首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
带有BMP 7基因的大肠杆菌可以用来高量表达重组的人骨形态发生蛋白 7。升温诱导表达后 ,每升培养液大约可得到菌体湿重 3g ,其中目的蛋白约占菌体总蛋白量的 40 %。裂解离心 ,用低浓度变性剂洗涤初步纯化包涵体 ,上清中无目的蛋白损失 ,目的蛋白纯度提高到 60 %,将包涵体溶解于高浓度变性剂溶液中 ,然后在不同条件下用离子交换色谱法对变性状态下的蛋白质进行纯化 ,绝大部分杂蛋白被除去 ,目的蛋白纯度达 95 %以上 ,改变条件 ,可以减少rhBMP 7损失。并做Westernblot对目的蛋白进行特异性鉴定。  相似文献   

2.
A much studied oil-soluble surfactant, bis[2-ethylhexyl]sulfosuccinate, sodium salt, was ion exchanged into the silver ion form and dissolved into microemulsions of immiscible polyurethane step monomers. Coating and curing of these microemulsions produced polyurethane coatings that exhibit bactericidal activity against representative Gram negative bacteria. After 24 h exposure, 0.006–0.012% weight Ag relative to coating weight (0.0013–0.0025 μmol Ag/cm2) results in the three-log reduction in Escherichia coli. A slightly higher level of 0.031% weight Ag relative to coating weight (0.006 μmol Ag/cm2) killed all of the E. coli after 12 h exposure. Similar results were obtained for Pseudomonas aeruginosa. Since the double-tail surfactant anion promotes reverse micelle formation in many different kinds of oils and solvents, it appears an excellent vector for incorporating low and effective amounts of silver ion into many industrial, hospital, and household coating formulations.  相似文献   

3.
Silver was widely used in medicine to treat bacterial infections in the 19th and early 20th century, up until the discovery and development of the first modern antibiotics in the 1940s, which were markedly more effective. Since then, every new antibiotic introduced to the clinic has led to an associated development of drug resistance. Today, the threat of extensive bacterial resistance to antibiotics has reignited interest in alternative strategies to treat infectious diseases, with silver regaining well-deserved renewed attention. Silver ions are highly disruptive to bacterial integrity and biochemical function, with comparatively minimal toxicity to mammalian cells. This review focuses on the antimicrobial properties of silver and their use in synergistic combination therapy with traditional antibiotic drugs.  相似文献   

4.
    
It is of interest to analyze the antioxidant, antimicrobial and cytotoxicity activity of n-hexane extract of Cayratia trifolia L. (C. trifolia). The antimicrobial activity of n-hexane extract of C. trifolia was determined using disc diffusion method against six selected pathogenic microorganisms. The cytotoxicity potential of n-hexane plant extract was also studied against A2780 cell lines by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Results, n-hexane extract of C. trifolia possess significant antioxidant activity with significant IC50 values in radical scavenging assays. In antimicrobial studies, the maximum zone of inhibition was found in the range of 19.0 ± 0.1 to 22.0 ± 0.1 mm. In MTT assay, inhibition of cell growth with minimal IC50 values of 46.25±0.42μg/mL against A2780 cell lines was observed. Thus, n-hexane extract of C. trifolia is a possible antioxidant, antimicrobial and cytotoxicity agent.  相似文献   

5.
    
Aphanamixis polystachya may be a natural, renewable resource against antibiotic-resistant bacterial infections. The antibacterial activity of A. polystachya leaf and bark extracts was investigated against three antibiotic-resistant bacterial species and one fungus. Methanolic leaf extract showed only limited antibacterial activity but both methanolic and aqueous bark extract showed high antimicrobial activity. In an antioxidant activity test, leaf and bark extracts exhibited 50% free radical scavenging at a concentration of 107.14 ± 3.14 μg/mL and 97.13 ± 3.05 μg/mL, respectively, indicating that bark extracts offer more antioxidative activity than leaf extracts. Bark extracts also showed lower toxicity than leaf extracts. This suggests that bark extracts may offer greater development potential than leaf extracts. The molecular dynamics were also investigated through the simulated exploration of multiple potential interactions to understand the interaction dynamics (root-mean-square deviation, solvent-accessible surface area, radius of gyration, and the hydrogen bonding of chosen compounds to protein targets) and possible mechanisms of inhibition. This molecular modeling of compounds derived from A. polystachya revealed that inhibition may occur by binding to the active sites of the target proteins of the tested bacterial strains. A. polystachya bark extract may be used as a natural source of drugs to control antibiotic-resistant bacteria.  相似文献   

6.
    
Numerous studies investigated the biosynthesis of silver nanoparticles (AgNPs); however, there is a large gap for the ideal time-consuming process and their cytotoxicity. Herein, for the first time, rapid AgNPs was synthesized in a short time span, using Piper betle leaf (PBL) extract by applying microwave exposure. PB-AgNPs antibacterial activity and cell compatibility were enhanced by capping with chitosan (CS@PB-AgNPs). The synthesized nanoparticles were characterized by bioanalytical techniques. PB-AgNPs expressed significant antibacterial activity against Gram-positive and Gram-negative bacterial pathogens, while hybrid CS@PB-AgNPs presented the enhanced bactericidal activity. In addition, PB-AgNPs exhibited IC50 value of 140 μg/mL against RAW 264.7 macrophages and 100 μg/mL against lung cancer cells while, CS capping reduced its toxicity at IC50 values of 400 μg/mL and 180 μg/mL respectively were affirmed by MTT, apoptosis and DNA damage detection. Overall it was demonstrated that CS capping could be a phenomenal finding to improve the biomedical potential of AgNPs.  相似文献   

7.
The present work illustrates eco-friendly, rapid and cost effective method of AgNPs synthesis using C. pulcherrima stem extract. Initially, various physico chemical factors were optimized. Characterization was done by different spectroscopic and microscopic analysis. AgNPs were spherical in shape with an average size of 8?nm. AgNPs showed good synergistic antimicrobial, antibiofilm and antioxidant activity. The cytotoxicity effect against HeLa cancer cell line was dose dependent while genotoxic study revealed the non toxic nature of AgNPs at lower concentration. The results suggest that AgNPs from C. pulcherrima stem extract have great potential in biomedical applications.  相似文献   

8.
    
Biotransformation of abietic acid was carried out initially using 28 different microbial strains. Among the evaluated, Mucor ramannianus produced a known metabolite 2α-hydroxy-dehydroabietic acid whereas Neurospora crassa yielded two known metabolites of 7β-hydroxy-dehydroabietic and 1β-hydroxy-dehydroabietic acids in 12.7, 15.5 and 20.1% yields, respectively. The in vitro antimicrobial activities of the metabolites were evaluated against 19 different pathogenic microorganisms, resulting in moderate inhibitory activity when compared to the standards, with MICs > 250 μg/mL. However, in the in vitro anticancer activity studies, 2α-hydroxy-dehydroabietic acid was found to be the most effective derivative against A549 human lung adenocarcinoma cell line with an IC50 value of 320.8 μg/mL and SI (Selectivity index) of 156, respectively. Using the same assay and conditions, 7β-hydroxy-dehydroabietic was found to be the most effective and selective antiproliferative agent against HepG2 cell line with an IC50 value of 196.6 μg/mL and SI of 187, respectively. Contrary to the antimicrobial activity, the biotransformation metabolites showed promising results suggesting selective toxicity against specific cancer cell line where the genotoxicity of the same derivatives were in a negligible range. Furthermore, DNA synthesis inhibition of metabolites were more promising in the A549 cell line while apoptotic effects were better in HepG2 cell line.  相似文献   

9.
Hybrid materials based on polyvinylpyrrolidone (PVP) with silver nanoparticles (AgNps) were synthesized applying two different strategies based on thermal or chemical reduction of silver ions to silver nanoparticles using PVP as a stabilizer. The formation of spherical silver nanoparticles with diameter ranging from 9 to 16 nm was confirmed by TEM analysis. UV-vis and FTIR spectroscopy were also applied to confirm the successful formation of AgNps. The antibacterial activity of the synthesized AgNPs/PVP against etalon strains of three different groups of bacteria—Staphylococcus aureus (S. aureus; gram-positive bacteria), Escherichia coli (E. coli; gram-negative bacteria), Pseudomonas aeruginosa (P. aeruginosa; non-ferment gram-negative bacteria), as well as against spores of Bacillus subtilis (B. subtilis) was studied. AgNps/PVP were tested for the presence of fungicidal activity against different yeasts and mold such as Candida albicans, Candida krusei, Candida tropicalis, Candida glabrata, and Aspergillus brasiliensis. The hybrid materials showed a strong antimicrobial effect against the tested bacterial and fungal strains and therefore have potential applications in biotechnology and biomedical science.  相似文献   

10.
A green, simple, and effective approach was performed to synthesize potent silver nanoparticles (SNPs) using bacterial exopolysaccharide as both a reducing and stabilizing agent. The synthesized SNPs were characterized using UV-vis spectroscopy, transmission electron microscopy, energy dispersive X-ray analysis, X-ray diffraction, and Fourier-transform-infrared spectra analyses. The SNPs varied in shape and were multidispersed with a mean diameter of 10 nm ranging from 2 to 15 nm and were stable up to 2 months at room temperature. The antimicrobial activity of the SNPs was analyzed against bacterial and fungal pathogens using the agar well diffusion method. Dose dependent inhibition was observed for all bacterial pathogens. The multidrug resistant pathogens P. aeruginosa and K. pneumonia were found to be more susceptible to the SNPs than the food borne pathogen L. monocytogenes. The fungi Aspergillus spp. exhibited a maximum zone of inhibition compared to that of Penicillum spp. These results suggest that exopolysaccharide-stabilized SNPs can be used as an antimicrobial agent for various biomedical applications.  相似文献   

11.
In this study, a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver particles (CS/nHAp/nAg) was developed by freeze drying technique, followed by introduction of silver ions in controlled amount through reduction phenomenon by functional groups of chitosan. The scaffolds were characterized using SEM, FT-IR, XRD, swelling, and biodegradation studies. The testing of the prepared scaffolds with Gram-positive and Gram-negative bacterial strains showed antibacterial activity. The scaffold materials were also found to be non-toxic to rat osteoprogenitor cells and human osteosarcoma cell line. Thus, these results suggested that CS/nHAp/nAg bio-composite scaffolds have the potential in controlling implant associated bacterial infection during reconstructive surgery of bone.  相似文献   

12.
Stereoselective synthesis of a novel regiomer of the natural nonenolide, herbarumin I has been accomplished. The synthesis involves the coupling of the alcohol and acid fragments of the molecule using Yamaguchi protocol followed by intramolecular ring closing metathesis. The cytotoxic and antimicrobial properties of the synthetic regiomer have been studied.  相似文献   

13.
    
Chemical investigation of 70% EtOH exact of Patrinia villosa Juss. led to the isolation, purification and identification of two new lactones (1-2) along with twelve known compounds (3-14). Their structures were established by comprehensive spectroscopic analyses. All compounds were evaluated for their cytotoxic activities against A549, HepG2, Hep3 B and MCF-7 cancer cell lines. Compounds 1, 8, 10, 11 and 12 displayed weak cytotoxic activities against MCF-7 cell line. In addition, compounds 1, 2, 8, 10, 11 and 12 were also tested their antimicrobial activities against Micrococcus luteus. Unfortunately, these compounds were found to be inactive.  相似文献   

14.
This paper describes an elegant cross-linking technique for the preparation of chitosan-chloroquinoline derivative by using a greener technique. Chitosan solution in aqueous acetic acid was treated with 2-chloroquinoline-3-carbaldehyde solution to form hydrogel; the resulting hydrogel was subjected to solvent exchange. Combining the results of FTIR and XRD confirmed that 2-chloroquinoline-3-carbaldehyde have been reacted to chitosan. The morphology of the derivative was investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The thermal stability of the derivative was examined by thermogravimetric analysis (TGA). The photoluminescence (PL) spectra of chitosan-chloroquinoline derivative show red-shifted emission maximum. The microbiological screening has demonstrated the antimicrobial activity of the derivative against bacteria viz. Staphylococcus aureus, Escherichia coli and Candida albicans. The obtained results showed that the chitosan-chloroquinoline derivative might be a promising candidate for novel antimicrobial agents for biomedical applications.  相似文献   

15.
Silver nanoparticles as a new generation of antimicrobials   总被引:7,自引:0,他引:7  
Silver has been in use since time immemorial in the form of metallic silver, silver nitrate, silver sulfadiazine for the treatment of burns, wounds and several bacterial infections. But due to the emergence of several antibiotics the use of these silver compounds has been declined remarkably. Nanotechnology is gaining tremendous impetus in the present century due to its capability of modulating metals into their nanosize, which drastically changes the chemical, physical and optical properties of metals. Metallic silver in the form of silver nanoparticles has made a remarkable comeback as a potential antimicrobial agent. The use of silver nanoparticles is also important, as several pathogenic bacteria have developed resistance against various antibiotics. Hence, silver nanoparticles have emerged up with diverse medical applications ranging from silver based dressings, silver coated medicinal devices, such as nanogels, nanolotions, etc.  相似文献   

16.
    
Two new (1–2) and one known (3) benzophenone derivatives, along with five known ambuic acid analogues (4–8) were isolated from the solid cultures of a Pestalotiopsis sp. Compound 2 represented both enantiomeric and atropisomeric isomers, and the absolute configurations of enantiomers [(−)-2 and (+)-2] were determined by electronic circular dichroism (ECD) calculations. All the isolates were evaluated for their antimicrobial and cytotoxic activities. Chlorinated compounds 2 and 3 showed potent antimicrobial activities against four pathogenic bacteria, and compound 3 also displayed strong antifungal activity against Candida glabrata (ATCC 90030) with an MIC50 value of 2.6 ± 0.1 μg/mL. Compound 1 exhibited moderate cytotoxicity against U2OS and MCF-7 with IC50 values of 11.6 and 16.8 μM, respectively.  相似文献   

17.
    
The biosynthesized Ag NPs was synthesized by using marine mangrove plant extract Avicennia marina. The synthesized Ag NPs was confirmed by various physiochemical characterization including UV-spectrometer and XRD analysis. In addition, the shape and of the synthesized Ag NPs was morphologically identified by SEM initially and TEM finally. After confirmation, the anti-cancer property of synthesized Ag NPs was confirmed at 50 µg/mL concentration against A549 lung cancer cells by MTT assay. Further, the ability to stimulate the ROS generation and mitochondrial membrane at the IC50 concentration of Ag NPs was confirmed by fluorescence microscopy using DCFH-DA and rhodamine 123 dyes respectively. Finally, the result was concluded that the synthesized Ag NPs has improved anti-cancer activity against A549 cells at lowest concentration.  相似文献   

18.
    
The development of novel antimicrobial drugs represents a cutting edge research topic. In this study, 20 salicylanilide N,N-disubstituted carbamates and thiocarbamates were designed, synthesised and characterised by IR, 1H NMR and 13C NMR. The compounds were evaluated in vitro as potential antimicrobial agents against Mycobacterium tuberculosis and nontuberculous mycobacteria (Mycobacterium avium and Mycobacterium kansasii) as well as against eight bacterial and fungal strains. Additionally, we investigated the inhibitory effect of these compounds on mycobacterial isocitrate lyase and cellular toxicity. The minimum inhibitory concentrations (MICs) against mycobacteria were from 4 μM for thiocarbamates and from 16 μM for carbamates. Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus, were inhibited with MICs from 0.49 μM by thiocarbamates, whilst Gram-negative bacteria and most of the fungi did not display any significant susceptibility. All (thio)carbamates mildly inhibited isocitrate lyase (up to 22%) at a concentration of 10 μM. The (thio)carbamoylation of the parent salicylanilides led to considerably decreased cytotoxicity and thus improved the selectivity indices (up to 175). These values indicate that some derivatives are attractive candidates for future research.  相似文献   

19.
    
In this study, several sulfonamide derivatives, 4-(2-methylacetylamino)benzenesulfonamides were synthesized. Chemical structures of the derivatives were characterized by 1H NMR, 13C NMR, LC–MS–MS, UV–Vis, FTIR, photoluminescence and elemental analysis. Sulfanilamide was reacted with 2-bromopropionyl bromide, in the presence of pyridine, to form bromo-substituted sulfonamide key intermediates, which were subsequently treated with secondary amines to obtain novel sulfonamide derivatives. All the synthesized compounds were evaluated for in vitro antimicrobial activities and cytotoxicity. Increases in ring size, and rings bearing a nitrogen heteroatom led to improvements in antimicrobial activities. As the presence of CA IX and CA XII enzymes have been implicated in some cancerous tumors, the studies presented herein focuses on targeting these enzymes. It was found that the synthesized derivatives had in vitro anti-cancer properties, where compounds (36) were found to be active against all cancerous cells, and no cytotoxic effects on normal cells were observed.  相似文献   

20.
Abstract

Three mononuclear, mixed ligand ternary Cu(II) complexes of 3-((Z)-1-(2-hydroxyphenylimino)ethyl)-4-hydroxy-6-methyl-2H-pyran-2-one (HEHMP) viz; [Cu-(Phen) (HEHMP)] (1a), [Cu-(Bpy)(HEHMP)] (1?b) and [Cu-Bpy(NCS)(HEHMP)] (1c) were synthesized and characterized by data obtained from various spectral techniques. The binding affinities of these complexes with calf thymus DNA (CT-DNA) and bovine serum albumin (BSA) protein were explored by absorption and fluorescence quenching titrations. The results indicated strong affinity of the title compounds to bind with both CT-DNA and BSA. The antioxidant properties of the synthesized compounds evaluated by free-radical scavenging method using spectrophotometric technique indicated their affirmative potential activity. Gel electrophoresis experiments revealed the efficacy of metal complexes in resulting the cleavage of pBR322 supercoiled DNA. In vitro cytotoxicity studies of these complexes evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay against HeLa and MCF-7 cancer cell lines indicated relatively high effectiveness of the complex 1c. Confocal microscopy signified the potential of the complexes to induce apoptosis in HeLa cell lines. In addition, the antibacterial activity of the compounds carried out by disc diffusion method revealed significantly enhanced antibacterial activity in Cu (II) ternary complexes compared to the activity of ligands in unbound form signifying the implicit role of metal ion in inducing lipophilic character.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号