首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To develop a robust whole-cell biocatalyst that works well at moderately high temperature (40–50 °C) with organic solvents, a thermostable lipase from Geobacillus thermocatenulatus (BTL2) was introduced into an Aspergillus oryzae whole-cell biocatalyst. The lipase-hydrolytic activity of the immobilized A. oryzae (r-BTL) was highest at 50 °C and was maintained even after an incubation of 24-h at 60 °C. In addition, r-BTL was highly tolerant to 30% (v/v) organic solvents (dimethyl carbonate, ethanol, methanol, 2-propanol or acetone). The attractive characteristics of r-BTL also worked efficiently on palm oil methanolysis, resulting in a nearly 100% conversion at elevated temperature from 40 to 50 °C. Moreover, r-BTL catalyzed methanolysis at a high methanol concentration without a significant loss of lipase activity. In particular, when 2 molar equivalents of methanol were added 2 times, a methyl ester content of more than 90% was achieved; the yield was higher than those of conventional whole-cell biocatalyst and commercial Candida antarctica lipase (Novozym 435). On the basis of the results regarding the excellent lipase characteristics and efficient biodiesel production, the developed whole-cell biocatalyst would be a promising biocatalyst in a broad range of applications including biodiesel production.  相似文献   

2.
The purpose of the present study is to find the conditions allowing to reach the highest 24 h-yield (24 h-η) for the synthesis of mannosyl myristate catalyzed by the immobilized lipase B from Candida antarctica (Novozym® 435) in the ionic liquid (IL) [Bmpyrr][TFO] (1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate). A full factorial design (FFD) was used in order to study the influence of three variables (temperature, mannose/vinyl myristate ratio and total substrate quantity) on the 24 h-η. This design led to a model based on a second order polynomial response function. The resulting predicted contour plots have shown that the highest 24 h-η should be obtained with high temperatures, low sugar/vinyl ester molar ratio and intermediate total substrate quantities (mmol). The model has been successfully verified and experimentally confirmed at the optimal conditions of 80 °C, substrate molar ratio of 1/10 and total substrate quantity of 0.26 mmol leading to the highest predicted 24 h-η of 72.2%.  相似文献   

3.
《Process Biochemistry》2010,45(4):586-592
Immobilized lipase-catalyzed synthesis of benzoic acid hydrazide from hydrazine and phenyl benzoate is reported in this work. A series of immobilized lipases such as Candida antarctica lipase B, Mucor miehei lipase and Thermomyces lanuginosus lipase were screened to establish that C. antarctica lipase B was the best lipase for hydrazinolysis. When phenyl benzoate (0.01 mol) and hydrazine (0.02 mol) in toluene (15 ml) were reacted with C. antarctica lipase B (Novozym 435) at 50 °C, 95% of phenyl benzoate was converted to benzoic acid hydrazide after 2 h. The effects of various parameters such as speed of agitation, concentration of the substrates, temperature, enzyme concentration, and reusability of the enzyme were studied to deduce kinetics and mechanism of the reaction. A mechanism based on an ordered bi–bi dead end complex with hydrazine was found to fit the data. Systematic deactivation studies indicated that the enzyme was deactivated due to the hydrazine and phenol, enzyme deactivation obeys first-order series model. The kinetic parameters deduced from these models were used to simulate the lipase activity. There was a very good agreement between the simulated and experimental values.  相似文献   

4.
《Process Biochemistry》2010,45(4):593-597
This paper reports a simple method for producing macroporous silica-monoliths with controllable porosity that can be used for the immobilization of lipases to generate an active and stable micro-reactor for biocatalysis. A range of commercially available lipases has been examined using the hydrolysis reactions of 4-nitrophenyl butyrate in water–decane media. The kinetic studies performed have identified that a similar value for kcat is obtained for the immobilized Candida antarctica lipase A (0.13 min−1) and the free lipase in solution (0.12 min−1) whilst the immobilized apparent Michaelis constant Km (3.1 mM) is 12 times lower than the free lipase in solution (38 mM). A 96% conversion was obtained for the immobilized C. antarctica lipase A compared to only 23% conversion for the free lipase. The significant higher conversions obtained with the immobilized lipases were mainly attributed to the formation of a favourable biphasic system in the continuous flowing micro-reactor system, where a significant increase in the interfacial activation occurred. The immobilized C. antarctica lipase A on the monolith also exhibited improved stability, showing 64% conversion at 80 °C and 70% conversion after continuous running for 480 h, compared to 40 and 20% conversions under the same temperature and reaction time for the free lipase.  相似文献   

5.
Monoacylglycerols are increasingly used in several industrial applications as effective and cheap emulsifiers. In the present work monostearin synthesis has been studied, using lipase as a biocatalyst of the esterification reaction of stearic acid with (R,S)-1,2-O-iso-propylidene glycerol (solketal). The lipase from Candida antarctica (CaL B) was immobilized in AOT/isooctane water in oil microemulsions. Optimization of the reaction conditions have shown that the highest production (80% in 30 min) could be achieved at 40 °C, in microemulsions with relatively low water content (wo = 8). Kinetic studies have shown that the esterification reaction of stearic acid with solketal catalyzed by CaL B occurs via the ordered bi–bi mechanism, in which inhibition by the acid was identified. Moreover, at high fixed solketal concentrations a negative cooperativity is pronounced, which means that binding of the alcohol lowers the affinity of the enzyme for binding of the acid. Values of all kinetic parameters have been determined.  相似文献   

6.
Candida antarctica lipase B (CAL-B, Novozyme 435) catalyzes the transacylation of methyl acrylate and methyl methacrylate with diols and triols in 2-methyl-2-butanol at 50 °C. Under the experimental conditions, up to 70 mol% of the acyl donor methyl acrylate was converted. Methyl methacrylate is the less efficient acyl donor (up to 60 mol%) due to the higher sterical hindrance in the enzymatic transacylation. Under the reaction conditions high yields of the mono-acylated products are obtained, which contain minor amounts of bis(meth)acrylates. In addition it was observed that Novozyme 435 catalyzes regioselectively the acylation of the primary hydroxyl groups. In comparison with the chemical catalyzed route no selectivity was observed for unsubstituted diols. For substituted diols more mono-acylated product was formed in the lipase-catalyzed reaction than in the chemical catalyzed reaction.  相似文献   

7.
Candida antarctica lipase B, immobilized as cross linked enzyme aggregates (CLEAs) was used to mediate the Baeyer–Villiger oxidation of cyclohexanone to ɛ-caprolactone, and the reaction was compared with the one using Novozym® 435 as catalyst. The conversion was dependent on the initial concentration of cyclohexanone, and was about 90% after 48 h at concentrations of up to 0.25 M but was decreased at higher concentrations. Caprolactone concentrations up to 0.6 M had no effect on the reaction efficiency. Among the cyclic ketones tested, the highest degree of conversion was achieved for cyclopentanone (88%) and the lowest for cyclooctanone (about 2%). The effect of methyl substitution and position of substitution on the cycloketone was studied using methylcyclohexanone and it has shown to influence the conversion efficiency. Both hydrogen peroxide and the reaction by-product acetic acid had a deleterious effect on the stability of the biocatalyst.  相似文献   

8.
In this study, we report the enzymatic production of glycerol acetate from glycerol and methyl acetate. Lipases are essential for the catalysis of this reaction. To find the optimum conditions for glycerol acetate production, sequential experiments were designed. Type of lipase, lipase concentration, molar ratio of reactants, reaction temperature and solvents were investigated for the optimum conversion of glycerol to glycerol acetate. As the result of lipase screening, Novozym 435 (Immobilized Candida antarctica lipase B) was turned out to be the optimal lipase for the reaction. Under the optimal conditions (2.5 g/L of Novozym 435, 1:40 molar ratio of glycerol to methyl acetate, 40 °C and tert-butanol as the solvent), glycerol acetate production was achieved in 95.00% conversion.  相似文献   

9.
The enzymatic reaction of benzoic acid and glycerol in the absence of organic solvents to obtain the 1- or 3-monobenzoate glycerol (α-MBG) is studied. Esterification runs were batch wise performed with a concentration of enzyme of 30 g/L, changing the initial concentration of the acid in glycerol from 20 to 60 g/L, and temperature from 50 to 70 °C. In these conditions, the most active lipase among those tested for this synthesis was lipase B isozyme from Candida antarctica (CALB), obtaining conversion values higher than 80% and a significant selectivity to α-MBG. Unlike the synthesis in organic media, water did not have an inhibitory behaviour; hence control of water activity was unnecessary. Temperature and benzoic acid act synergically as deactivating factors. Considering the aforementioned, a kinetic model according to a Michaelis–Menten mechanism is proposed. This model considers a partial enzymatic deactivation mechanism with two terms, one of them accounting for the deactivating action of the acid.  相似文献   

10.
A biocatalyst with high activity retention of lipase was fabricated by the covalent immobilization of Candida rugosa lipase on a cellulose nanofiber membrane. This nanofiber membrane was composed of nonwoven fibers with 200 nm nominal fiber diameter. It was prepared by electrospinning of cellulose acetate (CA) and then modified with alkaline hydrolysis to convert the nanofiber surface into regenerated cellulose (RC). The nanofiber membrane was further oxidized by NaIO4. Aldehyde groups were simultaneously generated on the nanofiber surface for coupling with lipase. Response surface methodology (RSM) was applied to model and optimize the modification conditions, namely NaIO4 content (2–10 mg/mL), reaction time (2–10 h), reaction temperature (25–35 °C) and reaction pH (5.5–6.5). Well-correlating models were established for the residual activity of the immobilized enzyme (R2 = 0.9228 and 0.8950). We found an enzymatic activity of 29.6 U/g of the biocatalyst was obtained with optimum operational conditions. The immobilized lipase exhibited significantly higher thermal stability and durability than equivalent free enzyme.  相似文献   

11.
(Z)-3-hexen-1-yl esters are important green top-note components of food flavors and fragrances. Effects of various process conditions on (Z)-3-hexen-1-yl caproate synthesis employing germinated rapeseed lipase acetone powder in organic solvent were investigated. Rapeseed lipase catalyzed ester formation more efficiently with non-polar compared to polar solvents despite high enzyme stability in both types of solvents. Maximum ester yield (90%) was obtained when 0.125 M (Z)-3-hexen-1-ol and caproic acid were reacted at 25 °C for 48 h in the presence of 50 g/L enzyme in heptane. Enzyme showed little sensitivity towards aw with optimum yield at 0.45, while added water did not affect ester yield. Esterification reduced by increasing molecular sieves (>0.0125%, w/v). The highest yields of caproic acid were obtained with isoamyl alcohol (93%) followed by butanol and (Z)-3-hexen-1-o1 (88%) respectively reflecting the enzyme specificity for straight and branched chain alcohols. Secondary alcohols showed low reactivity, while tertiary alcohol had either very low reactivity or not esterified at all. A good relationship has been found between ester synthesis and the solvent polarity (log P value); while no correlation for the effect of solvents on residual enzyme activity was observed. It may be concluded that germinated rapeseed lipase is a promising biocatalyst for the synthesis of valuable green flavor note compound. The enzyme also showed a wide range of temperature stability (5–50 °C).  相似文献   

12.
New tyrosyl ester derivative, a naturally occurring phenol with interesting biological properties, has been synthesized in good yield by a direct esterification of tyrosol (Ty) with p-hydroxyphenylacetic acid (p-HPA) using Candida antarctica lipase as a catalyst. The response surface methodology was used to modulate the effects of the enzyme amount (10–50 mg), the tert-butanol/hexane (v/v) ratio (0.16–0.84), the temperature (35–55 °C) and the reaction time (15–45 h) on the tyrosyl hydroxyphenylacetate (Ty-HPA) conversion yield. Under the optimal predicted conditions (enzyme amount: 10 mg, solvents volume ratio 0.16, reaction temperature; 45 °C and 34 h of incubation), a high conversion yield of 79.33 ± 4% was reached. The obtained ester was purified and characterized by NMR, LC/MS and FT-IR methods. ABTS free radical quenching potency demonstrated that the esterified tyrosol (Ty-HPA) was more effective than the natural separated antioxidants: Ty and p-HPA. Furthermore, when used at a non-cytotoxic concentration (100 μM), tyrosyl ester showed significant effectiveness in preventing iron-induced oxidative stress in blood cells compared to the two separated compounds. The antibacterial activity of Ty, p-HPA, mixed solution of Ty + p-HPA and Ty-HPA was performed by determining the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) using a micro-well dilution method. Compared to the separated substrates, synthesized ester exhibits the most antibacterial effect mainly against Gram+ bacteria.  相似文献   

13.
The acylation of isoamyl alcohol with acetic anhydride catalyzed by immobilized Candida antarctica lipase B was studied in ionic liquids (ILs) based on quaternary imidazolium cations with alkyl, alkenyl, alkynyl, benzyl, alkoxyl or N-aminopropyl side chains. Among the tested ILs, the highest enzyme activity together with the highest isoamyl acetate yield were obtained in [C7mmim][Tf2N]. No loss of lipase B activity was observed during one-month incubation in this hydrophobic IL without the presence of substrates. Isoamyl acetate synthesis using [C7mmim][Tf2N] as solvent was further studied in a continuously operated miniaturized enzymatic packed bed reactor at various flow rates and temperatures. Up to 92% isoamyl acetate yield could be obtained within 15 min by using 0.5 M acetic anhydride and 1.5 M isoamyl alcohol inlet concentrations at 55 °C, corresponding to the volumetric productivity of 61 mmol l?1 min?1, which to the best of our knowledge is the highest reported so far for this reaction. No decrease in productivity was experienced during the subsequent runs of continuous microbioreactor operation performed within 14 consecutive days. The benefits of reactor miniaturization along with the green solvent application were therefore successfully exploited for the development of a sustainable flavour ester production.  相似文献   

14.
Our present investigation describes the regioselective enzymatic acylation of two series of acylated derivatives of phloridzin and isoquercitrin with six different long chain saturated, mono- and poly-unsaturated fatty acids. The biocatalytic synthesis was optimized to achieve 81–98% yields, using immobilized lipase B, from Candida antarctica (Novozym 435®), in acetone at 45 °C. The synthesized esters have been analyzed by 1H NMR, 13C NMR spectroscopy and evaluated for their antioxidant capacity and tyrosinase inhibition, using in vitro assays. Among all the phloridzin and isoquercitrin derivatives, the greatest potential for inhibition of tyrosinase activity (p ?0.05) was exhibited by the α-linolenic acid ester of isoquercitrin.  相似文献   

15.
We have examined the chain length selectivity for a series of acyl donors by lipase B from Candida antarctica (CalB). CalB accepted aliphatic diesters of C4, C6 and C12 chain lengths equally. The introduction of a carbon–carbon double bond into the C4 esters dramatically lowered the rate constant associated with polymerization highlighting the role of geometry in catalysis; fumarate esters were polymerized at a reduced rate compared to the succinate esters, while the maleate esters were not polymerized above 5% over the course of 24 h. A disiloxane-containing diester impeded catalysis by CalB. We examined a series of vinyl siloxane esters and alcohols, and learned that the Z arrangement around the double bond stalled esterification by CalB completely. The distance between the ester carbonyl and the dimethylsiloxy group was shown to be an important factor in mediating catalysis. The rate constants were similar when the methylene spacer was 3, 4, or 5 units in length; beyond 6 methylene units, the rate constants increased. This has been tentatively attributed to the local reduction on the steric bulk when the larger siloxane moiety lies outside of the active site of the enzyme.  相似文献   

16.
The yield obtained in a Candida rugosa lipase-catalysed heptyl acetate synthesis via transesterification of 1-heptanol with vinyl acetate depends linearly on the concentration of lipases of each crude lyophilised powder. Thus, it is possible to characterise the amount of lipases present in the biocatalyst by calculating the parameter called Catalytic Performance (CP), defined as (% final yield) × (mg crude biocatalyst)−1. On the other hand, the relative yield obtained in the C. rugosa lipase-catalysed transesterifications of different alcohols (1-heptanol, geraniol, nerol and cyclohexanol) with vinyl acetate as acyl donor depends on the proportion of isoenzymes of each crude biocatalyst. Therefore, it is possible to qualitatively evaluate the proportion of isoenzymes in those crude preparations and to predict the biocatalytical behaviour of each isoenzyme according to the alcohol employed. The methodology described is successfully used in two non-conventional asymmetric syntheses in organic media.  相似文献   

17.
Immobilization of Saccharomyces cerevisiae lipase by physical adsorption on Mg–Al hydrotalcite with a Mg/Al molar ratio of 4.0 led to a markedly improved performance of the enzyme. The immobilized lipase retained activity over wider ranges of temperature and pH than those of the free lipase. The immobilized lipase retained more than 95% relative activity at 50 °C, while the free lipase retained about 88%. The kinetic constants of the immobilized and free lipases were also determined. The apparent activation energies (Ea) of the free and immobilized lipases were estimated to be 6.96 and 2.42 kJ mol?1, while the apparent inactivation energies (Ed) of free and immobilized lipases were 6.51 and 6.27 kJ mol?1, respectively. So the stability of the immobilized lipase was higher than that of free lipase. The water content of the oil must be kept below 2.0 wt% and free fatty acid content of the oil must be kept below 3.5 mg KOH g [oil]?1 in order to get the best conversion. This immobilization method was found to be satisfactory to produce a stable and functioning biocatalyst which could maintain high reactivity for repeating 10 batches with ester conversion above 81.3%.  相似文献   

18.
A solvent-tolerant bacterium Burkholderia ambifaria YCJ01 was newly isolated by DMSO enrichment of the medium. The lipase from the strain YCJ01 was purified to homogeneity with apparent molecular mass of 34 kDa determined by SDS-PAGE. The purified lipase exhibited maximal activity at a temperature of 60 °C and a pH of 7.5. The lipase was very stable below 55 °C for 7 days (remaining 80.3% initial activity) or at 30 °C for 60 days. PMSF significantly inhibited the lipase activity, while EDTA had no effect on the activity. Strikingly, the lipase showed distinct super-stability to the most tested hydrophilic and hydrophobic solvents (25%, v/v) for 60 days, and different optimal pH in contrast with the alkaline lipase from B. cepacia S31. The lipase demonstrated excellent enantioselective transesterification toward the S-isomer of mandelic acid with a theoretical conversion yield of 50%, eep of 99.9% and ees of 99.9%, which made it an exploitable biocatalyst for organic synthesis and pharmaceutical industries.  相似文献   

19.
A mono- and diacylglycerol lipase (MDL) was cloned from Penicillium cyclopium and expressed in Pichia pastoris strain GS115. The recombinant enzyme was named Lipase GH1. High cell density fermentation was performed by culture in a 7.5-L fermenter using BSMG medium, in which the phosphate in basal salt medium was replaced by sodium glycerophosphate (Na2GP). The maximal lipase activity detected was 18,000 U per mL, and total protein content in the fermentation supernatant was 3.94 g per L. The activity of the liquid enzyme remained stable under alkaline conditions at 4 °C for 6 months and was 50% after one year. Lipase GH1 was used for the synthesis of mono- and diacylglycerols (MAGs and DAGs), which are commonly used emulsifiers for industrial applications. A conversion rate of 84% after 24 h of reaction was obtained using glycerol/oleic acid molar ratio 11:1, water content 1.5 wt%, enzyme dosage 80 U per g, and reaction temperature 35 °C. Lipase GH1 was more efficient for the synthesis of MAGs and DAGs than was Lipase G50 (a similar, commercially available lipase derived from Penicillium camemberti) when oleic acid was used as an acyl donor. Lipase GH1 has potential for food emulsifier preparation.  相似文献   

20.
A facile continuous flow-through Candida antarctica lipase B immobilized silica microstructured optical fiber (SMOF) microreactor for application in lipid transformations has been demonstrated herewith. The lipase was immobilized on the amino activated silica fiber using glutaraldehyde as a bifunctional reagent. The immobilized lipase activity in the SMOF was tested calorimetrically by determination of p-nitrophenyl butyrate hydrolysis products. The specific activity of the immobilized lipase was calculated to be 0.91 U/mg. The SMOF microreactor performance was evaluated by using it as a platform for synthesis of butyl laurate from lauric acid and n-butanol in n-hexane and n-heptane at 50 °C, with products identified by gas chromatography–mass spectrometry (GC–MS). Different substrate mole ratios were evaluated, with 1:3, lauric acid:n-butanol showing best performance. Remarkably, percentage yields of up to 99% were realized with less than ∼38 s microreactor residence time. In addition, the SMOF microreactor could be reused many times (at least 7 runs) with minimal reduction in the activity of the enzyme. The enzyme stability did not change even with storage of the microreactor in ambient conditions over one month.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号