首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previously, it was reported that chronic intra-uterine infusion of PGE(1) or PGE(2) every four hours inhibited luteolysis in ewes. However, estradiol-17β or PGE(2) given intra-uterine every 8h did not inhibit luteolysis in heifers, but infusion of estradiol+PGE(2) inhibited luteolysis in heifers. The objective of this experiment was to determine whether and how intra-luteal implants containing PGE(1) or PGE(2) prevent luteolysis in Angus or Brahman cows. On day-13 post-estrus, Angus cows received no intra-luteal implant and corpora lutea were retrieved or Angus and Brahman cows received intra-luteal silastic implants containing Vehicle, PGE(1), or PGE(2) and corpora lutea were retrieved on day-19. Coccygeal blood was collected daily for analysis for progesterone. Breed did not influence the effect of PGE(1) or PGE(2) on luteal mRNA for LH receptors or unoccupied or occupied luteal LH receptors did not differ (P>0.05) so the data were pooled. Luteal weights of Vehicle-treated Angus or Brahman cows from days-13-19 were lower (P<0.05) than those treated with intra-luteal implants containing PGE(1) or PGE(2). Day-13 Angus luteal weights were heavier (P<0.05) than Vehicle-treated Angus cows on day-19 and luteal weights of day-13 corpora lutea were similar (P>0.05) to Angus cows on day-19 treated with intra-luteal implants containing PGE(1) or PGE(2). Profiles of circulating progesterone in Angus or Brahman cows treated with intra-luteal implants containing PGE(1) or PGE(2) differed (P<0.05) from controls, but profiles of progesterone did not differ (P>0.05) between breeds or between cows treated with intra-luteal implants containing PGE(1) or PGE(2). Intra-luteal implants containing PGE(1) or PGE(2) prevented (P<0.05) loss of luteal mRNA for LH receptors and unoccupied or occupied receptors for LH compared to controls. It is concluded that PGE(1) or PGE(2) alone delays luteolysis regardless of breed. We also conclude that either PGE(1) or PGE(2) prevented luteolysis in cows by up-regulating expression of mRNA for LH receptors and by preventing loss of unoccupied and occupied LH receptors in luteal tissue.  相似文献   

2.
The objective of this study was to determine whether PGE1 or PGE2 prevents a premature luteolysis when oxytocin is given on Days 1 to 6 of the ovine estrous cycle. Oxytocin given into the jugular vein every 8 hours on Days 1 to 6 postestrus in ewes decreased (P ≤ 0.05) luteal weights on Day 8 postestrus. Plasma progesterone differed (P ≤ 0.05) among the treatment groups; toward the end of the experimental period, concentrations of circulating progesterone in the oxytocin-only treatment group decreased (P ≤ 0.05) when compared with the other treatment groups. Plasma progesterone concentrations in ewes receiving PGE1 or PGE1 + oxytocin were greater (P ≤ 0.05) than in vehicle controls or in ewes receiving PGE2 or PGE2 + oxytocin and was greater (P ≤ 0.05) in all treatment groups receiving PGE1 or PGE2 than in ewes treated only with oxytocin. Chronic intrauterine treatment with PGE1 or PGE2 also prevented (P ≤ 0.05) oxytocin decreases in luteal unoccupied and occupied LH receptors on Day 8 postestrus. Oxytocin given alone on Days 1 to 6 postestrus in ewes advanced (P ≤ 0.05) increases in PGF in inferior vena cava or uterine venous blood. PGE1 or PGE2 given alone did not affect (P ≥ 0.05) concentrations of PGF in inferior vena cava and uterine venous blood when compared with vehicle controls or oxytocin-induced PGF increases (P ≤ 0.05) in inferior vena cava or uterine venous blood. We concluded that PGE1 or PGE2 prevented oxytocin-induced premature luteolysis by preventing a loss of luteal unoccupied and occupied LH receptors.  相似文献   

3.
Previously, it was reported that chronic intra-uterine infusion of PGE(1) or PGE(2) every 4h inhibited luteolysis in ewes by altering luteal mRNA for luteinizing hormone (LH) receptors and unoccupied and occupied luteal LH receptors. However, estradiol-17β or PGE(2) given intra-uterine every 8h did not inhibit luteolysis in cows, but infusion of estradiol+PGE(2) inhibited luteolysis. In contrast, intra-luteal implants containing PGE(1) or PGE(2) in Angus or Brahman cows also inhibited the decline in circulating progesterone, mRNA for LH receptors, and loss of unoccupied and occupied receptors for LH to prevent luteolysis. The objective of this experiment was to determine how intra-luteal implants of PGE(1) or PGE(2) alter mRNA for prostanoid receptors and how this could influence luteolysis in Brahman or Angus cows. On day-13 Angus cows received no intra-luteal implant and corpora lutea were retrieved or Angus and Brahman cows received intra-luteal silastic implants containing Vehicle, PGE(1), or PGE(2) and corpora lutea were retrieved on day-19. Corpora lutea slices were analyzed for mRNA for prostanoid receptors (FP, EP1, EP2, EP3 (A-D), EP3A, EP3B, EP3C, EP3D, and EP4) by RT-PCR. Day-13 Angus cow luteal tissue served as pre-luteolytic controls. mRNA for FP receptors decreased in day-19 Vehicle controls compared to day-13 Vehicle controls regardless of breed. PGE(1) and PGE(2) up-regulated FP gene expression on day-19 compared to day-19 Vehicle controls regardless of breed. EP1 mRNA was not altered by any treatment. PGE(1) and PGE(2) down-regulated EP2 and EP4 mRNA compared to day-19 Vehicle controls regardless of breed. PGE(1) or PGE(2) up-regulated mRNA EP3B receptor subtype compared to day-19 Vehicle control cows regardless of breed. The similarities in relative gene expression profiles induced by PGE(1) and PGE(2) support their agonistic effects. We conclude that both PGE(1) and PGE(2) may prevent luteolysis by altering expression of mRNA for prostanoid receptors, which is correlated with changes in luteal mRNA for LH receptors reported previously in these same cows to prevent luteolysis.  相似文献   

4.
We hypothesized that pregnancy outcomes may be improved by inducing luteal regression, ovulation, or both (i.e., altering progesterone status) before initiating a timed–artificial insemination (TAI) program in suckled beef cows. This hypothesis was tested in two experiments in which cows were treated with either PGF (PG) or PG + GnRH before initiating a TAI program to increase the proportion of cows starting the program in a theoretical marginal (<1 ng/mL; experiment 1) or elevated (≥1 ng/mL; experiment 2) progesterone environment, respectively. The control was a standard CO-Synch + controlled internal drug release (CIDR) program employed in suckled beef cows (100 μg GnRH intramuscularly [IM] [GnRH-1] and insertion of a progesterone-impregnated intravaginal CIDR insert on study Day −10, 25 mg PG and CIDR insert removal on study Day −3, and 100 μg GnRH IM [GnRH-2] and TAI on study Day 0). In both experiments, blood was collected before each injection for later progesterone analyses. In experiment 1, cows at nine locations (n = 1537) were assigned to either: (1) control or (2) PrePG (same as control with a PG injection on study Day −13). The PrePG cows had larger (P < 0.05) follicles on study Day −10 and more (P < 0.05) ovulated after GnRH-1 compared with control cows (60.6% vs. 36.5%), but pregnancy per TAI was not altered (55.5% vs. 52.2%, respectively). In experiment 2, cows (n = 803) at four locations were assigned to: (1) control or (2) PrePGG (same as control with PG injection on study Day −20 and GnRH injection on study Day −17). Although pregnancy per TAI did not differ between control and PrePGG cows (44.0% vs. 44.4%, respectively), cows with body condition score greater than 5.0 or 77 or more days postpartum at TAI were more (P < 0.05) likely to become pregnant than thinner cows or those with fewer days postpartum. Presynchronized cows in both experiments were more (P < 0.05) likely than controls to have luteolysis after initial PG injections and reduced (P < 0.05) serum progesterone; moreover, treatments altered the proportion of cows and pregnancy per TAI of cows in various progesterone categories before the onset of the TAI protocol. In combined data from both experiments, cows classified as anestrous before the study but with elevated progesterone on Day −10 had increased (P < 0.05) pregnancy outcomes compared with anestrous cows with low progesterone concentrations. Progesterone concentration had no effect on pregnancy outcome of cycling cows. In summary, luteal regression and ovulation were enhanced and progesterone concentrations were altered by presynchronization treatments before the 7-day CO-Synch + CIDR program, but pregnancy per TAI was not improved.  相似文献   

5.
Prostaglandin E2 (PGE2) secreted by Day-6, Day-7, Day-8 and Day-9 equine embryos (ovulation = Day 0) during in vitro incubation was measured by radioimmunoassay. Embryonic PGE2 secretion (ng/embryo/24 hr) was detectable on Day 6 (0.27±0.39), tended to increase (P <0.1) on Day 7 (0.57±0.88), and increased significantly (P <0.05) on Day 8 (2.23±0.86) and Day 9 (4.13±0.71). Embryo diameter at the start of the incubation period was linearly correlated (P <0.01) to embryonic PGE2 secretion.  相似文献   

6.
The objective of this study was to determine whether prostaglandin E1 (PGE1) or prostaglandin E2 (PGE2) prevents premature luteolysis in ewes when progesterone is given during the first 6 days of the estrous cycle. Progesterone (3 mg in oil, im) given twice daily from Days 1 to 6 (estrus = Day 0) in ewes decreased (P < 0.05) luteal weights on Day 10 postestrus. Plasma progesterone concentrations differed (P < 0.05) among the treatment groups; toward the end of the experimental period, concentrations in jugular venous blood decreased (P < 0.05) compared with the other treatment groups. Plasma progesterone concentrations in ewes receiving PGE1 or PGE1 + progesterone were greater (P < 0.05) than in vehicle controls or in ewes receiving PGE2 or PGE2 or PGE2 + progesterone. Chronic intrauterine treatment with PGE1 or PGE2 prevented (P < 0.05) decreases in plasma progesterone concentrations, luteal weights, and the proportion of luteal unoccupied and occupied LH receptors on Day 10 postestrus in ewes given exogenous progesterone, but did not affect (P > 0.05) concentrations of PGF in inferior vena cava blood. Progesterone given on Days 1 to 6 in ewes advanced (P < 0.05) increases in PGF in inferior vena cava blood. We concluded that PGE1 or PGE2 prevented progesterone-induced premature luteolysis by suppressing loss of luteal LH receptors (both unoccupied and occupied).  相似文献   

7.
Pluriparous suckled Brahman and Angus cows were utilized to evaluate the effect of breed, day after calving and endogenous opioid peptides (EOP) on hormonal profiles during postpartum anestrus. On Days 17 and 34 after calving, blood samples with and without heparin were collected at 15- and 30-min intervals, respectively, for a 7-h period via jugular cannula. Two hours after the start of blood sampling, cows of each breed were administered either 1 mg/kg iv naloxone or saline. Three hours later, all animals received 10 ng/kg iv GnRH. On Day 34 after calving cows received 0.2 IU/kg iv ACTH. Mean LH, basal LH and area under the LH curve increased (P < 0.01) from Day 17 to Day 34 after calving. Height of LH pulses increased (P < 0.05) by Day 34 after calving. Brahman cows had higher (P < 0.05) mean LH, basal LH, LH pulse frequency and area under the LH curve than Angus cows. Naloxone increased postchallenge area under the LH curve in treated cows above that of control cows (P < 0.06). Naloxone also increased the postchallenge area under the LH curve above that of the prechallenge level (P < 0.01). No breed differences in the response to the naloxone challenge were observed. The LH response to naloxone challenge occurred earlier on Day 34 than on Day 17 after calving but the amount of LH released was similar between days. The GnRH-induced LH release was greater in Brahman than in Angus cows (P < 0.04). Mean cortisol concentrations and area under the cortisol curve decreased (P < 0.05) between Day 17 and Day 34 after calving. Mean cortisol concentrations and area under the cortisol curve were lower (P < 0.01) in Brahman than in Angus cows. Cortisol secretion after ACTH treatment was similar between Brahman and Angus cows. The cortisol response after ACTH challenge was positively correlated (r=0.68; P < 0.001) to the prechallenge area under the cortisol curve. Under optimal environmental conditions Brahman cows have a greater LH release and their anterior hypophysis is more sensitive to GnRH challenge than the Angus cows.  相似文献   

8.
Loss of luteal progesterone secretion at the end of the ovine estrous cycle is via uterine PGF2α secretion. However, uterine PGF2α secretion is not decreased during early pregnancy in ewes. Instead, the embryo imparts a resistance to PGF2α. Prostaglandins E (PGE; PGE1 + PGE2) are increased in endometrium and uterine venous blood during early pregnancy in ewes to prevent luteolysis. Chronic intrauterine infusion of PGE1 or PGE2 prevents spontaneous or IUD, estradiol-17β, or PGF2α-induced premature luteolysis in nonbred ewes. The objective was to determine whether chronic intrauterine infusion of PGE1 or PGE2 affected mRNA for LH receptors, occupied and unoccupied receptors for LH in luteal and caruncular endometrium, and luteal function. Ewes received Vehicle, PGE1, or PGE2 every 4 h from days 10 to 16 of the estrous cycle via a cathether installed in the uterine lumen ipsilateral to the luteal-containing ovary.Jugular venous blood was collected daily for analysis of progesterone and uterine venous blood was collected on day-16 for analysis of PGF2α and PGE. Corpora lutea and caruncular endometrium were collected from day-10 preluteolytic control ewes and day-16 ewes treated with Vehicle, PGE1 or PGE2 for analysis of the mRNA for LH receptors and occupied and unoccupied receptors for LH. Luteal weights on day-16 in ewes treated with PGE1 or PGE2 and day-10 control ewes were similar (P  0.05), but were greater (P  0.05) than in day-16 Vehicle-treated ewes. Progesterone profiles on days 10–16 differed (P  0.05) among treatment groups: PGE1 > PGE2 > Vehicle-treated ewes. Concentrations of PGF2α and PGE in uterine venous plasma on day-16 were similar (P  0.05) in the three treatment groups. Luteal mRNA for LH receptors and unoccupied and occupied LH receptors were similar (P  0.05) in day-10 control ewes and day-16 ewes treated with PGE2 and were lower (P  0.05) in day-16 Vehicle-treated ewes. PGE2 prevented loss (P  0.05) of day-16 luteal mRNA for LH receptors and occupied and unoccupied LH receptors. Luteal and caruncular tissue mRNA for LH receptors and occupied and unoccupied LH receptors were greater (P  0.05) on day-16 of PGE1-treated ewes than any treatment group. mRNA for LH receptors and occupied and unoccupied receptors for LH in caruncules were greater (P  0.05) in day-16 Vehicle or PGE2-treated ewes than in day-10 control ewes. It is concluded that PGE1 and PGE2 share some common mechanisms to prevent luteolysis; however, only PGE1 increased luteal and endometrial mRNA for LH receptors and occupied and unoccupied LH receptors. PGE2 prevents a decrease in luteal mRNA for LH receptors and occupied and unoccupied receptors for LH without altering endometrial mRNA for LH receptors or occupied and unoccupied receptors for LH.  相似文献   

9.
10.
This study was designed to evaluate the reproductive performance of lactating dairy cows (Holstein Friesian) after the injection of PGF analogue on Day 15 postpartum, and GnRH analogue on Day 23 after artificial insemination (AI) with Presynch (two injections of PGF, administered 14 days apart starting at 30–35 days postpartum) + Ovsynch-based (GnRH–7 days–PGF–2 days–GnRH–16–20 hours–timed artificial insemination) treatments, during the warm and cold periods of the year. All the cows (n = 313) were assigned to one of the four groups including: M1 (n = 72) in which the cows were treated with PGF on Day 15 postpartum + Presynch-Ovsynch + GnRH on Day 23 post-AI; M2 (n = 41) in which the cows received PGF on Day 15 postpartum + Presynch-Ovsynch; M3 (n = 100) including the cows that got Presynch-Ovsynch; and control group (n = 100) including the cows that were not treated and were inseminated at natural estrus. Pregnancy diagnosis was performed 28 to 35 days post-insemination by means of ultrasound. The results showed that treatment with PGF on Day 15 postpartum significantly decreased the days to conception and the number of services per conception (P < 0.01) and it also improved the first service conception rate (P < 0.1) only in cows that were treated with M2 protocol. Whereas, the days to first service was not influenced by the treatment of PGF on Day 15 postpartum (P > 0.05). In contrast, administration of GnRH on Day 23 post-AI increased the days to conception and the number of service per conception (P < 0.01) and tended to decrease the first service conception rate (P < 0.1) in cows that were treated with M1 compared with M2 protocol. Therefore, it was concluded that Presynch-Ovsynch protocol could be more reproductive and beneficial when a single treatment with PGF was administered at 15 days postpartum (15 days after the PGF, Presynch-Ovsynch protocol was initiated). Interestingly, the administration of a GnRH agonist on Day 23 post-AI not only did not improve the reproductive performance of the cows receiving first postpartum timed artificial insemination after Presynch-Ovsynch protocol but also reduced that.  相似文献   

11.
Because cow ovaries do not contain a dominant follicle before Day 3 of the estrous cycle, we hypothesized that gonadotropin treatment early in the estrous cycle would induce growth of multiple follicles and could be used to induce superovulation. In Experiment 1, when 16 cows were treated with FSH-P beginning on Day 2 of the estrous cycle and were slaughtered on Day 5, all cows responded to gonadotropin treatment by exhibiting a large number ( approximately 19) of estrogenactive follicles >/= 6 mm. In Experiment 2, in response to FSH-P treatment from Day 2 to Day 7, and fenprostalene treatment on Day 6, 11 of 15 cows exhibited estrus and had a mean ovulation rate of 23.7 +/- 1.5. In Experiment 3, an FSH-P treatment regimen identical to that used in Experiment 2 was administered to cows beginning either on Day 2 (Day-2 cows; n=14) or Day 10 (Day-10 cows; n=11) of the estrous cycle. Twelve of 14 Day-2 cows and all Day-10 cows exhibited estrus after fenprostalene treatment. Day-2 cows exhibited 34.3 +/- 7.0 ovulations, which was less (P < 0.05) than that exhibited by Day-10 cows (48.3 +/- 4.4). However, the proportion of embryos recovered per corpus luteum was about 2-fold greater (P < 0.05) for Day-2 cows than for Day-10 cows (0.49 +/- 0.08 vs 0.27 +/- 0.06). These data indicate that beginning gonadotropin treatment early in the estrous cycle, when a dominant follicle is not present, provides an efficacious means to induce growth of multiple follicles and superovulation in cows. However, when FSH was administered for 6 d, beginning the treatment on Day 10 also resulted in a consistent and efficacious response.  相似文献   

12.
A.C. Warnick 《Theriogenology》2010,73(9):1306-1310
The objective was to determine physiological causes of low fertility in beef cows. Fertility was compared between low-fertility cows (34 British cows and 64 Brahman crossbred cows; cows that did not get pregnant when mated to fertile bulls in one or two previous breeding seasons); fertile cows (16 Brahman crossbreds; cows having a calf in several of the preceding breeding seasons), and virgin heifers (45 Brahman crossbreds, 2 yr of age). Females were mated to fertile bulls and killed 3 or 34 d after breeding to obtain reproductive tracts. There were no significant differences among groups in rates of ovulation or fertilization. Overall, 14% of females failed to ovulate and 24% that ovulated failed to undergo fertilization. The proportion of cows that were not detected in estrus before Day 34 of pregnancy was lower (P < 0.01) for low-fertility British cows (5 of 16 cows, 31%) than for other groups, including low-fertility Brahman crossbred cows (23/32, 72%), fertile cows (8/9, 89%), and heifers (21/24, 88%). All cows that did not return to estrus by Day 34 had an identifiable conceptus. The proportion of conceptuses recovered at Day 34 that were classified as normal (weight and length) was lower (P < 0.05) for cows with low fertility (British: 2/5, 40%; Brahman crossbred: 9/23, 39%) than for fertile cows (8/8, 100%) or heifers (18/21; 86%). Similarly, the proportion of cows in which a normal embryo was recovered (cows with normal embryos/number of cows mated) was lower (P < 0.001) for low-fertility British cows (2/16, 13%) and low-fertility Brahman crossbred cows (9/32, 28%) than for fertile cows (8/9, 89%) and heifers (18/24, 75%). In conclusion, cows that were infertile in previous breeding seasons did not experience reduced ovulation or fertilization rates, but had greater embryonic mortality. These data highlighted the importance of ovulation and fertilization failure and embryonic mortality as important determinants of pregnancy success. Moreover, increased embryonic loss after Day 34 contributed to infertility in low-fertility cows.  相似文献   

13.
The early corpus luteum (CL) (before Day 6) does not regress after a single PGF treatment. We hypothesized that increasing PGF dose or number of treatments would allow regression of the early CL (Day 5). Nonlactating Holstein cows (N = 22) were synchronized using the Ovsynch protocol. On Day 5 (Day 0 = second GnRH treatment), cows were assigned to: (1) control (N = 5): no further treatment; (2) 1PGF (N = 6): one dose of 25 mg PGF; (3) 2PGF (N = 5): two doses of 25 mg PGF (50 mg) given 8 hours apart (second PGF on Day 5 at the same time as the other PGF treatments); (4) DPGF (N = 6): double dose of 25 mg PGF (50 mg) given on Day 5. Blood samples were collected to monitor progesterone (P4) profiles in two periods. In the first period (0 to 24 hours), there were effects of treatment (P = 0.01), time (P < 0.01), and an interaction of treatment and time (P = 0.02). Group 1PGF versus control was different only at 12 hours (P = 0.02). Cows treated with DPGF were different than control at 4 hours (P = 0.04), 12 hours (P < 0.01), and 24 hours (P < 0.01). Only cows treated with 2PGF had lower P4 than control during the entire period and low P4 (0.37 ± 0.17 ng/mL) at 24 hours, usually indicative of luteolysis. In the second period (Day 5 to 15 of the cycle), there were effects of treatment (P < 0.01), time (P < 0.01), and interaction of treatment and time (P = 0.002). Group 1PGF was not different than control from Day 5 to 13 and P4 was greater than control on Day 14 (P = 0.01) and 15 (P < 0.01). Circulating P4 in DPGF cows was lower than control from Day 7 (P = 0.05) through 12 (P < 0.01). Likewise, there were differences between control and 2PGF from Day 7 to 13, but not on Day 14 and 15. On Day 15, all PGF-treated groups had circulating P4 consistent with an active CL. Ultrasound evaluation confirmed that no CL from any group completely regressed during the experiment and no new ovulations occurred to account for functional CL later in cycle. In summary, a double dose of PGF (twice on Day 5 or 8 hours apart) can dramatically decrease P4, consistent with classical definitions of luteolysis; however, these CL recover and become fully functional. Thus, the Day 5 CL of mature Holstein cows do not regress even to two doses of PGF.  相似文献   

14.
Pregnancy failure during placentation in lactating dairy cows was associated with low concentrations of serum progesterone. Beef cows have greater serum progesterone and less pregnancy failure. Experiment 1 determined that reduction of serum progesterone affected late embryonic/early fetal loss in suckled beef cows. Cows (n = 40) received progesterone from two new or used controlled internal drug releasing devices, replaced every 5 d, beginning on Day 28 of gestation (mating = Day 0); CL were enucleated on Day 29. Retention of pregnancy was 77% in treated cows and 97% in 78 control cows (P < 0.05). Experiment 2 determined how pregnant, lactating dairy cows with high or low progesterone concentrations during Days 28-34 differed in luteal function or in serum progesterone during replacement therapy. Luteal tissue from such cows was assayed for progesterone and expression of mRNA for genes of endothelin and prostaglandin (PG) systems. Secretion of progesterone and prostaglandins by dispersed luteal cells was determined during incubation with LH, endothelin-1, or arachidonic acid. Neither luteal progesterone nor mRNAs for endothelin or prostaglandin systems differed. Endothelin-1 inhibited secretion of progesterone more (P < 0.05) in luteal cells from cows with low versus high serum progesterone, when incubated with arachidonic acid. Secretion of prostaglandin F2α was increased and that of 6-keto-PGF1α decreased by endothelin-1 in vitro. Serum progesterone during replacement was lower (P < 0.05) for cows with low than high serum progesterone at lutectomy. Thus, clearance, more than luteal production, determined peripheral progesterone in pregnant, lactating dairy cows.  相似文献   

15.
We have measured by radioimmunoassay the production of leukotrienes (LTC4 and LTB4) and prostaglandins (PGE2 and PGF) in the rat uterus on Days 1 through 6 of pregnancy. The production is defined as the synthesis minus the degradation for a defined period. The production of LTC4 or LTB4 remained unaltered on days 1–3, but exhibited a marked increase on Day 4 showing a peak at noon. This was then followed by a sharp decline on Day-5 morning. A small but consistent peak in uterine LT production was also noticed on Day-5 noon prior to implantation and this was followed by a decline on Day-6 morning i.e. after initiation of implantation. The production profile of PGE2 and PGE showed a striking resemblance to that of LTs; one exception being that maximal PG production was noticed on Day-4 morning and preceded the peak production of LTs. These vasoactive arachidonate derivatives reached their peak production rates at around the time when a surge in estrogen level is noticed in the uterus on Day 4. Implantation is a local proinflammatory type of reaction that is associated with increased uterine vascular permeability. Vascular changes in inflammatory reactions are provoked by two kinds of chemical mediators: (1) vasodilators and (2) agents that increase vascular permeability. PGs (especially of the E series) are known as vasodilators, while LTs and histamine mediate increases in vascular permeability. Therefore, an interaction between LTs, PGs, and histamine could be important for uterine preparation for implantation and/or implantation .  相似文献   

16.
The objectives of Experiment 1 were to determine a dose of eCG that would increase total luteal volume and plasma progesterone (P4) concentration on estrous cycle Day 7 in cows. The objectives of Experiment 2 were to determine the effects of treating embryo recipient lactating Holstein cows with eCG on pregnancy per embryo transfer (P/ET). In Experiment 1, lactating dairy cows at 63 ± 3 d postpartum (DIM) received no treatment (control, n = 10), or 600 (eCG6, n = 19), or 800 (eCG8, n = 19) IU of eCG 2 d after the start of the ovulation-synchronization protocol, Day -8 (Day -10 GnRH, Day -3 PGF, Day 0 GnRH). Blood was sampled on Days -10, -8, -3, 0, 7, and 14 for P4 concentration. Ovaries were examined by ultrasound on Days -10, -3, 0, and 7. In Experiment 2, lactating dairy cows were paired according to parity and previous insemination (0 or > 1 insemination) and assigned to receive 800 IU of eCG (eCG8, n = 152) 2 d after the start of the ovulation-synchronization protocol (Day -10 GnRH, Day -3 PGF, Day 0 GnRH) or to receive no treatment (control, n = 162). Blood was sampled on Days -10, -3, 0, 7, and 14 for determination of P4 concentration. Ovaries were examined by ultrasound on Days -10, -3, and 7, and cows with a CL > 20 mm in diameter on Day 7 received an embryo. In Experiment 1, P4 concentration on Day 7 was higher (P < 0.05) for eCG8 cows (2.3 ± 0.3 ng/mL) compared with control (1.2 ± 0.3 ng/mL) and eCG6 (1.1 ± 0.3 ng/mL) cows. In Experiment 2, eCG8 primiparous cows had more (P < 0.01) follicles > 10 mm on Day -3 compared with control primiparous cows (2.5 ± 0.9 vs 1.7 ± 0.5 mm), but multiparous control and eCG8 cows did not differ. A larger (P = 0.03) percentage of control cows received an embryo (87.5 vs 79.1%) compared with eCG8 cows. Among cows that received an embryo, total luteal volume on Day 7 was affected (P = 0.05) by treatment (eCG8 = 8.3 ± 0.4 cm3, control = 6.2 ± 0.4 cm3), but P4 concentration on Day 7 did not differ significantly between treatments. The percentage of cows pregnant 53 d after ET (overall, 24.2%) was not significantly different between control and eCG8 cows. In the current study, no differences in P/ET were observed between control and eCG8 cows and treatment with eCG increased the percentage of cows with asynchronous estrous cycle.  相似文献   

17.
Effects of PGE1 or PGE2 on luteal function were studied in 163 pseudopregnant rats. PGE1 (10, 100, or 300μg) given intrauterine every 6 hr did not shorten pseudopregnancy (P < 0.05), however, the same doses of PGE2 given intrauterine every 6 hr advanced luteolysis (P < 0.05). PGE1 (100 or 300μg) given every 4 hr intramuscular maintained levels of progesterone in peripheral blood above controls (P < 0.05) while 100 or 300μg of PGE2 hastened the decline in progesterone (P < 0.05). The antiluteolytic effect of PGE1 was not via an inhibition of PGF secretion (P < 0.05) by the uterus or by induction of ovulation in treated animals. Moreover, PGE1 (100, 200, or 500μg) given intramuscular every 4 hr from day 4 of pseudopregnancy until the next proestrus delayed luteal regression around 3 days (P < 0.05). PGE2 at doses of 100, 200, or 500μg every 4 hr given intramuscular consistently shortened pseudopregnancy (P < 0.05). Lower doses were without effect (P < 0.05). Based on the above data it is concluded that PGE2 is consistently luteolytic whereas PGE1 is not luteolytic in pseudopregnant rats and that PGE1 may be an antiluteolysin.  相似文献   

18.
《Theriogenology》2016,86(9):1555-1561
A pilot experiment was designed to test the hypothesis that administration of PGF before progestin treatment would allow for a reduced duration of progestin treatment in a long-term progestin-based estrus synchronization protocol. A modified presynchronization treatment was compared with a standard long-term controlled internal drug release (CIDR) treatment, and treatments were compared on the basis of ovarian follicular dynamics, estrous response rate, synchrony of estrus expression, and pregnancy rates resulting from timed artificial insemination (TAI) in postpartum beef cows. Estrous was synchronized for 85 cows, with cows assigned to one of two treatments based on age, days postpartum, and body condition score. Cows assigned to the 14-day CIDR-PG protocol received a CIDR insert (1.38 g progesterone) on Day 0, CIDR removal on Day 14, and administration of PGF (25 mg im) on Day 30. Cows assigned to the 9-day CIDR-PG protocol received PGF concurrent with CIDR insertion on Day 5, PGF concurrent with CIDR removal on Day 14, and administration of PGF on Day 30. In both treatments, split-time AI was performed based on estrous response. At 72 hours after PGF (Day 33), cows having expressed estrus received TAI; cows that failed to express estrus by 72 hours received TAI 24 hours later (96 hours after PGF on Day 34), with GnRH (100 μg im) administered to nonestrous cows. Estrus-detection transmitters were used from CIDR removal until AI to determine onset time of estrus expression both after CIDR removal and after PGF. Ovarian ultrasonography was performed at CIDR removal on Day 14, PGF on Day 30, and AI on Days 33 or 34. At CIDR removal on Day 14, diameter of the largest follicle present on the ovary was similar between treatments. The proportion of cows expressing estrus after CIDR removal tended to be higher (P = 0.09) among cows assigned to the 9-day CIDR-PG treatment (93%; 40 of 43) than among cows assigned to the 14-day CIDR-PG treatment (81%; 34 of 42). After PGF, a significantly higher proportion (P = 0.02) of cows expressed estrus after synchronization with the 9-day CIDR-PG treatment (91%; 39 of 43) than the 14-day CIDR-PG treatment (69%; 29 of 42). Consequently, pregnancy rate to TAI tended to be increased (P = 0.09) among the 9-day CIDR-PG treatment (76.7%; 33 of 43) compared with the 14-day CIDR-PG treatment (59.5%; 25 of 42). In summary, a long-term CIDR-based estrous synchronization protocol for postpartum beef cows was enhanced through administration of PGF at CIDR insertion and CIDR removal.  相似文献   

19.
Measures of fertility in young beef bulls (N=76) representative of divergent breeds and F1 crosses were evaluated. Breed-types were straightbred Hereford and Red Poll, Hereford × Red Poll reciprocal crosses, Angus × Hereford, Angus × Charolais, Brahman × Hereford and Brahman × Angus.There was evidence of significant breed-type variation in scrotal circumference and total testicle weight, although differences were less pronounced when animal weight was taken into account. Scrotal circumference in Brahman × Hereford bulls was less (P<.05) than straightbred Hereford, Red Poll × Hereford and Angus × Hereford crosses at 8 months of age. However, at 13 months there was no difference in scrotal circumference measurements of Brahman × Hereford, Red Poll × Hereford and Angus × Hereford crosses, and all three crosses exceeded (P<.05) straightbred Herefords. Breed-type differences in semen score and presence of normal, mature sperm in the seminiferous tubules at 13 months of age approached significance at the .10 probability level. Heterosis effects on bull fertility characteristics were insignificant when body weight was included as a covariate in the analyses.  相似文献   

20.
Angus (n=6), Brangus (5/8 Angus x 3/8 Brahman, n=6), and Brahman x Angus (3/8 Angus x 5/8 Brahman, n=6) heifers exhibiting estrous cycles at regular intervals were used to determine if the percentage of Bos indicus breeding influenced the secretory patterns of LH in response to a GnRH treatment on Day 6 of the estrous cycle. Heifers were pre-synchronized with a two-injection PGF(2 alpha) protocol (25 mg i.m. Day -14 and 12.5 mg i.m. Day -3 and -2 of experiment). Heifers received 100 microg GnRH i.m. on Day 6 of the subsequent estrous cycle. Blood samples were collected at -60, -30, and -1 min before GnRH and 15, 30, 60, 90, 120, 150, 180, 240, 300, 360, 420, and 480 min after GnRH to determine concentrations of serum LH. Estradiol concentrations were determined at -60, -30, and -1 min before GnRH. On Day 6 and 8, ovaries were examined by ultrasonography to determine if ovulation occurred. On Day 13, heifers received 25 mg PGF(2 alpha) i.m. and blood samples were collected daily until either the expression of estrus or Day 20 for heifers not exhibiting estrus to determine progesterone concentrations. There was no effect (P>0.10) of breed on ovulation rate to GnRH as well as size of the largest follicle, mean estradiol, and mean corpus luteum volume at GnRH. Mean LH was greater (P<0.05) for Angus (7.0+/-0.8 ng/mL) compared to Brangus (4.6+/-0.8 ng/mL) and Brahman x Angus (2.9+/-0.8 ng/mL), which were similar (P>0.10). Mean LH peak-height was similar (P>0.10) for Brangus (13.9+/-3.4 ng/mL) compared to Angus (21.9+/-3.4 ng/mL) and Brahman x Angus (8.0+/-3.4 ng/mL), but was greater (P<0.05) for Angus compared to Brahman x Angus. Interval from GnRH to LH peak was similar (P>0.10) between breeds. As the percentage of Bos indicus breeding increased the amount of LH released in response to GnRH on Day 6 of the estrous cycle decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号