首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Alkaline phosphatase (AP) and ecto-5′-nucleotidase (e5′NT) belong to same family that hydrolyze the extracellular nucleotides and ensure the bioavailability of nucleotides and nucleosides at purinergic receptors. During pathophysiological conditions, the over expression of AP and e5′NT lead to an increased production of adenosine that enhance tumor proliferation, invasiveness, neoangiogenesis and disrupts the body antitumor response. As both enzymes are abundantly expressed in above mentioned conditions, therefore it is of great interest to synthesize and develop potent inhibitors of these enzymes that augment the antitumor therapy. Herein we reported the synthesis and biological activity of a new series of chalcone-sulfonamide hybrids (4a-j). These derivatives were then evaluated for their inhibitory potential against two members of ecto-nucleotidase family, e5′NT (human and rat) and APs isozyme (intestinal and tissue nonspecific). Only six derivatives were found to inhibit both human and rat e5′NT enzymes. Compounds 4e and 4d showed maximum inhibition of human and rat e5′NT with an IC50 ± SEM = 0.26 ± 0.01 and 0.33 ± 0.004 μM, respectively. Moreover, on APs, these derivatives were identified as the selective inhibitors of calf intestinal AP (c-IAP). The derivative 4a exhibited maximum inhibition of c-IAP with an IC50 ± SEM = 0.12 ± 0.02 μM. In conclusion, these chalcone-sulfonamide hybrids exhibited dual inhibition of both family of isozymes but was more selective towards c-IAP enzyme.  相似文献   

2.
This study investigated the effect of water immersion on surface electromyography (EMG) signals recorded from the brachioradial muscle of 11 healthy subjects, both in a dry environment and a thermo-neutral forearm bath (36 °C). EMG measurements were registered in a sitting position, using waterproof electrodes under 3 conditions: relaxed muscle, maximum voluntary isometric contraction (MVC, 1 s, grip test) and 70% of the MVC (5 s). In relaxed muscle, mean EMG values were significantly higher under immersion compared to the dry conditions (dry: 5.4 ± 3.6 μV; water: 19.5 ± 14.9 μV; p = 0.014). In maximum voluntary isometric contraction, there was a significant difference, though not in the same direction (dry: 145.9 ± 58.9 μV; water: 73.2 ± 35.0 μV; p = 0.003). Under 70% MVC, there was no difference between wet and dry conditions (dry: 102.4 ± 75.0 μV; water: 100.4 ± 65.3 μV; p = 0.951). Results suggest that dry and underwater conditions influence EMG readings; however, the results are inconsistent. These findings indicate additional influences on resting muscle activity, as well as MVC. Further measurements with other muscle groups and different types of immersion are needed to clarify conflicting observations.  相似文献   

3.
Engineered microbial biosynthesis of plant natural products can support manufacturing of complex bioactive molecules and enable discovery of non-naturally occurring derivatives. Purine alkaloids, including caffeine (coffee), theophylline (antiasthma drug), theobromine (chocolate), and other methylxanthines, play a significant role in pharmacology and food chemistry. Here, we engineered the eukaryotic microbial host Saccharomyces cerevisiae for the de novo biosynthesis of methylxanthines. We constructed a xanthine-to-xanthosine conversion pathway in native yeast central metabolism to increase endogenous purine flux for the production of 7-methylxanthine, a key intermediate in caffeine biosynthesis. Yeast strains were further engineered to produce caffeine through expression of several enzymes from the coffee plant. By expressing combinations of different N-methyltransferases, we were able to demonstrate re-direction of flux to an alternate pathway and develop strains that support the production of diverse methylxanthines. We achieved production of 270 μg/L, 61 μg/L, and 3700 μg/L of caffeine, theophylline, and 3-methylxanthine, respectively, in 0.3-L bench-scale batch fermentations. The constructed strains provide an early platform for de novo production of methylxanthines and with further development will advance the discovery and synthesis of xanthine derivatives.  相似文献   

4.
The aim of this work was to study the antioxidant activity and the protective effect of 2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethylchalcone (DMC), the main compound from the buds of Cleistocalyx operculatus, on human umbilical vein endothelial cells against cytotoxicity induced by H2O2. The antioxidant activities of DMC were measured by ABTS assay, ferric reducing antioxidant power (FRAP) and hydroxyl radical scavenging activity, and protective effects of DMC on human umbilical vein endothelial cells against cytotoxicity induced by H2O2 were tested. DMC was found to have high ABTS radical scavenging activity (176.5 ± 5.2 μmol trolox equivalents/500 μmol DMC) and strong ferric reducing antioxidant power (213.3 ± 5.8 μmol trolox equivalents/500 μmol DMC). In addition, DMC scavenged the hydroxyl radicals, with IC50 values of 243.7 ± 6.3 μM, slightly lower than the reference antioxidant ascorbic acid (ASC). Moreover, DMC could protect the human umbilical vein endothelial cells against H2O2-induced cytotoxicity by decrease intracellular and extracellular ROS levels, reduction in catalase (CAT) activity and increment in malondialdehyde (MDA) level. These results suggested that DMC has the potential to be used in the therapy of oxidative damage.  相似文献   

5.
6.
In order to expedite the process of classification of the members of the family of glutathione-S-transferases (GSTs) high performance liquid chromatography with photodiode array detection (HPLC-PDA) was used as a means for measuring enzymatic activity. The GST chosen for the development of the HPLC-PDA technique was from equine liver (E-GST). The characterizing substrates, ethacrynic acid (EA) and bromosulfophthalein (BSP), along with previously gathered characterization data allowed for the distinction of α, μ or π-class enzymes. In an initial characterization of the previously unclassified E-GST it was determined that the enzyme was of the π-class with specific activities of 0.062, ± 0.0015 μmol min 1 mg 1 and 0.0019, ± 0.00064 μmol min 1 mg 1 for EA and BSP, respectively. Finally, the activity of the E-GST with the EA and BSP substrates, was measured by HPLC-PDA, and was found to be 0.027, ± 0.003 μmol min 1 mg 1 and 0.002, ± 0.0005 μmol min 1 mg 1, respectively. While the HPLC-PDA data do not mirror the spectrophotometric results quantitatively the overall response by the E-GST was the same. In general, the E-GSTs were shown to belong to the π-class when characterized by HPLC-PDA due to an EA specific activity greater than 0.01 μmol min 1 mg 1 and a negligible BSP activity (≤ 0.002 μmol min 1 mg 1).  相似文献   

7.
Squalene is an effective antioxidant and a potential chemopreventive agent. In this work, the effect of methyl jasmonate (MJA) on squalene biosynthesis in microalga Schizochytrium mangrovei was investigated. The maximum squalene content (1.17 ± 0.06 mg/g cell dry weight, DW) reached during the next 3 h after MJA treatment (0.1 mM) at 48 h of cultivation, which was 60% higher than that of control. The activity of squalene synthase (SS) increased 2-fold over control at this point. The maximum cholesterol content of 0.45 ± 0.03 mg/g DW was reached at hour 51 when MJA concentration was 0.4 mM, whereas the squalene content was lower at this point. The observations suggested that the increased squalene content was resulted from an increased activity of SS. MJA could be used to regulate the key enzymes in squalene biosynthetic pathway for the increased production of this compound in thraustochytrids. This research also provided novel information on the stimulation effect of methyl jasmonate on the biosynthesis of essential intermediate involved in the primary metabolism in microorganism.  相似文献   

8.
《Process Biochemistry》2007,42(9):1362-1366
Hexyl laurate, a medium-chain ester carried about fruity flavor, is primarily used in personal care formulations as an important emollient for cosmetic applications. On the basis of the hexyl laurate could be successfully synthesized by lipase within a batch system in our previous report. This study aimed to develop an optimal continuous procedure of lipase-catalyzed hexyl laurate synthesis in a packed-bed bioreactor to investigate the possibility of large-scale production further. The ability of lipase from Rhizomucor miehei (Lipozyme IM-77) to catalyze the direct-esterification of 1-hexanol and lauric acid in n-hexane was investigated. Response surface methodology (RSM) and 3-level-3-factor fractional factorial design were employed to evaluate the effects of synthesis parameters, such as reaction temperature (35–55 °C), mixture flow rate (1.5–4.5 mL/min) and substrate molar ratio 1-hexanol to lauric acid (1:1–1:3) on production rate (μmol/min) of hexyl laurate by direct-esterification. Based on the analysis of ridge max, the optimum synthesis conditions for hexyl laurate were as follows: 45 °C of reaction temperature, substrate molar ratio 1:2 and reaction flow rate 4.5 mL/min. The optimum predicted production rate was 435.6 ± 0.9 μmol/min and the actual value was 437.6 ± 0.4 μmol/min.  相似文献   

9.
Saccharum spontaneum is a wasteland weed consists of 45.10 ± 0.35% cellulose and 22.75 ± 0.28% of hemicellulose on dry solid (DS) basis. Aqueous ammonia delignified S. spontaneum yielded total reducing sugars, 53.91 ± 0.44 g/L (539.10 ± 0.55 mg/g of substrate) with a hydrolytic efficiency of 77.85 ± 0.45%. The enzymes required for hydrolysis were prepared from culture supernatants of Aspergillus oryzae MTCC 1846. A maximum of 0.85 ± 0.07 IU/mL of filter paperase (FPase), 1.25 ± 0.04 IU/mL of carboxy methyl cellulase (CMCase) and 55.56 ± 0.52 IU/mL of xylanase activity was obtained after 7 days of incubation at 28 ± 0.5 °C using delignified S. spontaneum as carbon source under submerged fermentation conditions. Enzymatic hydrolysate of S. spontaneum was then tested for ethanol production under batch and repeated batch production system using “in-situ” entrapped Saccharomyces cerevisiae VS3 cells in S. spontaneum stalks (1 cm × 1 cm) size. Immobilization was confirmed by the scanning electron microscopy (SEM). Batch fermentation of VS3 free cells and immobilized cells showed ethanol production, 19.45 ± 0.55 g/L (yield, 0.410 ± 0.010 g/g) and 21.66 ± 0.62 g/L (yield, 0.434 ± 0.021 g/g), respectively. Immobilized VS3 cells showed maximum ethanol production (22.85 ± 0.44 g/L, yield, 0.45 ± 0.04 g/g) up to 8th cycle during repeated batch fermentation followed by a gradual reduction in subsequent cycles of fermentation.  相似文献   

10.
The enzymes of the antigen 85 complex (Ag85A, B, and C) possess mycolyltransferase activity and catalyze the synthesis of the most abundant glycolipid of the mycobacterial cell wall, the cord factor. The cord factor (trehalose 6,6′-dimycolate, TDM) is essential for the integrity of the mycobacterial cell wall and pathogenesis of the bacillus. Thus, TDM biosynthesis is regarded as a potential drug target for control of Mycobacterium tuberculosis infections. Trehalose 6,6′-dimycolate (TDM) is synthesized from two molecules of trehalose-6′-monomycolate (TMM) by antigen 85A. We report here a novel enzyme assay using the natural substrate TMM. The novel colorimetric assay is based on the quantification of glucose from the degradation of trehalose, which is the product from catalytic activity of antigen 85A. Using the new assay, Km and Kcat were determined with values of 129.6 ± 8.1 µM and 65.4 ± 4.1 min 1, respectively. This novel assay is also suitable for robust high-throughput screening (HTS) for compound library screening against mycolyltransferase (antigen 85A). The assay is significantly faster and more convenient to use than all assays currently in use. The assay has a very low coefficient of variance (0.04) in 96-well plates and shows a Z′ factor of 0.67–0.73, indicating the robustness of the assay. In addition, this new assay is highly suitable for the quantification of total TMM of the mycobacterial cell envelope.  相似文献   

11.
Among all PRT enzymes of purine salvage pathway in Leishmania, XPRT (Xanthine phosphoribosyl transferase) is unique in its substrate specificity and their non-existence in human. It is an interesting protein not only for drug designing but also to understand the molecular determinants of its substrate specificity. Analysis of the 3D model of L. donovani XPRT (Ld-XPRT) revealed that Ile 209, Glu 215 and Tyr 208 may be responsible for the altered substrate specificity of Ld-XPRT. Comparisons with it's nearest homologue in humans, revealed significant differences between the two. A 28 residue long unique motif was identified in Ld-XPRT, which showed highest fluctuation upon substrate binding during MD simulations. In kinetic analysis, Ld-XPRT could phosphoribosylate xanthine, hypoxanthine and guanine with Km values of 7.27, 8.13, 8.48 μM and kcat values of 2.24, 1.82, 1.19 min 1 respectively. Out of 159 compounds from docking studies, six compounds were characterized further by fluorescence spectroscopy, CD spectroscopy and enzyme inhibition studies. Fluorescence quenching experiment was performed to study the binding of inhibitors with Ld-XPRT and dissociation constants were calculated. Four compounds are bi-substrate analogues and show competitive inhibition with both the substrates (Xanthine and PRPP) of Ld-XPRT. The CD spectral analysis revealed that the binding of inhibitors to Ld-XPRT induce change in its tertiary structure, where as its secondary structure pattern remains unchanged. Two Ld-XPRT inhibitors (dGDP and cGMP), which also have ability to inhibit Leishmanial HGPRT, are predicted as potential drug candidates as it can inhibit both the important enzymes of the purine salvage pathway.  相似文献   

12.
4-hydroxyisoleucine (4-HIL) exhibits unique insulinotropic and insulin-sensitizing activities and is an attractive candidate for the treatment of type II and type I diabetes. In our previous study, l-isoleucine dioxygenase gene (ido) was cloned and overexpressed in an l-isoleucine-producing strain, Corynebacterium glutamicum ssp. lactofermentum SN01, and 4-HIL was produced from the endogenous l-isoleucine (Ile). In this study, ppc and lysC were co-expressed with ido to increase the supply of Ile, the direct precursor of 4-HIL, and to further improve the 4-HIL yield. After 144 h of fermentation, the ido-ppc-expressing strain produced 95.72 ± 1.52 mM 4-HIL, 29% higher than the ido-expressing strain. The co-expression of lysC and ppc with ido resulted in a further 35% increment of carbon flux to l-aspartate family amino acids biosynthesis pathway. However, the conversion ratio of Ile to 4-HIL and the 4-HIL yield decreased to 0.31 mol/mol and 30.16 ± 2.01 mM, respectively, likely due to the decreased IDO activity caused by lower pH and higher intracellular Ile concentration. Therefore, co-expression of ido and ppc was benefit for 4-HIL de novo biosynthesis, while co-expression of lysC with ido and ppc decreased the conversion ratio of Ile to 4-HIL.  相似文献   

13.
The effect of metabolic inhibitor, 5-fluoro-2′-deoxyuridine (FUdR) on toxin production and the cell cycle of marine dinoflagellate, Alexandrium tamarense, was investigated. Compared to untreated cells, FUdR at 3 μM (p < 0.05) to 300 μM (p < 0.01) inhibited the cell proliferation and toxin production in a dose-dependent manner for A. tamarense cultured in modified T1 medium. FUdR at 203 μM resulted in cell cycle arrest at the S phase at day 4 and toxigenesis was inhibited after day 2. The toxin profiles of the FUdR-treated cultures were similar to those of the control culture. These results suggest that FUdR inhibits saxitoxin (STX) biosynthesis in the early stage of the pathway. This report is the first to demonstrate the inhibition of toxin production in A. tamarense by a nucleoside analog.  相似文献   

14.
Direct conversion of palm pressed fiber (PPF) and palm empty fruit bunches (EFB) into enzymes and lipid by oleaginous fungi were performed through solid-state fermentation (SSF). Among the strains tested, TSIP9 converted PPF and EFB into lipid with the highest yield of 31.1 ± 1.7 mg/gram dry substrate (gds) and 37.5 ± 2.2 mg/gds, respectively. It also produced high activity of cellulolytic enzymes. It was identified as Aspergillus tubingensis. The similar fatty acids of its lipid to those of plant oil indicate its suitable use as biodiesel feedstock. The cellulase and xylanase production by this strain was improved when EFB was pretreated with alkaline. When alkaline-pretreated EFB was added with palm kernel cake (PK) as an alternative nitrogen source and the culture conditions were optimized through response surface methodology (RSM), the production of lipid, cellulase and xylanase were increased up to 88.5 ± 4.9 mg/gds, 26.1 ± 0.1 U/gds and 59.3 ± 0.3 U/gds, respectively. This study reveals the potential use of in situ cellulolytic enzymes producing fungi and the optimal conditions for direct conversion of lignocellulosic biomass into lipid.  相似文献   

15.
Apurinic/apyrimidinic (AP) endonucleases are key enzymes involved in the repair of abasic sites and DNA strand breaks. Pathogenic bacteria Mycobacterium tuberculosis contains two AP endonucleases: MtbXthA and MtbNfo members of the exonuclease III and endonuclease IV families, which are exemplified by Escherichia coli Xth and Nfo, respectively. It has been shown that both MtbXthA and MtbNfo contain AP endonuclease and 3′  5′ exonuclease activities. However, it remains unclear whether these enzymes hold 3′-repair phosphodiesterase and nucleotide incision repair (NIR) activities. Here, we report that both mycobacterial enzymes have 3′-repair phosphodiesterase and 3′-phosphatase, and MtbNfo contains in addition a very weak NIR activity. Interestingly, depending on pH, both enzymes require different concentrations of divalent cations: 0.5 mM MnCl2 at pH 7.6 and 10 mM at pH 6.5. MtbXthA requires a low ionic strength and 37°C, while MtbNfo requires high ionic strength (200 mM KCl) and has a temperature optimum at 60 °C. Point mutation analysis showed that D180 and N182 in MtbXthA and H206 and E129 in MtbNfo are critical for enzymes activities. The steady-state kinetic parameters indicate that MtbXthA removes 3′-blocking sugar-phosphate and 3′-phosphate moieties at DNA strand breaks with an extremely high efficiency (kcat/KM = 440 and 1280  μM-1∙min−1, respectively), while MtbNfo exhibits much lower 3′-repair activities (kcat/KM = 0.26 and 0.65 μM-1∙min−1, respectively). Surprisingly, both MtbXthA and MtbNfo exhibited very weak AP site cleavage activities, with kinetic parameters 100- and 300-fold lower, respectively, as compared with the results reported previously. Expression of MtbXthA and MtbNfo reduced the sensitivity of AP endonuclease-deficient E. coli xth nfo strain to methylmethanesulfonate and H2O2 to various degrees. Taken together, these data establish the DNA substrate specificity of M. tuberculosis AP endonucleases and suggest their possible role in the repair of oxidative DNA damage generated by endogenous and host- imposed factors.  相似文献   

16.
17.
《Aquatic Botany》2005,83(3):187-192
We investigated the effect of intraspecific competition on growth parameters and photosynthesis of the salt marsh species Atriplex prostrata Boucher in order to distinguish the effects of density-dependent growth inhibition from salt stress. High plant density caused a reduction of 30% in height, 82% in stem dry mass, 80% in leaf dry mass, and 95% in root dry mass. High density also induced a pronounced 72% reduction in leaf area, 29% decrease in length of mature internodes and 50% decline in net photosynthetic rate. The alteration of net photosynthesis paralleled growth inhibition, decreasing from 7.6 ± 0.9 μmol CO2 m−2 s−1 at low density to 3.5 ± 0.4 μmol CO2 m−2 s−1 at high density, indicating growth inhibition caused by intraspecific competition is mainly due to a decline in net photosynthesis rate. Plants grown at high density also exhibited a reduction in stomatal conductance from 0.7 ± 0.1 mol H2O m−2 s−1 at low density to 0.3 ± 0.1 mol H2O m−2 s−1 at high density and a reduction in transpiration rate from 6.0 ± 0.3 mmol H2O m−2 s−1 at low density to 4.3 ± 0.3 mmol H2O m−2 s−1 at high density. Biomass production was inhibited by an increase in plant density, which reduced the rate of photosynthesis, stomatal conductance and leaf area of plants.  相似文献   

18.
Heterologous production of large multidomain proteins from higher plants is often cumbersome. Barley limit dextrinase (LD), a 98 kDa multidomain starch and α-limit dextrin debranching enzyme, plays a major role in starch mobilization during seed germination and is possibly involved in starch biosynthesis by trimming of intermediate branched α-glucan structures. Highly active barley LD is obtained by secretory expression during high cell-density fermentation of Pichia pastoris. The LD encoding gene fragment without signal peptide was subcloned in-frame with the Saccharomyces cerevisiae α-factor secretion signal of the P. pastoris vector pPIC9K under control of the alcohol oxidase 1 promoter. Optimization of a fed-batch fermentation procedure enabled efficient production of LD in a 5-L bioreactor, which combined with affinity chromatography on β-cyclodextrin–Sepharose followed by Hiload Superdex 200 gel filtration yielded 34 mg homogenous LD (84% recovery). The identity of the recombinant LD was verified by N-terminal sequencing and by mass spectrometric peptide mapping. A molecular mass of 98 kDa was estimated by SDS–PAGE in excellent agreement with the theoretical value of 97419 Da. Kinetic constants of LD catalyzed pullulan hydrolysis were found to Km,app = 0.16 ± 0.02 mg/mL and kcat,app = 79 ± 10 s?1 by fitting the uncompetitive substrate inhibition Michaelis–Menten equation, which reflects significant substrate inhibition and/or transglycosylation. The resulting catalytic coefficient, kcat,app/Km,app = 488 ± 23 mL/(mg s) is 3.5-fold higher than for barley malt LD. Surface plasmon resonance analysis showed α-, β-, and γ-cyclodextrin binding to LD with Kd of 27.2, 0.70, and 34.7 μM, respectively.  相似文献   

19.
Three novel compounds; two polymethoxylated flavonoids, 5,7,4′-trihydroxy-3,8,3′,5′-tetramethoxyflavone (1), 5,7,3′-trihydroxy-3,8,4′,5′-trimethoxyflavone (2), and a clerodane diterpenoid; 8-acetoxyisochiliolide lactone (3) were characterized from the leaf exudates of Microglossa pyrifolia. In addition, three known polymethoxylated flavonoids including; 5,7,4′-trihydroxy-3,8,3′-trimethoxyflavone (4), 5,3′4′-trihydroxy-3,7,8-trimethoxyflavone (5), 5,3′4′-trihydroxy-7-methoxyflavanone (6) and a clerodane diterpenoid; 7,8-epoxyisocholiolide lactone (7) were identified. Their structures were determined on the basis of spectroscopic evidence. All the compounds did not exhibit antiplasmodial and antimicrobial activities at 47.6 μg/mL and were not cytotoxic at 5 μg/mL. Compound 6 exhibited modest antileishmanial activity with IC50 value of 13.13 μg/mL with 5 and 7 showing activities with IC50 values of 31.13 and 38.00 μg/mL, respectively, therefore inactive. The flavonoids (quercetin derivatives, 4 and 5) showed similar antioxidant activities, using 2,2-diphenylpicrylhydrazyl (DPPH) assay, with IC50 values of 6.2 ± 0.3 μg/mL for 4 (17.3 μM) and 5 (17.8 μM) respectively. These activities were comparable to that of the standard quercetin (IC50 value of 6.0 ± 0.2 μg/mL (19.9 μM)), irrespective of methylation of the characteristic hydroxyl groups expected to be responsible for activity and additional substitution at C-8 in ring A of the flavonoid ring. These studies revealed that the presence of an hydroxyl group at C-4′ positions and oxygenation at C-3 in flavone skeleton, appears to be necessary for good antioxidant activities as encountered in compounds 1, 4 and 5. Substantial reduction in antioxidant activity was shown by methoxylation of the 4′-OH as observed in compound 2 with an IC50 value of 8.79 ± 0.3 μg/mL (24.4 μM).  相似文献   

20.
The Toxoplasma gondii genome project has revealed two putative isoforms (TgPGM-I and TgPGM-II) of α-phosphoglucomutase (EC 5.4.2.2). We obtained recombinant proteins of these isoforms from the Beverley strain of T. gondii and characterized their properties, particularly the kinetic properties of these isoforms. The specific activities of TgPGM-I and TgPGM-II for α-d-glucose 1-phosphate were 338 ± 9 and 84 ± 6 μmol/min/mg protein, respectively, at 37 °C under optimal conditions. The Kcat and Km values of TgPGM-I were 398 ± 11/s and 0.19 ± 0.03 mM and those for TgPGM-II were 93 ± 7/s and 3.53 ± 0.91 mM, respectively, for α-d-glucose 1-phosphate. Magnesium ions were the most effective divalent cations for both the enzyme activities. The maximum activities of both the enzymes were obtained in the presence of more than 0.2 mM α-d-glucose 1,6-bisphosphate. Although both enzymes were attached to the α-phosphohexomutase superfamily, amino acid sequence homology between TgPGM-I and TgPGM-II showed very low overall identity (25%). No α-phosphomannomutase (EC 5.4.2.8) activity was detected for either enzyme. The data indicated that TgPGM-I, but not TgPGM-II, may play an important role in α-d-glucose 6-phosphate production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号