首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel amperometric glucose biosensor based on the nine layers of multilayer films composed of multi-wall carbon nanotubes (MWCNTs), gold nanoparticles (GNp) and glucose oxidase (GOD) was developed for the specific detection of glucose. MWCNTs were chemically modified with the H2SO4–HNO3 pretreatment to introduce carboxyl groups which were used to interact with the amino groups of poly(allylamine) (PAA) and cysteamine via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide cross-linking reaction, respectively. A cleaned Pt electrode was immersed in PAA, MWCNTs, cysteamine and GNp, respectively, followed by the adsorption of GOD, assembling the one layer of multilayer films on the surface of Pt electrode (GOD/GNp/MWCNTs/Pt electrode). Repeating the above process could assemble different layers of multilayer films on the Pt electrode. PBS washing was applied at the end of each assembly deposition for dissociating the weak adsorption. Film assembling and characterization were studied by transmission electron microscopy and quartz crystal microbalance, and properties of the resulting glucose biosensors were measured by electrochemical measurements. The marked electrocatalytic activity of Pt electrode based on multilayer films toward H2O2 produced during GOD enzymatic reactions with glucose permitted effective low-potential amperometric measurement of glucose. Taking the sensitivity and selectivity into consideration, the applied potential of 0.35 V versus Ag/AgCl was chosen for the oxidation detection of H2O2 in this work. Among the resulting glucose biosensors, the biosensor based on nine layers of multilayer films was best. It showed a wide linear range of 0.1–10 mM glucose, with a remarkable sensitivity of 2.527 μA/mM, a detection limit of 6.7 μM estimated at a signal-to-noise ratio of 3 and fast response time (within 7 s). Moreover, it exhibited good reproducibility, long-term stability and the negligible interferences of ascorbic acid, uric acid and acetaminophen. The study can provide a feasible approach on developing new kinds of oxidase-based amperometric biosensors, and can be used as an illustration for constructing various hybrid structures.  相似文献   

2.
A simple and relatively cheap glucose biosensor based on a combination of gold nanoparticles (Au NPs) and glucose oxidase (GO(x) ) immobilized on a bioplatform eggshell membrane was established. Scanning electron microscopy showed successful immobilization of Au NPs/GO(x) on the eggshell membrane. The effects of pH, phosphate buffer concentration, and temperature on the glucose biosensor were studied in detail. The biosensor shows a linear response at a glucose concentration range of 5-525 μM. The detection limit of the biosensor is 2.5 μM (S/N = 3). The biosensor exhibits good repeatability with RSD = 3.6% (n = 6), good operational stability with over 300 measurements and long-term storage stability with a shelf life of at least 6 months. The response time is less than 60 s. The glucose level in commercial food samples has been successfully determined. The proposed work shows potential to develop cost-effective biosensors for biotechnological, biomedical and industrial use.  相似文献   

3.
A novel glucose biosensor was developed, based on the immobilization of glucose oxidase (GOD) with cross-linking in the matrix of bovine serum albumin (BSA) on a Pt electrode, which was modified with gold nanoparticles decorated Pb nanowires (GNPs-Pb NWs). Pb nanowires (Pb NWs) were synthesized by an l-cysteine-assisted self-assembly route, and then gold nanoparticles (GNPs) were attached onto the nanowire surface through –SH–Au specific interaction. The morphological characterization of GNPs-Pb NWs was examined by transmission electron microscopy (TEM). Cyclic voltammetry and chronoamperometry were used to study and to optimize the electrochemical performance of the resulting biosensor. The synergistic effect of Pb NWs and GNPs made the biosensor exhibit excellent electrocatalytic activity and good response performance to glucose. The effects of pH and applied potential on the amperometric response of the biosensor have been systemically studied. In pH 7.0, the biosensor showed the sensitivity of 135.5 μA mM−1 cm−2, the detection limit of 2 μM (S/N = 3), and the response time <5 s with a linear range of 5–2200 μM. Furthermore, the biosensor exhibits good reproducibility, long-term stability and relative good anti-interference.  相似文献   

4.
A new amperometric biosensor, based on adsorption of glucose oxidase (GOD) at the platinum nanoparticle-modified carbon nanotube (CNT) electrode, is presented in this article. CNTs were grown directly on the graphite substrate. The resulting GOD/Pt/CNT electrode was covered by a thin layer of Nafion to avoid the loss of GOD in determination and to improve the anti-interferent ability. The morphologies and electrochemical performance of the CNT, Pt/CNT, and Nafion/GOD/Pt/CNT electrodes have been investigated by scanning electron microscopy, cyclic voltammetry, and amperometric methods. The excellent electrocatalytic activity and special three-dimensional structure of the enzyme electrode result in good characteristics such as a large determination range (0.1-13.5mM), a short response time (within 5s), a large current density (1.176 mA cm(-2)), and high sensitivity (91mA M(-1)cm(-2)) and stability (73.5% remains after 22 days). In addition, effects of pH value, applied potential, electrode construction, and electroactive interferents on the amperometric response of the sensor were investigated and discussed. The reproducibility and applicability to whole blood analysis of the enzyme electrode were also evaluated.  相似文献   

5.
Amperometric glucose biosensor based on single-walled carbon nanohorns   总被引:2,自引:0,他引:2  
Liu X  Shi L  Niu W  Li H  Xu G 《Biosensors & bioelectronics》2008,23(12):1887-1890
The biosensing application of single-walled carbon nanohorns (SWCNHs) was demonstrated through fabrication of an amperometric glucose biosensor. The biosensor was constructed by encapsulating glucose oxidase in the Nafion-SWCNHs composite film. The cyclic voltammograms for glucose oxidase immobilized on the composite film displayed a pair of well-defined and nearly symmetric redox peaks with a formal potential of -0.453 V. The biosensor had good electrocatalytic activity toward oxidation of glucose. To decrease detection potential, ferrocene monocarboxylic acid was used as a redox mediator. The mediated glucose biosensor shows a linear range from 0 to 6.0 mM. The biosensor shows high sensitivity (1.06 microA/mM) and stability, and can avoid the commonly coexisted interference. Because of impressive properties of SWCNHs, such as high purity and high surface area, SWCNHs and their composites are expected to be promising material for biomolecular immobilization and biosensing applications.  相似文献   

6.
A new glucose biosensor has been fabricated by immobilizing glucose oxidase into a sol-gel composite at the surface of a basal plane pyrolytic graphite (bppg) electrode modified with multiwall carbon nanotube. First, the bppg electrode is subjected to abrasive immobilization of carbon nanotubes by gently rubbing the electrode surface on a filter paper supporting the carbon nanotubes. Second, the electrode surface is covered with a thin film of a sol-gel composite containing encapsulated glucose oxidase. The carbon nanotubes offer excellent electrocatalytic activity toward reduction and oxidation of hydrogen peroxide liberated in the enzymatic reaction between glucose oxidase and glucose, enabling sensitive determination of glucose. The amperometric detection of glucose is carried out at 0.3 V (vs saturated calomel electrode) in 0.05 M phosphate buffer solution (pH 7.4) with linear response range of 0.2-20 mM glucose, sensitivity of 196 nA/mM, and detection limit of 50 microM (S/N=3). The response time of the electrode is < 5s when it is stored dried at 4 degrees C, the sensor showed almost no change in the analytical performance after operation for 3 weeks. The present carbon nanotube sol-gel biocomposite glucose oxidase sensor showed excellent properties for the sensitive determination of glucose with good reproducibility, remarkable stability, and rapid response and in comparison to bulk modified composite biosensors the amounts of enzyme and carbon nanotube needed for electrode fabrication are dramatically decreased.  相似文献   

7.
Immobilized proteins and enzymes were widely investigated in medical field as well as in food and environmental fields. In this paper, glucose oxidase (GOD) monolayer was covalently immobilized on the surface of gold nanoparticles (AuNPs) to fabricate bioconjugate complex. The citrate-stabilized AuNPs were first functionalized by a carboxyl-terminated alkanethiol and the terminal carboxyl groups were subsequently bonded with side-chain amino groups of protein surface through EDC/NHS coupling reaction. The enzyme activity assays of the obtained bioconjugates display an enhanced thermostability and similar pH-dependence behavior in contrast with that of free enzyme. Such GOD/AuNPs bioconjugates can be considered as a catalytic nanodevice to construct nanoreactor based on glucose oxidation reaction for biotechnological purpose.  相似文献   

8.
This study focused on developing the synthesis of Au nanoparticle-decorated functionalized multi-walled carbon nanotubes (Au-NPs/f-MWCNTs) for monosaccharide (bio-fuel) oxidation reactions and practical application in air-biofuel cells. We developed a scalable and straightforward method to synthesize Au-NPs/f-MWCNTs which allow us to control the loading and size of the Au-NPs. The Au-NPs/f-MWCNTs exhibited better catalytic activities and stability than the Au sheet and subsequently resulted in a threefold increase in the power density of the air-glucose fuel cell with an exceptionally high open circuit voltage (∼1.3 V). The catalytic efficiency was confirmed by high performance liquid chromatography with the superior of the Au-NPs/f-MWCNTs over a bare gold electrode. In addition, the application of this advanced catalyst to other monosaccharide oxidation reactions figured out that the configuration of –OH groups at C2 and C3 of the reactants plays an important role in the initial adsorption process, and thus, affects the required activation energy for further oxidation. The different monosaccharides lead to significantly different fuel cell performances in terms of power density, which coherently corresponds to the difference in the configuration of C2 and C3. Because two small air-glucose fuel cells using Au-NPs/f-MWCNTs can run a LED lamp, further applications of other monosaccharides as fuel in biofuel cells for equivalent required power devices may be possible.  相似文献   

9.
A novel multi-walled carbon nanotube-based biosensor for glucose detection   总被引:12,自引:0,他引:12  
The bioelectrochemical characteristics of a novel multi-walled carbon nanotube (MWNT)-based biosensor for glucose detection are studied and compared with those of glassy carbon (GC)-based biosensor. The MWNT-based biosensor exhibits a strong glucose response at applied potentials of 0.65 and 0.45 V versus Ag/AgCl, respectively, while GC-based biosensor shows a weak glucose response at 0.65 V and no response at 0.45 V. Besides, the MWNT-based biosensor shows a high stability of 86.7% of the initial activity to glucose after four-month storage, much higher than 37.2%, the corresponding value for a GC-based biosensor. The detection mechanism of the MWNT-based biosensor is also discussed in detail.  相似文献   

10.
Meso-tetra(4-carboxyphenyl)porphine (CTPP(4)) binds reversibly to immobilized glucose oxidase (GOD), resulting in an absorbance peak for the CTPP(4)-GOD complex at 427nm. The absorbance intensity of the 427nm peak is reduced upon exposure to glucose, which causes the dissociation of CTPP(4) from GOD. The change in absorbance at 427nm shows linear dependence on glucose concentration from 20 to 200mg/dL (1.1-11.1mM).  相似文献   

11.
We constructed a fusion protein (GOx-R5) consisting of R5 (a polypeptide component of silaffin) and glucose oxidase (GOx) that was expressed in Pichia pastoris. Silaffin proteins are responsible for the formation of a silica-based cell matrix of diatoms, and synthetic variants of the R5 protein can perform silicification in vitro[1]. GOx secreted by P. pastoris was self-immobilized (biosilicification) in a pH 5 citric buffer using 0.1 M tetramethoxysilane as a silica source. This self-entrapment property of GOx-R5 was used to immobilize GOx on a graphite rod electrode. An electric cell designed as a biosensor was prepared to monitor the glucose concentrations. The electric cell consisted of an Ag/AgCl reference electrode, a platinum counter electrode, and a working electrode modified with poly(neutral red) (PNR)/GOx/Nafion. Glucose oxidase was immobilized by fused protein on poly(neutral red) and covered by Nafion to protect diffusion to the solution. The morphology of the resulting composite PNR/GOx/Nafion material was analyzed by scanning electron microscopy (SEM). This amperometric transducer was characterized electrochemically using cyclic voltammetry and amperometry in the presence of glucose. An image produced by scanning electron microscopy supported the formation of a PNR/GOx complex and the current was increased to 1.58 μA cm−1 by adding 1 mM glucose at an applied potential of −0.5 V. The current was detected by way of PNR-reduced hydrogen peroxide, a product of the glucose oxidation by GOx. The detection limit was 0.67 mM (S/N = 3). The biosensor containing the graphite rod/PNR/GOx/Nafion detected glucose at various concentrations in mixed samples, which contained interfering molecules. In this study, we report the first expression of R5 fused to glucose oxidase in eukaryotic cells and demonstrate an application of self-entrapped GOx to a glucose biosensor.  相似文献   

12.
This paper aimed at showing the interest of the composite material based on layered double hydroxides (LDHs) and chitosan (CHT) as suitable host matrix likely to immobilize enzyme onto electrode surface for amperometric biosensing application. This hybrid material combined the advantages of inorganic LDHs and organic biopolymer, CHT. Glucose oxidase (GOD) immobilized in the composite material maintained its activity well as the usage of glutaraldehyde was avoided. The process parameters for the fabrication of the enzyme electrode and various experimental variables such as pH, applied potential and temperature, were explored for optimum analytical performance of the enzyme electrode. The enzyme electrode provided a linear response to glucose over a concentration range of 1 x 10(-6) to 3 x 10(-3) M with a high sensitivity of 62.6 mA M(-1) cm(-2) and a detection limit of 0.1 muM based on the signal-to-noise ratio of 3.  相似文献   

13.
For the first time glucose oxidase (GOx) was successfully co-deposited on nickel-oxide (NiO) nanoparticles at a glassy carbon electrode. In this paper we present a simple fabrication method of biosensor which can be easily operated without using any specific reagents. Cyclic voltammetry was used for electrodeposition of NiO nanoparticle and GOx immobilization. The direct electron transfer of immobilized GOx displays a pair of well defined and nearly reversible redox peaks with a formal potential (E(0')) of -0.420 V in pH 7 phosphate buffer solution and the response shows a surface controlled electrode process. The surface coverage and heterogeneous electron transfer rate constant (k(s)) of GOx immobilized on NiO film glassy carbon electrode are 9.45 x 10(-13)mol cm(-2) and 25.2+/-0.5s(-1), indicating the high enzyme loading ability of the NiO nanoparticles and great facilitation of the electron transfer between GOx and NiO nanoparticles. The biosensor shows excellent electrocatalytical response to the oxidation of glucose when ferrocenmethanol was used as an artificial redox mediator. Furthermore, the apparent Michaelis-Menten constant 2.7 mM, of GOx on the nickel oxide nanoparticles exhibits excellent bioelectrocatalytic activity of immobilized enzyme toward glucose oxidation. In addition, this glucose biosensor shows fast amperometric response (3s) with the sensitivity of 446.2nA/mM, detection limit of 24 microM and wide concentration range of 30 microM to 5mM. This biosensor also exhibits good stability, reproducibility and long life time.  相似文献   

14.
High activity of glucose oxidase (GOD) enzyme (immobilized in porous silica particles) is desirable for a better glucose biosensor. In this work, effect of pore diameter of two porous hosts on enzyme immobilization, activity and glucose sensing was compared. The hosts were amine functionalized: (i) microporous silica (NH2-MS) and (ii) mesoporous silica (NH2-SBA-15). Based on whether the dimension of GOD is either larger or smaller than the pore diameter, GOD was immobilized on either external or internal surface of NH2-MS and NH2-SBA-15, with loadings of 512.5 and 634 mg/g, respectively. However, GOD in NH2-SBA-15 gave a higher normalized absolute activity (NAA), which led to an amperometric sensor with a larger linear range of 0.4–13.0 mM glucose. In comparison, GOD in NH2-MS had a lower NAA and a smaller linear range of 0.4–3.1 mM. In fact, the present GOD-NH2-SBA-15 electrode based sensor was better than other MS and SBA-15 based electrodes reported in literature. Thus, achieving only a high GOD loading (as in NH2-MS) does not necessarily give a good sensor performance. Instead, a host with a relatively larger pore than enzyme, together with optimized electrode composition ensures the sensor to be functional in both hyper- and hypoglycemic range.  相似文献   

15.
Polydopamine (Pdop) has recently been shown to adsorb to a wide variety of surfaces and serves as an adhesion layer to immobilize biological molecules. In this work, the multifunctional carbon nanotube (CNT) composites were prepared though the oxidation of dopamine at room temperature and subsequent electroless silver deposition by mildly stirring. The stable immobilization and direct electron transfer of glucose oxidase were achieved on the composite film modified glassy carbon electrode. The resulting electrode gave a well-defined redox peaks with a formal potential of about −482 mV (vs. SCE) in pH 7.0 buffer. The electron transfer rate constant was estimated to be 3.6 s−1, due to the combined contribution of Pdop, CNTs and Ag nanoparticles with the help of Nafion. Furthermore, the method for detecting of glucose was proposed based on the decrease of oxygen caused by the enzyme-catalyzed reaction between glucose oxidase (GOD) and glucose. The linear response to glucose ranging from 50.0 μM to 1.1 mM (R2 = 0.9958), with a calculated detection limit of 17.0 μM at a signal-to-noise ratio of 3. The low calculated apparent Michaelis–Menten constant was 5.46 mM, implying the high enzymatic activity and affinity of immobilized GOD for glucose. It can reasonably be expected that this observation might hold true for other noble metal nanostructure-electroactive protein systems, providing a promising platform for the development of biosensors and biofuel cells.  相似文献   

16.
Direct electron transfer of glucose oxidase promoted by carbon nanotubes   总被引:11,自引:0,他引:11  
A stable suspension of carbon nanotubes (CNT) was obtained by dispersing the CNT in a solution of surfactant, such as cetyltrimethylammonium bromide (CTAB, a cationic surfactant). CNT (dispersed in the solution of 0.1% CTAB) has promotion effects on the direct electron transfer of glucose oxidase (GOx), which was immobilized onto the surface of CNT. The direct electron transfer rate of GOx was greatly enhanced after it was immobilized onto the surface of CNT. Cyclic voltammetric results showed a pair of well-defined redox peaks, which corresponded to the direct electron transfer of GOx, with a midpoint potential of about -0.466 V (vs SCE (saturated calomel electrode)) in the phosphate buffer solution (PBS, pH 6.9). The electrochemical parameters such as apparent heterogeneous electron transfer rate constant (ks) and the value of midpoint potential (E1/2) were estimated. The dependence of E1/2 on solution pH indicated that the direct electron transfer reaction of GOx is a two-electron-transfer coupled with a two-proton-transfer reaction process. The experimental results also demonstrated that the immobilized GOx retained its bioelectrocatalytic activity for the oxidation of glucose, suggesting that the electrode may find use in biosensors (for example, it may be used as a bioanode in biofuel cells). The method presented here can be easily extended to immobilize and obtain the direct electrochemistry of other redox enzymes or proteins.  相似文献   

17.
Liu Q  Lu X  Li J  Yao X  Li J 《Biosensors & bioelectronics》2007,22(12):3203-3209
Because of their unique chemical, physical and electronic properties, Quantum dots (QDs) and carbon nanotubes (CNTs) are now extremely attractive and important nanomaterials in bioanalytical applications. In this work, CdTe QDs with the size of about 3 nm were prepared and a novel electrochemical biosensing platform of glucose based on CdTe/CNTs electrode was explored. This CdTe/CNTs electrode was prepared by first mixing CdTe QDs, CNTs, Nafion, and glucose oxidase (GOD) in appropriate amounts and then modifying this mixture on the glass carbon electrode (GC). Transmission electron microscopy (TEM) was used to observe the dispersion of CdTe QDs on carbon nanotubes and cyclic voltammetry (CV) was used to investigate the electrochemical behavior of the CdTe/CNTs electrode. A pair of well-defined quasi-reversible redox peaks of glucose oxidase were obtained at the CdTe/CNTs based enzyme electrode by direct electron transfer between the protein and the electrode. The immobilized glucose oxidase could retain bioactivity and catalyze the reduction of dissolved oxygen. Due to the synergy between the CdTe QDs and CNTs, this novel biosensing platform based on QDs/CNTs electrode responded even more sensitively than that based on GC electrode modified by CdTe QDs or CNTs alone. The inexpensive, reliable and sensitive sensing platform based on QDs/CNTs electrode provides wide potential applications in clinical, environmental, and food analysis.  相似文献   

18.
In this article, a supersandwich-type electrochemical biosensor for sequence-specific DNA detection is described. In design, single-strand DNA labeled with methylene blue (MB) was used as signal probe, and auxiliary probe was designed to hybridize with two different regions of signal probe. The biosensor construction contained three steps: (i) capture DNA labeled with thiol was immobilized on the surface of gold nanoparticles decorated reduced graphene oxide (Au NPs/rGO); (ii) the sandwich structure formation contained “capture–target–signal probe”; and (iii) auxiliary probe was introduced to produce long concatamers containing signal molecule MB. Differential pulse voltammetry (DPV) was used to monitor the DNA hybridization event using peak current changes of MB in phosphate-buffered saline (PBS) containing 1.0 M NaClO4. Under optimal conditions, the peak currents of MB were linear with the logarithm of the concentration of target DNA in the range of 0.1 μM to 0.1 fM with a detection limit of 35 aM (signal/noise = 3). In addition, this biosensor exhibited good selectivity even for single-base mismatched target DNA detection.  相似文献   

19.
A novel non-enzymatic electrochemiluminescence (ECL) sensor based on palladium nanoparticles (PdNPs)–functional carbon nanotubes (FCNTs) was discovered for glucose detection. PdNPs were homogeneously modified on FCNTs using a facile spontaneous redox reaction method. Their morphologies were characterized by transmission electron microscopy (TEM). Based on ECL experimental results, the PdNPs–FCNTs–Nafion film modified electrode displayed high electrocatalytic activity towards the oxidation of glucose. The free radicals generated by the glucose oxidation reacted with the luminol anion (LH), and enhanced the ECL signal. Under the optimized conditions, the linear response of ECL intensity to glucose concentration was valid in the range from 0.5 to 40 μmol L−1 (r2 = 0.9974) with a detection limit (S/N = 3) of 0.09 μmol L−1. In addition, the modified electrode presented high resistance towards the poisoning of chloride ion, high selectivity and long-term stability. In order to verify the sensor reliability, it was applied to the determination of glucose in glucose injection samples. The results indicated that the proposed approach provided a highly sensitive, more facile method with good reproducibility for glucose determination, promising the development of a non-enzymatic ECL glucose sensor.  相似文献   

20.
Luo XL  Xu JJ  Du Y  Chen HY 《Analytical biochemistry》2004,334(2):284-289
An amperometric biosensor for the quantitative measurement of glucose is reported. The biosensor is based on a biocomposite that is homogeneous and easily prepared. This biocomposite is made of chitosan hydrogel, glucose oxidase, and gold nanoparticles by a direct and facile electrochemical deposition method under enzyme-friendly conditions. The resulting biocomposite provided a shelter for the enzyme to retain its bioactivity at considerably extreme conditions, and the decorated gold nanoparticles in the biocomposite offer excellent affinity to enzyme. The biosensor exhibited a rapid response (within 7s) and a linear calibration range from 5.0 microM to 2.4 mM with a detection limit of 2.7 microM for the detection of glucose. The combination of gold nanoparticles affinity and the promising feature of the biocomposite with the onestep nonmanual technique favor the sensitive determination of glucose with improved analytical capabilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号