首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutation and immobilization techniques were applied to uridine phosphorylase (UP) from Escherichia coli in order to enhance its thermal stability and hence productivity in a biocatalytic reaction. UP was evolved by iterative saturation mutagenesis. Compared to the wild type enzyme, which had a temperature optimum of 40 °C and a half-life of 9.89 h at 60 °C, the selected mutant had a temperature optimum of 60 °C and a half-life of 17.3 h at 60 °C. Self-immobilization of the native UP as a Spherezyme showed a 3.3 fold increase in thermostability while immobilized mutant enzyme showed a 4.4 fold increase in thermostability when compared to native UP. Combining UP with the purine nucleoside phosphorylase from Bacillus halodurans allows for synthesis of 5-methyluridine (a pharmaceutical intermediate) from guanosine and thymine in a one-pot transglycosylation reaction. Replacing the wild type UP with the mutant allowed for an increase in reaction temperature to 65 °C and increased the reaction productivity from 10 to 31 g l−1 h−1.  相似文献   

2.
《Process Biochemistry》2010,45(1):75-80
Xylanase is an important industrial enzyme. In this research, to improve the thermostability and biochemical properties of a xylanase from Aspergillus niger F19, five arginine substitutions and a disulfide bond were introduced by site-directed mutagenesis. The wild-type gene xylB and the mutant gene xylCX8 were expressed in Pichia pastoris. Compare to those of the wild-type enzyme, the optimal reaction temperature for the mutant enzyme increased from 45 °C to 50 °C, the half-life of the mutant enzyme extended from 10 min to 180 min, and the specific activity increased from 2127 U/mg to 3330 U/mg. However, the Vmax and Km of the mutant xylanase decreased. The enzyme activity in broth obtained from shake flask cultures could be induced to 1850 U/mL in 7 days, which is higher than results reported previously. Furthermore, the highest achievable enzyme activity was 7340 U/mL from 140 g/L of biomass in a 3 L fermentor used in our study.  相似文献   

3.
A thermophilic Bacillus sp. strain AN-7, isolated from a soil in India, produced an extracellular pullulanase upon growth on starch–peptone medium. The enzyme was purified to homogeneity by ammonium sulfate precipitation, anion exchange and gel filtration chromatography. The optimum temperature and pH for activity was 90 °C and 6.0. With half-life time longer than one day at 80 °C the enzyme proves to be thermostable in the pH range 4.5–7.0. The pullulanase from Bacillus strain lost activity rapidly when incubated at temperature higher than 105 °C or at pH lower than 4.5. Pullulanase was completely inhibited by the Hg2+ ions. Ca2+, dithiothreitol, and Mn2+ stimulated the pullulanase activity. Kinetic experiments at 80 °C and pH 6.0 gave Vmax and Km values of 154 U mg−1 and 1.3 mg ml−1. The products of pullulan were maltotriose and maltose. This proved that the purified pullulanase (pullulan-6-glucanohydrolase, EC 3.2.1.41) from Bacillus sp. AN-7 is classified under pullulanase type I. To our knowledge, this Bacillus pullulanase is the most highly thermostable type I pullulanase known to date.  相似文献   

4.
The novel termite gut metagenomic-derived GH11 xylanase gene xyl7 was expressed in Escherichia coli BL21, and the purified XYL7 enzyme exhibited high specific activity (6340 U/mg) and broad pH active range of 5.5–10.0. Directed evolution was employed to enhance the thermostability of XYL7; two mutants (XYL7-TC and XYL7-TS) showed a 250-fold increase in half-life at 55 °C, with a 10 °C increase in optimal temperature compared to that of wild-type XYL7. A truncated enzyme (XYL7-Tr3) acquired by protein engineering showed similar catalytic properties as the wild-type, with a tenfold increase in soluble protein yield by the mutant. The reducing sugar produced by XYL7-TC was about fourfold greater than that produced by their parents when incubated with xylan at 60 °C for 4 h. The engineered novel xylanase exhibited superior enzymatic performance and showed promise as an excellent candidate for industrial application due to its high specific activity, stability and soluble protein yield.  相似文献   

5.
This study aimed to obtain xylanase exhibiting improved enzyme properties to satisfy the requirements for industrial applications. The baxA gene encoding Bacillus amyloliquefaciens xylanase A was mutated by error-prone touchdown PCR. The mutant, pCbaxA50, was screened from the mutant library by using the 96-well plate high-throughput screening method. Sequence alignment revealed the identical mutation point S138T in xylanase (reBaxA50) produced by the pCbaxA50. The specific activity of the purified reBaxA50 was 9.38 U/mg, which was 3.5 times higher than that of its parent expressed in Escherichia coli BL21 (DE3), named reBaxA. The optimum temperature of reBaxA and reBaxA50 were 55 °C and 50 °C, respectively. The optimum pH of reBaxA and reBaxA50 were pH 6 and pH 5, respectively. Moreover, reBaxA50 was more stable than reBaxA under thermal and extreme pH treatment. The half-life at 60 °C and apparent melting temperature of reBaxA50 were 9.74 min and 89.15 °C, respectively. High-performance liquid chromatography showed that reBaxA50 released xylooligosaccharides from oat spelt, birchwood, and beechwood xylans, with xylotriose as the major product; beechwood xylan was also the most thoroughly hydrolyzed. This study demonstrated that the S138T mutation possibly improved the catalytic activity and thermostability of reBaxA50.  相似文献   

6.
Improvement of thermostability in engineered enzymes can allow biocatalysis on substrates with poor aqueous solubility. Denaturation of the cofactor-binding loops of Escherichia coli transketolase (TK) was previously linked to the loss of enzyme activity under conditions of high pH or urea. Incubation at temperatures just below the thermal melting transition, above which the protein aggregates, was also found to anneal the enzyme to give an increased specific activity. The potential role of cofactor-binding loop instability in this process remained unclear. In this work, the two cofactor-binding loops (residues 185–192 and 382–392) were progressively mutated towards the equivalent sequence from the thermostable Thermus thermophilus TK and variants assessed for their impact on both thermostability and activity. Cofactor-binding loop 2 variants had detrimental effects on specific activity at elevated temperatures, whereas the H192P mutation in cofactor-binding loop 1 resulted in a two-fold improved stability to inactivation at elevated temperatures, and increased the critical onset temperature for aggregation. The specific activity of H192P was 3-fold and 19-fold higher than that for wild-type at 60 °C and 65 °C respectively, and also remained 2.7-4 fold higher after re-cooling from pre-incubations at either 55 °C or 60 °C for 1 h. Interestingly, H192P was also 2-times more active than wild-type TK at 25 °C. Optimal activity was achieved at 60 °C for H192P compared to 55 °C for wild type. These results show that cofactor-binding loop 1, plays a pivotal role in partial denaturation and aggregation at elevated temperatures. Furthermore, a single rigidifying mutation within this loop can significantly improve the enzyme specific activity, as well as the stability to thermal denaturation and aggregation, to give an increased temperature optimum for activity.  相似文献   

7.
Transglutaminase (TGase) is an important industrial enzyme that catalyzes the cross-linking of proteins. In this study, the N-terminal residues were deleted and substituted to improve the activity and thermostability of Streptomyces hygroscopicus TGase. Seven N-terminal residues of TGase were chosen to be deleted individually. The mutated TGase missing the first four residues showed an increase in specific activity of 32.92%. The fifth residue (E5) in the N-terminus was then selected for substitution with the 19 other amino acids. The mutant replacing the fifth residue with an aspartic acid exhibited a 1.85-fold higher specific activity and a 2.7-fold longer half-life at 50 °C when compared with the wild-type enzyme. The melting temperature of the mutated TGase increased from 68.9 to 79.1 °C by circular dichroism spectroscopy analysis. This study showed that substitution combined with deletion of the N-terminal amino acids could enhance the activity and thermostability of TGase.  相似文献   

8.
The oleaginous microalga Lobosphaera incisa (Trebouxiophyceae, Chlorophyta) contains arachidonic acid (ARA, 20:4 n  6) in all membrane glycerolipids and in the storage lipid triacylglycerol. The optimal growth temperature of the wild-type (WT) strain is 25 °C; chilling temperatures (≤ 15 °C) slow its growth. This effect is more pronounced in the delta-5-desaturase ARA-deficient mutant P127, in which ARA is replaced with dihomo-γ-linolenic acid (DGLA, 20:3 n  6). In nutrient-replete cells grown at 25 °C, the major chloroplast lipid monogalactosylglycerol (MGDG) was dominated by C18/C16 species in both strains. Yet ARA constituted over 10% of the total fatty acids in the WT MGDG as a component of C20/C18 and C20/C20 species, whereas DGLA was only a minor component of MGDG in P127. Both strains increased the percentage of 18:3 n  3 in membrane lipids under chilling temperatures. The temperature downshift led to a dramatic increase in triacylglycerol at the expense of chloroplast lipids. WT and P127 showed a similarly high photochemical quantum yield of photosystem II, whereas non-photochemical quenching (NPQ) and violaxanthin de-epoxidation were drastically higher in P127, especially at 15 °C. Fluorescence anisotropy measurements indicated that ARA-containing MGDG might contribute to sustaining chloroplast membrane fluidity upon dropping to the chilling temperature. We hypothesize that conformational changes in chloroplast membranes and increased rigidity of the ARA-deficient MGDG of P127 at chilling temperatures are not compensated by trienoic fatty acids. This might ‘lock’ violaxanthin de-epoxidase in the activated state causing high constitutive NPQ and alleviate the risk of photodamage under chilling conditions in the mutant.  相似文献   

9.
To improve the thermostability of Trichoderma reesei xylanase 2 (Xyn2), the thermostabilizing domain (A2) from Thermotoga maritima XynA were engineered into the N-terminal region of the Xyn2 protein. The xyn2 and hybrid genes were successfully expressed in Pichia pastoris using the strong methanol inducible alcohol oxidase 1 (AOX1) promoter and the secretion signal sequence from S. cerevisiae (α-factor). The transformants expressed the hybrid gene produced clearly increased both the thermostability and substrate-binding capacity compared to the corresponding strains expressed the native Xyn2 gene. The activity of the hybrid enzyme was highest at 65 °C that was 10 °C higher than the native Xyn2. The hybrid enzyme was stable at 60 °C and retained more than 85% of its activity after 30-min incubation at this temperature. The hybrid enzyme was highly specific toward xylan and analysis of the products from birchwood xylan degradation confirmed that the enzyme was an endo-xylanase with xylobiose and xylotriose as the main degradation products. These attributes should make it an attractive applicant for various applications. Our results also suggested that the N-terminal domain A2 is responsible for both the thermostability and substrate-binding capacity of T. maritima XynA.  相似文献   

10.
A putative laccase gene was cloned from Shigella dysenteriae W202 and expressed in Escherichia coli as a soluble fusion protein with high yield. The purified product (Wlac) was characterized as the CueO-like laccase from E. coli, a monomer of molecular mass 55 kDa, with a maximum activity of 24.4 U/mg (Km = 0.086) and a pH optimum of 2.5, in a standard assay using ABTS (2,2′-azino-di(3-ethyl-benzthiazoline-6-sulfonate) as the substrate. Activity was stable at 0–25 °C but inhibited above 40 °C. Purified Wlac was completely inhibited by 200 mM EDTA and partially by 32 mM SDS, 50 mM NaN3 and 60 mM thioglycolic acid. Activity was stimulated by Cu2+; other metal ions had only slight or negative effects. Two mutated variants, WlacS and WlacD, were obtained by substituting Glu 106 with Phe 106, and adding a deletion of an α-helix domain (from Leu 351 to Gly 378). WlacS had a 2.2-fold (52.9 U/mg) and WlacD a 3.5-fold (85.1 U/mg) higher enzyme activity than the wild-type laccase and WlacD showed greater thermostability at higher temperatures. Sce VMA intein-associated fusion proteins maintained ~80% of total enzyme activity. Thus, deletion and site-directed mutagenesis of laccases are capable of promoting both enzymatic activity and thermostability.  相似文献   

11.
The effect of debranching enzyme concentration on physicochemical properties and α-amylase hydrolysis rate of resistant starch type III from high amylose rice starch were studied. The pullulanase enzyme (8, 10, 12, 14 and 16 U/g starch) was introduced to modify amylopectin molecules of 15% (w/w) gelatinized rice starches at 55 °C for 16 h. The debranched starches with different degrees of hydrolysis (0.14–5.27%), and having 66.60–98.82% β-amylolysis limit were then induced at 4 °C for 16 h, afterward a one cycle of freeze–thaw process (?10/30 °C) was applied. The results showed that a pullulanase hydrolysis improved the degree of syneresis (51.64–54.85% from 8 to 16 U/g starch). Resistant starch content increased sharply as the amount of the enzyme increased, reaching the highest (19.81%) for a 12 U/g starch and decreased to 13.16% by 16 U/g starch. α-Amylase hydrolysis rate showed that incompletely-debranched had a lower estimated glycemic index than completely debranched rice starches. Microstructure of the selected RS III samples using X-ray diffraction and scanning electron microscopy revealed a crystal pattern change from A- to V-type pattern and formed a coarse honeycomb-like and a filamentous network structure.  相似文献   

12.
Efficient utilization of hemicellulose entails high catalytic capacity containing xylanases. In this study, proline rich sequence was fused together with a C-terminal of xylanase gene from Geobacillus thermodenitrificans C5 and designated as GthC5ProXyl. Both GthC5Xyl and GthC5ProXyl were expressed in Escherichia coli BL21 host in order to determine effect of this modification. The C-terminal oligopeptide had noteworthy effects and instantaneously extended the optimal temperature and pH ranges and progressed the specific activity of GthC5Xyl. Compared with GthC5Xyl, GthC5ProXyl revealed improved specific activity, a higher temperature (70 °C versus 60 °C) and pH (8 versus 6) optimum, with broad ranges of temperature and pH (60–80 °C and 6.0–9.0 versus 40–60 °C and 5.0–8.0, respectively). The modified enzyme retained more than 80% activity after incubating in xylan for 3 h at 80 °C as compared to wild −type with only 45% residual activity. Our study demonstrated that proper introduction of proline residues on C-terminal surface of xylanase family might be very effective in improvement of enzyme thermostability. Moreover, this study reveals an engineering strategy to improve the catalytic performance of enzymes.  相似文献   

13.
Isoamylase is essential to saccharifying starch by cleavage of 1,6-glucoside linkages in starch molecules. In this study, a novel isoamylase gene from Bacillus lentus JNU3 was cloned. The open reading frame of the gene was 2412 base pairs long and encoded a polypeptide of 804 amino acids with a calculated molecular mass of 90 kDa. The deduced amino acid sequence shared less than 40% homology with that of microbial isoamylase ever reported, which indicated it was a novel isoamylase. A constitutive GAP promoter was used to express the recombinant isoamylase in the yeast Pichia pastoris by continuous high cell-density fermentation to avoid the use of methanol, which resulted in 318 U/mL extracellular isoamylase activity after 72 h in a 10 L fermenter. The recombinant enzyme was purified and characterized. It had an estimated molecular mass of 90 kDa, with its optimal activity at 70 °C, pH 6.5 and was quite stable between 30 °C and 70 °C. The recombinant isoamylase proves to be superior to pullulanase as an auxiliary enzyme in maltose production from starch. Therefore it will contribute significantly to the starch debranching process.  相似文献   

14.
The B domain of CGTase has been generally accepted as a domain involved in thermostability. However, limited work has been performed in which entire B domain is substituted with the thermostable counterpart. Using overlap extension PCR, we replaced the B domain of a variant of CGTase Bacillus sp. G1 by six other B domains from thermostable CGTases. Likely due to distortion in the substrate-binding cleft adjacent to the active site, variants with the domain replacements from Thermoanaerobacter, Thermococcus, Thermococcus kodakarensis, Anaerobranca gottschalkii and Pyrococcus furiosus completely lost their catalytic function. A mutant designated Cgt_ET1 with a domain replacement from a Bacillus stearopthermophilus ET1 CGTase was the only variant that retained activity after domain exchange. Both the parental enzyme and the mutant Cgt_ET1 had an identical optimum temperature at 60 °C. The activity half-life was 22 min for the parental CGTase, whereas a marked increase to 57 min was observed for the mutant. Further mutagenesis on Cgt_ET1 was performed at residue 188 by replacing a Phe residue with Tyr. The mutant Cgt_ET1_F188Y displayed a decreased activity half-life of 28 min. Both mutants exhibited a better cyclodextrin-forming ability and a faster turnover rate (kcat) than the parental CGTase.  相似文献   

15.
《Process Biochemistry》2014,49(9):1429-1439
l-Theanine, which has seen increasing use in the functional food industry, can be prepared via enzymatic synthesis using γ-glutamyltranspeptidase (GGT; EC 2.3.2.2). In this study, the GGT from Bacillus subtilis 168 was cloned and expressed as a secreted protein using Escherichia coli BL21(DE3). The enzymatic properties of the GGT and the optimal conditions for the enzymatic synthesis of l-theanine were investigated in detail. The activity of the enzyme was optimal at pH 10; the optimal temperature was 50 °C. Desirable pH stability was observed between pH 5 and pH 12, and adequate thermostability was seen at 50 °C. In 5 h at 37 °C, the enzyme converted 200 mM l-glutamine and 2.2 M ethylamine to l-theanine with a final yield of 78%. Yields of l-theanine decreased to 58% when using 500 mM Gln and 45% when using 1 M Gln. The yield of l-theanine obtained at high substrate concentration provides the basis for the industrial-scale production of l-theanine.  相似文献   

16.
《Process Biochemistry》2014,49(1):90-94
FastPrep cross-linked enzyme aggregates of N-acetylneuraminate aldolase from Staphylococcus carnosus (ScNAL-FpCLEAs) were prepared in order to improve the synthesis of 2-keto-3-deoxy-d-glycero-galactononulosonic acid (KDN), an important building block for therapeutic glycolipids and a possible marker for human prostate cancer. ScNAL-FpCLEAs showed improved thermostability compared with the free enzyme, doubling its half-life at 60 °C. When the effect of substrate ratio (pyruvate:d-mannose) and temperature on the yield of KDN was studied at its optimum pH (pH 7.0), 90% conversion in only 8 h was reached in the presence of 0.6 M d-mannose and 1.2 M pyruvate at 37 °C. This is the highest conversion described to date for enzymatic KDN synthesis. In addition, ScNAL-FpCLEAs exhibited enhanced catalytic activity and stability and could be recycled 10 times with no loss of activity. These results suggest the biotechnological potential of using FastPrepCLEAs to obtain valuable biocatalysts.  相似文献   

17.
It is important to improve the quality of the enzyme inulinase used in industrial applications without allowing the treatment to have any adverse effects on enzyme activity. We achieved preferential chemical modification of the non-catalytic domain of endoinulinase (EC 3.2.1.7) to enhance the thermostability of the enzyme. We used pyridoxal 5′-phosphate (PLP) to modify the more accessible lysine residues at the surface of endoinulinase and then performed a necessary step of reduction with ascorbate. Endoinulinase was incubated in the presence of PLP at various concentrations; this step was followed by reduction of the resulting Schiff base and dialysis. The effects of different PLP concentrations and incubation times on enzyme modification were evaluated. Enzyme deactivation was observed immediately after treatment, even at low PLP concentrations, while reactivation was observed for samples treated with low PLP concentrations after a period of time. Structural analysis revealed that the α-helix content increased from 13.60% to 17.60% after applying the modification strategy; consequently, enzyme stabilization was achieved. The melting temperature (Tm) of the modified enzyme increased from 64.1 °C to 72.2 °C, and a comparative study of thermal stability at 25 °C, 45 °C, and 50 °C for 150 min confirmed that the enzyme was stabilized because of increase in its half-life (t1/2) after PLP modification/ascorbate reduction. The modification process was optimized to achieve the optimum mole ratio for the PLP/endoinulinase (1.37). Excess moles of the modifier are thought to be responsible for enzyme deactivation through unwanted/nonspecific and noncovalent interactions, and the optimization ensured that there was no excess modifier after the desired covalent reaction was complete.  相似文献   

18.
The functional properties of extremophilic Dictyoglomus thermophilum xylanase (XYNB) and the N-terminal disulphide-bridge mutant (XYNB-DS) were studied at high pressure and temperature. The enzymes were quite stable even at the pressure of 500 MPa at 80 °C. The half-life of inactivation in these conditions was over 30 h. The inactivation at 80 °C in atmospheric pressure was only 3-times slower. The increase of pressure up to 500 MPa at 80 °C decreased only slightly the enzyme's stability, whereas in 500 MPa the increase of temperature from 22 to 80 °C decreased significantly more the enzyme's stability. While the high temperature (80–100 °C) decreased the enzyme reaction with short xylooligosaccharides (xylotetraose and xylotriose), the high pressure (100–300 MPa) had an opposite effect. The temperature of 100 °C strongly increased the Km but did not affect the kcat to the same extent, thus indicating that the interaction of the substrate with the active site suffers before the catalytic reaction begins to decrease as the temperature rises. Circular dichroism spectroscopy showed the high structural stability of XYNB and XYNB-DS at 93 °C.  相似文献   

19.
Glucose isomerase is an important industrial enzyme that catalyzes the reversible isomerization of glucose to fructose. In this study, the effect of cobalt ions (Co2+) on the catalytic efficiency and thermostability of recombinant glucose isomerase from Thermobifida fusca was analyzed. The activity of glucose isomerase from engineered Escherichia coli supplemented with 1 mM Co2+ (C-GI) reached 41 U/ml, 2.1-fold higher than enzyme prepared from E. coli without additive (GI). The purified C-GI also exhibited an increased specific activity (23.8 U/mg compared to 12.1 U/mg for GI) and a greater thermostability (half-life of 17 h at 75 °C, 11.3-fold higher than GI (1.5 h)). The optimal temperature for C-GI shifted from 80 °C to 85 °C and demonstrated higher activity over pH 7.0–9.0. The kcat/Km value of C-GI (89.3 M?1 s?1) for the isomerization of glucose to fructose was nearly 1.75-fold higher than that of GI. In addition, the engineered cells were immobilized with the method of flocculation-cross linking. The immobilized cells supplemented with 1 mM Co2+ (C-IGI) had a better operational performance than cells without additives (IGI); at the end of 6 cycles, the conversion rate of C-IGI was still 43.1%, meeting the conversion rate requirement.  相似文献   

20.
A laccase, CotA, from Bacillus subtilis was engineered using a combination of rational and directed evolution approaches. CotA is a generalist, an enzyme with broad specificity, and it was optimized to be a specialist, an enzyme with narrowed specificity. Wild-type CotA oxidizes ABTS (ABTS = diammonium 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) and SGZ (SGZ = 4-hydroxy-3,5-dimethoxy-benzaldehyde azine), and it was engineered for increased specificity for ABTS. Based on the ABTS-bound crystal structure of CotA, 19 amino acids are within 6 Å of ABTS, and they were simultaneously randomized. A mutant was identified that was 132 times more specific for ABTS. Unexpectedly, the variant was found to acquire enhanced thermal stability. The half-life for the heat inactivation (t1/2) at 80 °C was increased by 62 min for the mutant. Laccases have several applications in biotechnology, which include pulp bleaching, biosensors, bioremediation, and biofuel cells. The substrate specificity of CotA is moldable and the enzyme can be tailored to oxidize a variety of target molecules for specific purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号