首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
l-Arabinitol 4-dehydrogenase (LAD) from Hypocrea jecorina (HjLAD) was cloned and overexpressed in Escherichia coli BL21 (DE3). The kinetics of l-arabinitol oxidation by NAD+, catalyzed by HjLAD, was studied within the pH range of 7.0–9.5 at 25 °C. The turnover number (kcat) and the catalytic efficiency (kcat/Km) were 4200 min−1 and 290 mM−1 min−1, respectively. HjLAD showed the highest turnover number and catalytic efficiency among all previously characterized LADs. In further application of HjLAD, rare l-sugar l-xylulose was produced by the enzymatic oxidation of arabinitol to give a yield of approximately 86%.  相似文献   

2.
We have cloned, purified and investigated the catalytic activity and anion inhibition profiles of a full catalytic domain (358 amino acid residues) carbonic anhydrase (CA, EC 4.2.1.1) from Plasmodium falciparum, PfCAdom, an enzyme belonging to the η-CA class and identified in the genome of the malaria-producing protozoa. A truncated such enzyme, PfCA1, containing 235 residues was investigated earlier for its catalytic and inhibition profiles. The two enzymes were efficient catalysts for CO2 hydration: PfCAdom showed a kcat of 3.8 × 105 s−1 and kcat/Km of 7.2 × 107 M−1 × s−1, whereas PfCA showed a lower activity compared to PfCAdom, with a kcat of 1.4 × 105 s−1 and kcat/Km of 5.4 × 106 M−1 × s−1. PfCAdom was generally less inhibited by most anions and small molecules compared to PfCA1. The best PfCAdom inhibitors were sulfamide, sulfamic acid, phenylboronic acid and phenylarsonic acid, which showed KIs in the range of 9–68 μM, followed by bicarbonate, hydrogensulfide, stannate and N,N-diethyldithiocarbamate, which were submillimolar inhibitors, with KIs in the range of 0.53–0.97 mM. Malaria parasites CA inhibition was proposed as a new strategy to develop antimalarial drugs, with a novel mechanism of action.  相似文献   

3.
AurF catalyzes the N-oxidation of p-aminobenzoic acid to p-nitrobenzoic acid in the biosynthesis of the antibiotic aureothin. Here we report the characterization of AurF under optimized conditions to explore its potential use in biocatalysis. The pH optimum of the enzyme was established to be 5.5 using phenazine methosulfate (PMS)/NADH as the enzyme mediator system, showing ∼10-fold higher activity than previous reports in literature. Kinetic characterization at optimized conditions give a Km of 14.7 ± 1.1 μM, a kcat of 47.5 ± 5.4 min−1 and a kcat/Km of 3.2 ± 0.4 μM−1 min−1. PMS/NADH and the native electron transfer proteins showed significant formation of the p-hydroxylaminobenzoic acid intermediate, however H2O2 produced mostly p-nitrobenzoic acid. Alanine scanning identified the role of important active site residues. The substrate specificity of AurF was examined and rationalized based on the protein crystal structure. Kinetic studies indicate that the Km is the main determinant of AurF activity toward alternative substrates.  相似文献   

4.
《Process Biochemistry》2010,45(10):1746-1752
The genes, cDNA alpES1 and alpES1, encoding Aspergillus clavatus ES1 alkaline protease were amplified from complementary DNA (cDNA) and genomic DNA, respectively, cloned in pCR®II-TOPO plasmid and then sequenced. Sequence analysis of the cDNA alpES1 gene revealed an open reading frame (ORF) of 1212 bp encoding a pre–pro-protein of 403 amino acid residues consisting of a 21-aa signal peptide, a 100-aa pro-peptide and a 282-aa mature protein with a calculated molecular weight of 28.5 kDa. Compared to the cDNA alpES1 gene, the alpES1 gene contained three introns, which had 53, 57 and 54 bp, respectively. The cDNA alpES1 gene was then sub-cloned in pET-30b(+) and expressed in Escherichia coli BL21 (λDE3). The purified recombinant protease had a molecular weight of about 32 kDa estimated by SDS-PAGE. Kinetic parameters, Km and kcat values of the recombinant AlpES1 for casein, were 0.23 mM and 12.38 min−1, respectively. The catalytic efficiency (kcat/Km) was 53.82 min−1 mM−1.  相似文献   

5.
《Process Biochemistry》2010,45(7):1036-1042
A recombinant strain of Escherichia coli with CYP102A1 gene was developed for the demethylation of colchicine into their derivatives. The CYP102A1 gene responsible for demethylation was isolated from Bacillus megaterium ACBT03 and amplified using suitable primers. The amplified product was cloned into pET28a+ expression vector using host E. coli BL21(DE3) cells. The CYP3A4 (product of CYP102A1 gene) protein expression and other parameters like substrate toxicity, product toxicity and enzyme activity were optimized in shake flasks; and further scaled-up to 5 l bioreactor with 3 l working volume. In 5 l bioreactor, dissolved oxygen (DO) was optimized for maximum specific growth and enhanced 3-demethylated colchicine (3-DMC) production. The optimized conditions from shake flasks were scaled-up to 70 l bioreactor and resulted into ∼80% conversion of 20 mM colchicine in 48 h with a volumetric productivity of 6.62 mg l−1 h−1. Scale-up factors were measured as volumetric oxygen transfer coefficient (kLa) i.e., 56 h−1 and impeller tip velocity (Vtip) i.e., 7.065 m s−1, respectively. The kinetic parameters Km, kcat, and kcat/Km of the CYP3A4 enzyme using colchicine as the substrate were determined to be 271 ± 30 μM, 8533 ± 25 min−1, and 31.49 μM min−1, respectively, when IPTG induced recombinant E. coli culture was used.  相似文献   

6.
β-Glucosidase catalyzes the sequential breakdown of cyanogenic glycosides in cyanogenic plants. The β-glucosidase from Prunus armeniaca L. was purified to 8-fold, and 20% yield was obtained, with a specific activity of 281 U/mg protein. The enzyme showed maximum activity in 0.15 M sodium citrate buffer, pH 6, at 35 °C with p-nitrophenylglucopyranoside as substrate. The β-glucosidase from wild apricot was used successfully for the saccharification of cellobiose into D-glucose. This enzyme has a Vmax of 131.6 μmol min−1 mg−1 protein, Km of 0.158 mM, Kcat of 144.8 s−1, Kcat/Km of 917.4 mM−1 s−1, and Km/Vmax of 0.0012 mM min mg μmole−1, using cellobiose as substrate. The half-life, deactivation rate coefficient, and activation energy of this β-glucosidase were 12.76 h, 1.509 × 10−5 s−1, and 37.55 kJ/mol, respectively. These results showed that P. armeniaca is a potential source of β-glucosidase, with high affinity and catalytic capability for the saccharification of cellulosic material.  相似文献   

7.
Glycine oxidase (GO) has great potential for use in biosensors, industrial catalysis and agricultural biotechnology. In this study, a novel GO (BliGO) from a marine bacteria Bacillus licheniformis was cloned and characterized. BliGO showed 62% similarity to the well-studied GO from Bacillus subtilis. The optimal activity of BliGO was observed at pH 8.5 and 40 °C. Interestingly, BliGO retained 60% of the maximum activity at 0 °C, suggesting it is a cold-adapted enzyme. The kinetic parameters on glyphosate (Km, kcat and kcat/Km) of BliGO were 11.22 mM, 0.08 s−1, and 0.01 mM−1 s−1, respectively. To improve the catalytic activity to glyphosate, the BliGO was engineered by directed evolution. With error-prone PCR and two rounds of DNA shuffling, the most evolved mutant SCF-4 was obtained from 45,000 colonies, which showed 7.1- and 8-fold increase of affinity (1.58 mM) and catalytic efficiency (0.08 mM−1 s−1) to glyphosate, respectively. In contrast, its activity to glycine (the natural substrate of GO) decreased by 113-fold. Structure modeling and site-directed mutation study indicated that Ser51 in SCF-4 involved in the binding of enzyme with glyphosate and played a crucial role in the improvement of catalytic efficiency.  相似文献   

8.
The oral pathogenic bacterium Porphyromonas gingivalis, encodes for two carbonic anhydrase (CA, EC 4.2.1.1) one belonging to the β-class (PgiCAb) and another one to the γ-class (PgiCA). This last enzyme has been characterized earlier for its inhibition profile with various classes of CA inhibitors, such as the sulfonamides and anions, whereas for PgiCAb such data were not yet reported. Here we show that PgiCAb has a good catalytic activity for the CO2 hydration reaction, with kcat 2.8 × 105 s−1 and kcat/Km of 1.5 × 107 M−1 × s−1, being inhibited by cyanate and diethyldithiocarbamate in the submillimolar range (KIs of 0.23–0.76 mM) and more efficiently by sulfamide, sulfamate, phenylboronic acid and phenylarsonic acid (KIs of 60–78 μM). The anion inhibition profile of the two P. gingivalis enzymes is very different. Identification of selective inhibitors of PgiCAb/PgiCA may lead to pharmacological tools useful for understanding the physiological role(s) of these enzymes, since this bacterium is the main causative agent of periodontitis and few treatment options are presently available.  相似文献   

9.
Apurinic/apyrimidinic (AP) endonucleases are key enzymes involved in the repair of abasic sites and DNA strand breaks. Pathogenic bacteria Mycobacterium tuberculosis contains two AP endonucleases: MtbXthA and MtbNfo members of the exonuclease III and endonuclease IV families, which are exemplified by Escherichia coli Xth and Nfo, respectively. It has been shown that both MtbXthA and MtbNfo contain AP endonuclease and 3′  5′ exonuclease activities. However, it remains unclear whether these enzymes hold 3′-repair phosphodiesterase and nucleotide incision repair (NIR) activities. Here, we report that both mycobacterial enzymes have 3′-repair phosphodiesterase and 3′-phosphatase, and MtbNfo contains in addition a very weak NIR activity. Interestingly, depending on pH, both enzymes require different concentrations of divalent cations: 0.5 mM MnCl2 at pH 7.6 and 10 mM at pH 6.5. MtbXthA requires a low ionic strength and 37°C, while MtbNfo requires high ionic strength (200 mM KCl) and has a temperature optimum at 60 °C. Point mutation analysis showed that D180 and N182 in MtbXthA and H206 and E129 in MtbNfo are critical for enzymes activities. The steady-state kinetic parameters indicate that MtbXthA removes 3′-blocking sugar-phosphate and 3′-phosphate moieties at DNA strand breaks with an extremely high efficiency (kcat/KM = 440 and 1280  μM-1∙min−1, respectively), while MtbNfo exhibits much lower 3′-repair activities (kcat/KM = 0.26 and 0.65 μM-1∙min−1, respectively). Surprisingly, both MtbXthA and MtbNfo exhibited very weak AP site cleavage activities, with kinetic parameters 100- and 300-fold lower, respectively, as compared with the results reported previously. Expression of MtbXthA and MtbNfo reduced the sensitivity of AP endonuclease-deficient E. coli xth nfo strain to methylmethanesulfonate and H2O2 to various degrees. Taken together, these data establish the DNA substrate specificity of M. tuberculosis AP endonucleases and suggest their possible role in the repair of oxidative DNA damage generated by endogenous and host- imposed factors.  相似文献   

10.
Salts inhibit the activity of sweet almond β-glucosidase. For cations (Cl salts) the effectiveness follows the series: Cu+2, Fe+2 > Zn+2 > Li+ > Ca+2 > Mg+2 > Cs+ > NH4+ > Rb+ > K+ > Na+ and for anions (Na+ salts) the series is: I > ClO4 > SCN > Br  NO3 > Cl  OAc > F  SO4 2. The activity of the enzyme, like that of most glycohydrolases, depends on a deprotonated carboxylate (nucleophile) and a protonated carboxylic acid for optimal activity. The resulting pH-profile of kcat/Km for the β-glucosidase-catalyzed hydrolysis of p-nitrophenyl glucoside is characterized by a width at half height that is strongly sensitive to the nature and concentration of the salt. Most of the inhibition is due to a shift in the enzymic pKas and not to an effect on the pH-independent second-order rate constant, (kcat/Km)lim. For example, as the NaCl concentration is increased from 0.01 M to 1.0 M the apparent pKa1 increases (from 3.7 to 4.9) and the apparent pKa2 decreases (from 7.2 to 5.9). With p-nitrophenyl glucoside, the value of the pH-independent (kcat/Km)lim (= 9 × 104 M 1 s 1) is reduced by less than 4% as the NaCl concentration is increased. There is a similar shift in the pKas when the LiCl concentration is increased to 1.0 M. The results of these salt-induced pKa shifts rule out a significant contribution of reverse protonation to the catalytic efficiency of the enzyme. At low salt concentration, the fraction of the catalytically active monoprotonated enzyme in the reverse protonated form (i.e., proton on the group with a pKa of 3.7 and dissociated from the group with a pKa of 7.2) is very small (≈ 0.03%). At higher salt concentrations, where the two pKas become closer, the fraction of the monoprotonated enzyme in the reverse protonated form increases over 300-fold. However, there is no increase in the intrinsic reactivity, (kcat/Km)lim, of the monoprotonated species. For other enzymes which may show such salt-induced pKa shifts, this provides a convenient test for the role of reverse protonation.  相似文献   

11.
Two β-carbonic anhydrases (CAs, EC 4.2.1.1) were identified, cloned and purified in the pathogenic bacterium Legionella pneumophila, denominated LpCA1 and LpCA2. They efficiently catalyze CO2 hydration to bicarbonate and protons, with kcat in the range of (3.4–8.3) × 105 s−1 and kcat/Km of (4.7–8.5) × 107 M−1 s−1, and are inhibited by sulfonamides and sulfamates. The best LpCA1 inhibitors were aminobenzolamide and structurally similar sulfonylated aromatic sulfonamides, as well as acetazolamide and ethoxzolamide(KIs in the range of 40.3–90.5 nM). The best LpCA2 inhibitors belonged to the same class of sulfonylated sulfonamides, together with acetazolamide, methazolamide and dichlorophenamide (KIs in the range of 25.2–88.5 nM). As these enzymes may be involved in pH regulation in the phagosome during Legionella infection, their inhibition may lead to antibacterials with a novel mechanism of action.  相似文献   

12.
We have cloned, purified and characterized the γ-carbonic anhydrase (CA, EC 4.2.1.1) present in the genome of the Antarctic bacterium Colwellia psychrerythraea, which is an obligate psychrophile. The enzyme shows a significant catalytic activity for the physiologic reaction of CO2 hydration to bicarbonate and protons, with the following kinetic parameters: kcat of 6.0 × 105 s−1 and a kcat/Km of 4.7 × 106 M−1 × s−1. This activity was inhibited by the sulfonamide CA inhibitor (CAI) acetazolamide, with a KI of 502 nM. A range of anions was also investigated for their inhibitory action against the new enzyme CpsCA. Perchlorate, tetrafluoroborate, fluoride and bromide were not inhibitory, whereas cyanate, thiocyanate, cyanide, hydrogensulfide, carbonate and bicarbonate showed KIs in the range of 1.4–4.4 mM. Diethyldithiocarbamate was a better inhibitor (KI of 0.58 mM) whereas sulfamide, sulfamate, phenylboronic acid and phenylarsonic acid were the most effective inhibitors detected, with KIs ranging between 8 and 38 μM. The present study may shed some more light regarding the role that γ-CAs play in the life cycle of psychrophilic bacteria as the Antarctic one investigated here.  相似文献   

13.
Apurinic/apyrimidinic (AP) endonucleases are important DNA repair enzymes involved in two overlapping pathways: DNA glycosylase-initiated base excision (BER) and AP endonuclease-initiated nucleotide incision repair (NIR). In the BER pathway, AP endonucleases cleave DNA at AP sites and 3'-blocking moieties generated by DNA glycosylases, whereas in NIR, the same AP endonucleases incise DNA 5' to a wide variety of oxidized bases. The flowering plant Arabidopsis thaliana contains three genes encoding homologues of major human AP endonuclease 1 (APE1): Arp, Ape1L and Ape2. It has been shown that all three proteins contain AP site cleavage and 3'-repair phosphodiesterase activities; however, it was not known whether the plant AP endonucleases contain the NIR activity. Here, we report that ARP proteins from Arabidopsis and common wheat (Triticum aestivum) contain NIR and 3'  5' exonuclease activities in addition to their AP endonuclease and 3'-repair phosphodiesterase functions. The steady-state kinetic parameters of reactions indicate that Arabidopsis ARP cleaves oligonucleotide duplexes containing α-anomeric 2'-deoxyadenosine (αdA) and 5,6-dihydrouridine (DHU) with efficiencies (kcat/KM = 134 and 7.3 μM−1·min−1, respectively) comparable to those of the human counterpart. However, the ARP-catalyzed 3'-repair phosphodiesterase and 3'  5' exonuclease activities (kcat/KM = 314 and 34 μM−1·min−1, respectively) were about 10-fold less efficient as compared to those of APE1. Interestingly, homozygous A. thaliana arp–/– mutant exhibited high sensitivity to methyl methanesulfonate and tert-butyl hydroperoxide, but not to H2O2, suggesting that ARP is a major plant AP endonuclease that removes abasic sites and specific types of oxidative DNA base damage. Taken together, these data establish the presence of the NIR pathway in plants and suggest its possible role in the repair of DNA damage generated by oxidative stress.  相似文献   

14.
A putative aldehyde reductase gene from Oceanospirillum sp. MED92 was overexpressed in Escherichia coli. The recombinant protein (OsAR) was characterized as a monomeric NADPH-dependent aldehyde reductase. The kinetic parameters Km and kcat of OsAR were 0.89 ± 0.08 mM and 11.07 ± 0.99 s−1 for benzaldehyde, 0.04 ± 0.01 mM and 6.05 ± 1.56 s−1 for NADPH, respectively. This enzyme exhibited high activity toward a variety of aromatic and aliphatic aldehydes, but no activity toward ketones. As such, it catalyzed the chemoselective reduction of aldehydes in the presence of ketones, as demonstrated by the reduction of 4-acetylbenzaldehyde or the mixture of hexanal and 2-nonanone, showing the application potential of this marine enzyme in such selective reduction of synthetic importance.  相似文献   

15.
We investigated the cloning, catalytic activity and anion inhibition of the β-class carbonic anhydrases (CAs, EC 4.2.1.1) from the bacterial pathogen Legionella pneumophila. Two such enzymes, lpCA1 and lpCA2, were found in the genome of this pathogen. These enzymes were determined to be efficient catalysts for CO2 hydration, with kcat values in the range of (3.4–8.3) × 105 s−1 and kcat/KM values of (4.7–8.5) × 107 M−1 s−1. A set of inorganic anions and small molecules was investigated to identify inhibitors of these enzymes. Perchlorate and tetrafluoroborate were not acting as inhibitors (KI >200 mM), whereas sulfate was a very weak inhibitor for both lpCA1 and lpCA2 (KI values of 77.9–96.5 mM). The most potent lpCA1 inhibitors were cyanide, azide, hydrogen sulfide, diethyldithiocarbamate, sulfamate, sulfamide, phenylboronic acid and phenylarsonic acid, with KI values ranging from 6 to 94 μM. The most potent lpCA2 inhibitors were diethyldithiocarbamate, sulfamide, sulfamate, phenylboronic acid and phenylarsonic acid, with KI values ranging from 2 to 13 μM. As these enzymes seem to be involved in regulation of phagosome pH during Legionella infection, inhibition of these targets may lead to antibacterial agents with a novel mechanism of action.  相似文献   

16.
While applications of amine oxidases are increasing, few have been characterised and our understanding of their biological role and strategies for bacteria exploitation are limited. By altering the nitrogen source (NH4Cl, putrescine and cadaverine (diamines) and butylamine (monoamine)) and concentration, we have identified a constitutive flavin dependent oxidase (EC 1.4.3.10) within Rhodococcus opacus. The activity of this oxidase can be increased by over two orders of magnitude in the presence of aliphatic diamines. In addition, the expression of a copper dependent diamine oxidase (EC 1.4.3.22) was observed at diamine concentrations > 1 mM or when cells were grown with butylamine, which acts to inhibit the flavin oxidase. A Michaelis–Menten kinetic treatment of the flavin oxidase delivered a Michaelis constant (KM) = 190 μM and maximum rate (kcat) = 21.8 s?1 for the oxidative deamination of putrescine with a lower KM (=60 μM) and comparable kcat (=18.2 s?1) for the copper oxidase. MALDI–TOF and genomic analyses have indicated a metabolic clustering of functionally related genes. From a consideration of amine oxidase specificity and sequence homology, we propose a putrescine degradation pathway within Rhodococcus that utilises oxidases in tandem with subsequent dehydrogenase and transaminase enzymes. The implications of PUT homeostasis through the action of the two oxidases are discussed with respect to stressors, evolution and application in microbe-assisted phytoremediation or bio-augmentation.  相似文献   

17.
d-Allose was considered as a kind of rare sugars with testified potential medicinal and agricultural benefits. l-Rhamnose isomerase (L-RI, EC 5.3.1.14), an aldose-ketose isomerase, played a significant part in producing rare sugar. In this article, a thermostable d-allose-producing L-RI was characterized from a thermotolerant bacterium, Thermobacillus composti KWC4. The recombinant L-RI was activated obviously in the presence of Mn2+ with an optimal pH 7.5 and temperature 65 °C. The Michaelis-Menten constant (Km), turnover number (kcat) and catalytic efficiency (kcat/Km) for l-rhamnose were 33.8 mM, 1189.8 min−1 and 35.2 min−1 mM−1, respectively. At a higher temperature, Mn2+ played a pivotal role in strengthening the thermostability of T. composti L-RI. The differential scanning calorimetry (DSC) results showed the denaturing temperature (Tm) of T. composti L-RI was increased by 3 °C in presence of Mn2+. Although the T. composti L-RI displayed the optimum substrate as l-rhamnose, it could also effectively catalyze the isomerization between d-allulose and d-allose. When the reaction reached equilibrium, the sole product d-allose was produced from D-alluose by T. composti L-RI.  相似文献   

18.
An aldo-keto reductase gene (klakr) from Kluyveromyces lactis XP1461 was cloned and heterologously expressed in Escherichia coli. The aldo-keto reductase KlAKR was purified and found to be NADH-dependent with a molecular weight of approximately 36 kDa. It is active and stable at 30 °C and pH 7.0. The maximal reaction rate (vmax), apparent Michaelis–Menten constant (Km) for NADH and t-butyl 6-cyano-(5R)-hydroxy-3-oxohexanoate (1a) and catalytic number (kcat) were calculated as 7.63 U mg−1, 0.204 mM, 4.42 mM and 697.4 min−1, respectively. Moreover, the KlAKR has broad substrate specificity to a range of aldehydes, ketones and keto-esters, producing chiral alcohol with e.e. or d.e. >99% for the majority of test substrates.  相似文献   

19.
We investigated the catalytic activity and inhibition of the β-class carbonic anhydrase (CA, EC 4.2.1.1) CahB1, from the relict cyanobacterium Coleofasciculus chthonoplastes (previously denominated Microcoleus chthonoplastes). The enzyme showed good activity as a catalyst for the CO2 hydration, with a kcat of 2.4 × 105 s−1 and a kcat/Km of 6.3 × 107 M−1 s−1. A range of inorganic anions and small molecules were investigated as inhibitors of CahB1. Perchlorate and tetrafluoroborate did not inhibit the enzyme (KIs >200 mM) whereas selenate and selenocyanide were ineffective inhibitors too, with KIs of 29.9–48.61 mM. The halides, pseudohalides, carbonate, bicarbonate, trithiocarbonate and a range of heavy metal ions-containing anions were submillimolar–millimolar inhibitors (KIs in the range of 0.15–0.90 mM). The best CahB1 inhibitors were N,N-diethyldithiocarbamate, sulfamate, sulfamide, phenylboronic acid and phenylarsonic acid, with KIs in the range of 8–75 μM, whereas acetazolamide inhibited the enzyme with a KI of 76 nM. This is the first kinetic and inhibition study of a cyanobacterial CA. As these enzymes are widespread in many cyanobacteria, being crucial for the carbon concentrating mechanism which assures substrate to RubisCO for the CO2 fixation by these organisms, a detailed kinetic/inhibition study may be essential for a better understanding of this superfamily of metalloenzymes and for potential biotechnological applications in biomimetic CO2 capture processes.  相似文献   

20.
Ortho-hydroxylation of cinnamates is a key step in coumarin biosynthesis in plants. Ortho-hydroxylated cinnamates undergo trans/cis isomerization of the side-chain and then lactonization to form coumarins. Sweet potato [Ipomoea batatas (L.) Lam.] accumulates umbelliferone and scopoletin after biotic and abiotic stresses. To elucidate molecular aspects of ortho-hydroxylation involved in umbelliferone formation in sweet potato, isolation and characterization of cDNAs encoding 2-oxoglutarate-dependent dioxygenases (2OGD) was performed from sweet potato tubers treated with a chitosan elicitor. Five cDNAs (designated as Ib) encoding a protein of 358 amino acid residues were cloned, and these were categorized into two groups, Ib1 and Ib2, based on their amino acid sequences. Whether the recombinant Ib proteins had any enzymatic activity toward cinnamates was examined. Ib1 proteins exhibited ortho-hydroxylation activity toward feruloyl coenzyme A (CoA) to form scopoletin (Km = ∼10 μM, kcat = ∼2.7 s−1). By contrast, Ib2 proteins catalyzed ortho-hydroxylation of feruloyl-CoA (Km = 7.3–14.0 μM, kcat = 0.28–0.55 s−1) and also of p-coumaroyl-CoA (Km = 6.1–15.2 μM, kcat = 0.28–0.64 s−1) to form scopoletin and umbelliferone, respectively. Fungal and chitosan treatments increased levels of umbelliferone and its glucoside (skimmin) in the tubers, and expression of the Ib2 gene was induced concomitantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号