. Similar inhibition pattern was seen with human placental COMT preparation. CAPE had a comparable effect as caffeic acid for inhibiting the O-methylation of 2-OH-E2, but it exerted a weaker inhibition of the O-methylation of 4-OH-E2. Enzyme kinetic analyses showed that chlorogenic acid and caffeic acid inhibited the human liver and placental COMT-mediated O-methylation of catechol estrogens with a mixed mechanism of inhibition (competitive plus noncompetitive). Computational molecular modeling analysis showed that chlorogenic acid and caffeic acid can bind to human soluble COMT at the active site in a similar manner as the catechol estrogen substrates. Moreover, the binding energy values of these two coffee polyphenols are lower than that of catechol estrogens, which means that coffee polyphenols have higher binding affinity for the enzyme than the natural substrates. This computational finding agreed perfectly with our biochemical data.  相似文献   

2.
A wheat (Triticum aestivum L., near isogenic line of Hamlet) O-methyltransferase (OMT) was previously reported as a putative caffeic acid OMT (TaCOMT1), involved in lignin biosynthesis, based on its high sequence similarity with a number of graminaceous COMTs. The fact that the putative TaCOMT1 exhibits a significantly high sequence homology to another recently characterized wheat flavone-specific OMT (TaOMT2), and that molecular modeling studies indicated several conserved amino acid residues involved in substrate binding and catalysis of both proteins, prompted an investigation of its appropriate substrate specificity. We report here that TaCOMT1 exhibits highest preference for the flavone tricetin, and lowest activity with the lignin precursors, caffeic acid/5-hydroxyferulic acid as the methyl acceptor molecules, indicating that it is not involved in lignin biosynthesis. We recommend its reannotation to a flavone-specific TaOMT1 that is distinct from TaOMT2.  相似文献   

3.
Kota P  Guo D  Zubieta C  Noel J  Dixon RA 《Phytochemistry》2004,65(7):837-846
Although S-adenosyl-l-methionine (SAM) dependent caffeic acid/5-hydroxyferulic acid 3/5-O-methyltransferase (COMT) is one of the key enzymes in lignin biosynthesis, the present work demonstrates that alfalfa COMT methylates benzaldehyde derivatives more efficiently than lignin pathway intermediates. 3,4-Dihydroxy, 5-methoxybenzaldehyde and protocatechuic aldehyde were the best in vitro substrates for OMT activity in extracts from developing alfalfa stems, and these compounds were preferred over lignin pathway intermediates for 3-O-methylation by recombinant alfalfa COMT expressed in Escherichia coli. OMT activity with benzaldehydes was strongly reduced in extracts from stems of transgenic alfalfa down-regulated in COMT. However, although COMT down-regulation drastically affects lignin composition, it does not appear to significantly impact metabolism of benzaldehyde derivatives in alfalfa. Structurally designed site-directed mutants of COMT showed altered relative substrate preferences for lignin precursors and benzaldehyde derivatives. Taken together, these results indicate that COMT may have more than one role in phenylpropanoid metabolism (but probably not in alfalfa), and that engineered COMT enzymes could be useful for metabolic engineering of both lignin and benzaldehyde-derived flavors and fragrances.  相似文献   

4.
The partially purified O-methyltransferase (OMT) system of Chrysosplenium americanum was found to catalyse the stepwise O-methylation of quercetin to its mono-, di- and trimethyl derivatives. It also utilized the partially methylated flavonol intermediates to form the next higher order of O-methylated products; thus indicating the involvement of several OMTs. The latter were resolved by chromatofocusing into three distinct peaks of enzyme activity which focused at pI values 4.8, 5.4 and 5.7. The former enzyme O-methylated quercetin at the 3-position, whereas the latter two O-methylated 3, 7-di-O-methyl quercetagetin at the 3′- and 6-positions, respectively. None of the focused enzymes accepted caffeic acid, or other flavonoids such as kaempferol or luteolin, as substrates; thus indicating specificity towards flavonols with 3′, 4′- substitution. The three OMTs had similar MWs and the Km values for their substrates were of the same order of magnitude. The biochemical role of these novel enzymes is discussed in relation to the biosynthesis of polymethylated flavonols in this tissue.  相似文献   

5.
A lignin-specific O-methyltransferase (OMT) was localized in the cell wall fraction of Douglas-fir needle callus homogenates. The OMT was released from wall-associated membrane by digitonin and partially purified by salt fractionation. Further purification proved to be unfeasible, due to the high tannin content of the callus. The Km values of the partially purified OMT for caffeic acid and S-adenosylmethionine (SAM) were 250 and 8.0.μM, respectively. Substrate inhibition as well as inhibition by S-adenosylhomocysteine (SAH) was observed. Coupled with low levels of caffeic acid found in the callus, 65,μM at maximum with a mean of 11.5μM throughout a subculture period, the properties of this OMT should account in large part for the high tannin and low lignin content characteristic of this cultured tissue.  相似文献   

6.
An S-adenosyl-l-methionine: o-dihydric phenol O-methyltransferase was isolated from tobacco cell suspension culture and was partially purified by (NH4)2SO4 precipitation and successive chromatography on DEAE-Sepharose, Sephacryl S-200 and hydroxyapatite columns. It catalysed the O-methylation of 3 cinnamic acids, two coumarins and two flavonoids, but to different extents. Results obtained from polyacrylamide gel electrophoresis, m-/p-methylation ratios and mixed substrate experiments indicated the existence of two forms of the enzyme which were resolved by chromatography on DEAE-cellulose. One form (MW 74000, pI 6.1, opt. pH 7.3) catalysed the meta-methylation of caffeic acid, while the other (MW 70000, pI 6.3, opt. pH 8.3) mediated the para-methylation of quercetin, though each form exhibited some activity against other substrates.  相似文献   

7.
Enzymatic O-methylation of plant secondary metabolites is an important mechanism for the inactivation of reactive hydroxyl groups and for the modification of their solubility. A cDNA clone (pFOMT3) encoding the gene for the 3/5-O-methylation of partially methylated flavonols was isolated from Chrysosplenium americanum (Saxifragaceae). We used a PCR fragment obtained with degenerate oligonucleotides designed from conserved regions of various O-methyltransferases (OMTs). The pFOMT3 cDNA sequence shows about 67–85% similarity to other plant OMT sequences. The recombinant protein expresses strict specificity for positions 3/5 (meta) of partially methylated flavonols, but does not accept quercetin or caffeic acid for further methylation. Southern blot analysis of the genomic DNA probed with an OMT sequence suggests the presence of a number of related genes in this species, consistent with the multiple enzymatic methylations involved in the biosynthesis of polymethylated flavonols in this plant.  相似文献   

8.
Partially purified catechol O-methyltransferase from pampas grass (Cortaderia selloana) catalyses the methylations of substrates at both their meta and para positions. This capability was shown, by heat treatments, to arise from a less stable m-O-methyl-transferring activity and a more stable p-O-methyltransferring activity, tested against protocatechuic acid. When acting upon caffeic acid, the preparation catalyses a reaction of solely m-O-methyltransfer (in contrast to the mixed methylation of this substrate exhibited by rat liver catechol O-methyltransferase). A small degree of m-O-methylation of monophenolic substrates also occurs.  相似文献   

9.
The isolation and characterization of cDNA and homologous genomic clones encoding the lignin O-methyltransferase (OMT) from maize is reported. The cDNA clone has been isolated by differential screening of maize root cDNA library. Southern analysis indicates that a single gene codes for this protein. The genomic sequence contains a single 916 bp intron. The deduced protein sequence from DNA shares significant homology with the recently reported lignin-bispecific caffeic acid/5-hydroxyferulic OMTs from alfalfa and aspen. It also shares homology with OMTs from bovine pineal glands and a purple non-sulfur photosynthetic bacterium. The mRNA of this gene is present at different levels in distinct organs of the plant with the highest accumulation detected in the elongation zone of roots. Bacterial extracts from clones containing the maize OMT cDNA show an activity in methylation of caffeic acid to ferulic acid comparable to that existing in the plant extracts. These results indicate that the described gene encodes the caffeic acid 3-O-methyltransferase (COMT) involved in the lignin biosynthesis of maize.  相似文献   

10.
The specific substrates, mechanisms, and structures of the bacterial O-methyltransferases (OMTs) are not as well characterized as those of other OMTs. Recent studies have suggested that bacterial OMTs catalyze regiospecific reactions that might be used to produce novel compounds. In this study, we investigated the structural and functional features of an OMT from Bacillus cereus (BcOMT2). This enzyme catalyzes the O-methylation of flavonoids in vitro in an S-adenosylmethionine-dependent and regiospecific manner. We solved the crystal structures of the BcOMT2 apoenzyme and the BcOMT2-S-adenosylhomocysteine (SAH) co-complex at resolutions of 1.8 and 1.2 Å, respectively. These structures reveal that the overall structure of dimeric BcOMT2 is similar to that of the canonical OMT but that BcOMT2 also has a unique N-terminal helical region that is responsible for dimerization. The binding of SAH causes both local and remote conformational changes in the dimer interface that stabilize the dimerization of BcOMT2. SAH binding also causes ordering of residues Glu171 to Gly186, which are disordered in the apoenzyme structure and are known determinants of substrate specificity, and thus contributes to formation of the substrate binding pocket. Our structural analysis indicated a resemblance between the active site of BcOMT2 and that of metal-dependent OMTs. Using mutational analysis, we confirmed that BcOMT2 is a Mg2+-dependent OMT. These results provide structural and functional insights into the dimerization mechanism and substrate specificity of BcOMT2.  相似文献   

11.
Pronounced increases in activity of phenylalanine ammonia-lyase (PAL), cinnamic acid-4-hydroxylase (CAH) and caffeic acid-O-methyltransferase (OMT)  相似文献   

12.
The activity of caffeic acid-O-methyltransferase (OMT) in carrot cells was greatly affected by the amount of 2,4-dichlorophenoxyacetic acid (2,4-D) supplemented to the culture medium. The OMT fraction was purified by (NH4)2SO4 followed by ultrafiltration and gel filtration or DEAE-Sephadex chromatography after cells were cultured in the medium containing [2-14C]-2,4-D. Thus, this purified fraction revealed high OMT activity and was still radioactive. The OMT activity was about eight-fold higher (or more) in cells cultured at 0.05 ppm 2,4-D than in those at 1.0 ppm 2,4-D. The ratio of radioactivity to OMT activity was about four-fold higher in cells cultured at 1.0 ppm 2,4-D than those at 0.05 ppm 2,4-D. On the other hand, the OMT fraction was separated into two radioactive protein fractions by DEAE-Sephadex chromatography. The radioactive fractions became Et2O-soluble after HCl hydrolysis, but not after salt-urea treatment. From these results, it was concluded that 2,4-D is covalently bound to proteins in the OMT fraction. Such 2,4-D protein conjugates may play a role in the regulation of OMT activity.  相似文献   

13.
14.
Nikkomycins and gougerotin are peptidyl nucleoside antibiotics with broad biological activities. The nikkomycin biosynthetic gene cluster comprises one pathway-specific regulatory gene (sanG) and 21 structural genes, whereas the gene cluster for gougerotin biosynthesis includes one putative regulatory gene, one major facilitator superfamily transporter gene, and 13 structural genes. In the present study, we introduced sanG driven by six different promoters into Streptomyces ansochromogenes TH322. Nikkomycin production was increased significantly with the highest increase in engineered strain harboring hrdB promoter-driven sanG. In the meantime, we replaced the native promoter of key structural genes in the gougerotin (gou) gene cluster with the hrdB promoters. The heterologous producer Streptomyces coelicolor M1146 harboring the modified gene cluster produced gougerotin up to 10-fold more than strains carrying the unmodified cluster. Therefore, genetic manipulations of genes involved in antibiotics biosynthesis with the constitutive hrdB promoter present a robust, easy-to-use system generally useful for the improvement of antibiotics production in Streptomyces.  相似文献   

15.
Enzymatic O-methylation, catalyzed by S-adenosyl-L-methionine (SAM)-dependent O-methyltranferases (OMTs), is a ubiquitous reaction, occurring in almost all living organisms. Plant OMTs are involved in the methylation of secondary metabolites, including phenylpropanoid and flavonoid compounds. Here, we used RT-PCR to isolate and characterizePOMT-2 fromPopulus deltoides. This OMT comprises a 1095-b open reading frame that encodes a 39.7-kDa protein. BLAST results showed 87% identities to an OMT fromPrunus dulcis and a caffeic acid OMT fromRosa chinensis. POMT-2 was expressed inEscherichia coli as a glutathione S-transferase fusion protein, and was purified by affinity chromatography. POMT-2 transferred a methyl group of SAM to caffeic acid and 6,7-dihydroxyflavone, but showed low activities toward quercetin and kaempferol. According to itsin vitro substrate preference and composition of phenolic compounds in poplar, thein vivo function of POMT-2 is probably the methylation of caffeic acid and an involvement in lignin biosynthesis.  相似文献   

16.
A promoter-trap screen allowed us to identify an Arabidopsis line expressing GUS in the root vascular tissues. T-DNA border sequencing showed that the line was mutated in the caffeic acid O-methyltransferase 1 gene (AtOMT1) and therefore deficient in OMT1 activity. Atomt1 is a knockout mutant and the expression profile of the AtOMT1 gene has been determined as well as the consequences of the mutation on lignins, on soluble phenolics, on cell wall digestibility, and on the expression of the genes involved in monolignol biosynthesis. In this mutant and relative to the wild type, lignins lack syringyl (S) units and contain more 5-hydroxyguaiacyl units (5-OH-G), the precursors of S-units. The sinapoyl ester pool is modified with a two-fold reduction of sinapoyl-malate in the leaves and stems of mature plants as well as in seedlings. In addition, LC-MS analysis of the soluble phenolics extracted from the seedlings reveals the occurrence of unusual derivatives assigned to 5-OH-feruloyl malate and to 5-OH-feruloyl glucose. Therefore, AtOMT1 enzymatic activity appears to be involved not only in lignin formation but also in the biosynthesis of sinapate esters. In addition, a deregulation of other monolignol biosynthetic gene expression can be observed in the Atomt1 mutant. A poplar cDNA encoding a caffeic acid OMT (PtOMT1) was successfully used to complement the Atomt1 mutant and restored both the level of S units and of sinapate esters to the control level. However, the over-expression of PtOMT1 in wild-type Arabidopsis did not increase the S-lignin content, suggesting that OMT is not a limiting enzyme for S-unit biosynthesis.these authors contributed equally to this workthese authors contributed equally to this work  相似文献   

17.
Pristinamycin I (PI), a streptogramin type B antibiotic produced by Streptomyces pristinaespiralis, contains the aproteinogenic amino acid l-phenylglycine. Recent sequence analysis led to the identification of a set of putative phenylglycine biosynthetic genes. Successive inactivation of the individual genes resulted in a loss of PI production. Production was restored by supplementation with externally added l-phenylglycine, which demonstrates that these genes are involved in phenylglycine biosynthesis and thus probably disclosing the last essential pristinamycin biosynthetic genes. Finally, a putative pathway for phenylglycine synthesis is proposed.  相似文献   

18.
The fungus, Lentinus lepideus, produces crystalline methyl p-methoxycinnamate in stationary cultures. O-methylation and methyl ester formation of hydroxycinnamic acids were examined with enzyme preparations of the fungus. Using S-adenosylmethionine-14CH3, it was found that only the methyl esters of the hydroxycinnamic acids are substrates for O-methylation and not the free acids. Benzoic acids and their methyl esters are not substrates. The activity of the enzyme is p-specific and its specific activity decreases with increasing number of hydroxyl groups in the substrate. The same enzyme preparations catalyze the formation of the methyl ester of cinnamic acid from the free acid.  相似文献   

19.
20.

Background  

Ribose 2'-O-methylation, the most common nucleotide modification in mammalian rRNA, is directed by the C/D box small nucleolar RNAs (snoRNAs). Thus far, more than fifty putative human rRNA methylation guide snoRNAs have been identified. For nine of these snoRNAs, the respective ribose methylations in human 28S rRNA have been only presumptive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号