首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complex molecules are synthesised via a number of multi-step reactions in living cells. In this work, we describe the development of a continuous flow immobilized enzyme microreactor platform for use in evaluation of multi-step bioconversion pathways demonstrating a de novo transketolase/ω-transaminase-linked asymmetric amino alcohol synthesis. The prototype dual microreactor is based on the reversible attachment of His6-tagged enzymes via Ni-NTA linkage to two surface derivatised capillaries connected in series. Kinetic parameters established for the model transketolase (TK)-catalysed conversion of lithium-hydroxypyruvate (Li-HPA) and glycolaldehyde (GA) to l-erythrulose using a continuous flow system with online monitoring of reaction output was in good agreement with kinetic parameters determined for TK in stop-flow mode. By coupling the transketolase catalysed chiral ketone forming reaction with the biocatalytic addition of an amine to the TK product using a transaminase (ω-TAm) it is possible to generate chiral amino alcohols from achiral starting compounds. We demonstrated this in a two-step configuration, where the TK reaction was followed by the ω-TAm-catalysed amination of l-erythrulose to synthesise 2-amino-1,3,4-butanetriol (ABT). Synthesis of the ABT product via the dual reaction and the on-line monitoring of each component provided a full profile of the de novo two-step bioconversion and demonstrated the utility of this microreactor system to provide in vitro multi-step pathway evaluation.  相似文献   

2.
Biocatalysis continues to emerge as a powerful technique for the efficient synthesis of optically pure pharmaceuticals that are difficult to access via conventional chemistry. The power of biocatalysis can be enhanced if two or more reactions can be achieved by a single whole cell biocatalyst containing a pathway designed de-novo to facilitate a required synthetic sequence. The enzymes transketolase (TK) and transaminase (TAm) respectively catalyze asymmetric carbon--carbon bond formation and amine group addition to suitable substrate molecules. The ability of a transaminase to accept the product of the transketolase reaction can allow the two catalysts to be employed in series to create chiral amino-alcohols from achiral substrates. As proof of principle, the beta-alanine: pyruvate aminotransferase (beta-A:P TAm) from Pseudomonas aeruginosa has been cloned, to create plasmid pQR428, for overexpression in E.coli strain BL21gold(DE3). Production of the beta-A:P TAm alongside the native transketolase (overexpressed from plasmid pQR411), in a single E.coli host, has created a novel biocatalyst capable of the synthesis of chiral amino alcohols via a synthetic two-step pathway. The feasibility of using the biocatalyst has been demonstrated by the formation of a single diastereoisomer of 2-amino-1,3,4-butanetriol (ABT) product, in up to 21% mol/mol yield, by the beta-A:P TAm, via transamination of L-erythrulose synthesized by TK, from achiral substrates glycolaldehyde (GA) and beta-hydroxypyruvate (beta-HPA). ABT synthesis was achieved in a one-pot process, using either whole cells of the dual plasmid strain or cell lysate, while the dual alcohol-amine functionality of ABT makes it an excellent synthon for many pharmaceutical syntheses.  相似文献   

3.
Rapid biocatalytic process development and intensification continues to be challenging with currently available methods. Chiral amino‐alcohols are of particular interest as they represent key industrial synthons for the production of complex molecules and optically pure pharmaceuticals. (2S,3R)‐2‐amino‐1,3,4‐butanetriol (ABT), a building block for the synthesis of protease inhibitors and detoxifying agents, can be synthesized from simple, non‐chiral starting materials, by coupling a transketolase‐ and a transaminase‐catalyzed reaction. However, until today, full conversion has not been shown and, typically, long reaction times are reported, making process modifications and improvement challenging. In this contribution, we present a novel microreactor‐based approach based on free enzymes, and we report for the first time full conversion of ABT in a coupled enzyme cascade for both batch and continuous‐flow systems. Using the compartmentalization of the reactions afforded by the microreactor cascade, we overcame inhibitory effects, increased the activity per unit volume, and optimized individual reaction conditions. The transketolase‐catalyzed reaction was completed in under 10 min with a volumetric activity of 3.25 U ml?1. Following optimization of the transaminase‐catalyzed reaction, a volumetric activity of 10.8 U ml?1 was attained which led to full conversion of the coupled reaction in 2 hr. The presented approach illustrates how continuous‐flow microreactors can be applied for the design and optimization of biocatalytic processes.
  相似文献   

4.
The concept of de novo metabolic engineering through novel synthetic pathways offers new directions for multi-step enzymatic synthesis of complex molecules. This has been complemented by recent progress in performing enzymatic reactions using immobilized enzyme microreactors (IEMR). This work is concerned with the construction of de novo designed enzyme pathways in a microreactor synthesizing chiral molecules. An interesting compound, commonly used as the building block in several pharmaceutical syntheses, is a single diastereoisomer of 2-amino-1,3,4-butanetriol (ABT). This chiral amino alcohol can be synthesized from simple achiral substrates using two enzymes, transketolase (TK) and transaminase (TAm). Here we describe the development of an IEMR using His6-tagged TK and TAm immobilized onto Ni-NTA agarose beads and packed into tubes to enable multi-step enzyme reactions. The kinetic parameters of both enzymes were first determined using single IEMRs evaluated by a kinetic model developed for packed bed reactors. The Km(app) for both enzymes appeared to be flow rate dependent, while the turnover number kcat was reduced 3 fold compared to solution-phase TK and TAm reactions. For the multi-step enzyme reaction, single IEMRs were cascaded in series, whereby the first enzyme, TK, catalyzed a model reaction of lithium-hydroxypyruvate (HPA) and glycolaldehyde (GA) to l-erythrulose (ERY), and the second unit of the IEMR with immobilized TAm converted ERY into ABT using (S)-α-methylbenzylamine (MBA) as amine donor. With initial 60 mM (HPA and GA each) and 6 mM (MBA) substrate concentration mixture, the coupled reaction reached approximately 83% conversion in 20 min at the lowest flow rate. The ability to synthesize a chiral pharmaceutical intermediate, ABT in relatively short time proves this IEMR system as a powerful tool for construction and evaluation of de novo pathways as well as for determination of enzyme kinetics.  相似文献   

5.
Abstract

This work describes an experimental ‘toolbox’ for the rapid evaluation and optimisation of multi-step enzymatic syntheses comprising a ‘mix and match’ E. coli-based expression system and automated microwell scale experimentation. The approach is illustrated with a de novo designed pathway for the synthesis of optically pure amino alcohols using the enzymes transketolase (TK) and transaminase (TAm) to catalyze asymmetric carbon-carbon bond formation and selective chiral amine group addition respectively. The E. coli expression system, based on two compatible plasmids, enables pairs of enzymes from previously engineered and cloned TK and TAm libraries to be evaluated for the sequential conversion of different initial substrates. This is complemented by the microwell experimentation which enables efficient investigation of different biocatalyst forms, use of different amine donors and substrate feeding strategies. Using this experimental ‘toolbox’, one-pot syntheses of the diastereoisomers (2S,3S)-2-aminopentane-1,3-diol (APD) and (2S,3R)-2-amino-1,3,4-butanetriol (ABT) were designed and performed, which gave final product yields of 90% mol/mol for APD and 87% mol/mol for ABT (relative to the initial TK substrates) within 25 hours. For the synthesis of APD, the E coli TK mutant D469E was paired with the TAm from Chromobacterium violaceum 2025 while for ABT synthesis the wild-type E. coli TK exhibited the highest specific activity and ee( enantiomeric excess) of >95%. For both reactions, whole-cell forms of the TK-TAm biocatalyst performed better than cell lysates while isopropylamine (IPA) was a preferable amine donor than methylbenzylamine (MBA) since side reactions with the initial TK substrates were avoided. The available libraries of TK and TAm enzymes and scalable nature of the microwell data suggest this ‘toolbox’ provides an efficient approach to early stage bioconversion process design in the chemical and pharmaceutical sectors.  相似文献   

6.
The most attractive, as well as challenging, multistep organic syntheses would preferably be carried out in a single reactor, as a one-pot synthesis. For biocatalytic syntheses, multistep reactions in one-pot mode bring a number of advantages, while at the same time raising unique challenges such as the compatibility of different biocatalysts. In this paper, we have developed a transketolase–transaminase (TK-TAm) two-step one-pot aminotriol synthesis reaction model, which integrates reaction kinetic models with process characterization (consisting of component degradation as a function of pH and concentration, aldehyde toxicity towards the enzyme, and ketol donor and acceptor side-reactions with TAm). Based on the analysis of the effect of the TAm/TK activity ratio on product yield, simulations provided guidance for further process and biocatalyst development.  相似文献   

7.
Some kinetic properties of two new species of transaminase found in extracts of a β-lysine-utilizing Pseudomonas are reported. Transaminase A catalyzes transamination between 6-N-acetyl-l-β-lysine (3-amino-6-acetamidohexanoate) and α-ketoglutarate to form 3-keto-6-acetamidohexanoate and glutamate. Transaminase B catalyzes a reaction between 4-aminobutyrate and pyruvate to form succinic semialdehyde and alanine. The formation of both transaminases is induced by growth of the bacteria on l-β-lysine, although transaminase B is also produced in the absence of this substrate. Transaminase A requires pyridoxal phosphate for activity. The β-keto acid formed from acetyl-β-lysine by transaminase A has been purified and characterized by decarboxylation, conversion to a formazan, reduction to a stable β-hydroxy acid, and conversion of the latter to its methyl ester. Transaminase B, unlike previously reported transaminases utilizing 4-aminobutyrate, cannot use α-ketoglutarate as an amino group acceptor. This enzyme is not stimulated by addition of pyridoxal phosphate, but is inhibited by hydroxylamine or cyanide. Both transaminases appear to function in the main pathway of β-lysine degradation.  相似文献   

8.
Transaminases (TAs) are promising biocatalysts for chiral amine synthesis; however, only few thermophilic TAs have been described to date. In this work, a genome mining approach was taken to seek novel TAs from nine thermophilic microorganisms. TA sequences were identified from their respective genome sequences and their Pfam were predicted confirming that TAs class I–II are the most abundant (50%), followed by class III (26%), V (16%), IV (8%) and VI (1%). The percentage of open reading frames (ORFs) that are TAs ranges from 0.689% in Thermococcus litoralis to 0.424% in Sulfolobus solfataricus. A total of 94 putative TAs were successfully cloned and expressed into E. coli, showing mostly good expression levels when using a chemical chaperone media containing d -sorbitol. Kinetic and end-point colorimetric assays with different amino donors–acceptors confirmed TAs activity allowing for initial exploration of the substrate scope. Stereoselective and non-stereoselective serine-TAs were selected for the synthesis of hydroxypyruvate (HPA). Low HPA reaction yields were observed with four non-stereoselective serine-TAs, whilst two stereoselective serine-TAs showed significantly higher yields. Coupling serine-TA reactions to a transketolase to yield l -erythrulose (Ery) substantially increased serine conversion into HPA. Combining both stereoselective serine-TAs and transketolase using the inexpensive racemic D/L-serine led to high Ery yield (82%). Thermal characterization of stereoselective serine-TAs confirmed they have excellent thermostability up to 60°C and high optimum temperatures.  相似文献   

9.
Genetic analysis of alanine synthesis in the model genetic organism Escherichia coli has implicated avtA, the still uncharacterized alaA and alaB genes, and probably other genes. We identified alaA as yfbQ. We then transferred mutations in several transaminase genes into a yfbQ mutant and isolated a mutant that required alanine for optimal growth. For cells grown with carbon sources other than pyruvate, the major alanine-synthesizing transaminases are AvtA, YfbQ (AlaA), and YfdZ (which we designate AlaC). Growth with pyruvate as the carbon source and multicopy suppression suggest that several other transaminases can contribute to alanine synthesis. Expression studies showed that alanine modestly repressed avtA and yfbQ but had no effect on yfdZ. The leucine-responsive regulatory protein (Lrp) mediated control by alanine. We purified YfbQ and YfdZ and showed that both are dimers with Kms for pyruvate within the intracellular range of pyruvate concentration.The enzymes and pathway of alanine synthesis in the model organism Escherichia coli have not been well characterized (25). The most likely pathway is transamination of pyruvate by glutamate, catalyzed by glutamic-pyruvic transaminase (GPT). However, labeling studies have suggested some unanticipated complexities (7, 25, 26). Claire Berg and colleagues performed the only genetic analysis of alanine synthesis. They identified three genes that participate in alanine synthesis, namely, avtA, alaA, and alaB (1, 2, 36, 40). The activity of AvtA, also called transaminase C, was initially detected as an alanine-synthesizing enzyme with valine, not glutamate, as the nitrogen donor (27). Loss of either avtA or alaA did not affect growth and was apparent only in an ilvE background (2, 36, 40). An alaA mutant had normal AvtA and GPT activities, which suggested that AlaA was not a transaminase (1, 36). The alaA gene was physically mapped, but its product was not subsequently characterized (1). The alaB gene was identified from its partial suppression of the phenotype of an ilvE alaA strain (36). Multicopy alaB had elevated GPT activity, which suggested that alaB specifies a GPT (36). Except for a partial physical map of the alaB region, nothing else is known about alaB and its product (36).Our goal in this study was to determine the enzymes of alanine synthesis using current knowledge of known and potential transaminase genes. Our genetic analysis suggests that AvtA, YfbQ, and YfdZ are the major enzymes of alanine synthesis, but eight other transaminases can potentially synthesize alanine. To confirm these conclusions, we also analyzed the regulation of avtA, yfbQ, and yfdZ and purified and partially characterized YfbQ and YfdZ.  相似文献   

10.
Probes were developed for the in vivo detection of transketolase activity by the use of a complementation assay in Escherichia coli auxotrophs They combine the d-threo ketose moiety recognised by transketolase and the side chain of leucine or methionine. These compounds were donor substrates of yeast transketolase leading to the release of the corresponding α-hydroxyaldehydes which could be converted in E. coli by a cascade of reactions into leucine or methionine required for cellular growth.  相似文献   

11.
Chiral amines are important building blocks for the synthesis of pharmaceutical products, fine chemicals, and agrochemicals. ω-Transaminases are able to directly synthesize enantiopure chiral amines by catalysing the transfer of an amino group from a primary amino donor to a carbonyl acceptor with pyridoxal 5′-phosphate (PLP) as cofactor. In nature, (S)-selective amine transaminases are more abundant than the (R)-selective enzymes, and therefore more information concerning their structures is available. Here, we present the crystal structure of an (R)-ω-transaminase from Aspergillus terreus determined by X-ray crystallography at a resolution of 1.6 Å. The structure of the protein is a homodimer that displays the typical class IV fold of PLP-dependent aminotransferases. The PLP-cofactor observed in the structure is present in two states (i) covalently bound to the active site lysine (the internal aldimine form) and (ii) as substrate/product adduct (the external aldimine form) and free lysine. Docking studies revealed that (R)-transaminases follow a dual binding mode, in which the large binding pocket can harbour the bulky substituent of the amine or ketone substrate and the α-carboxylate of pyruvate or amino acids, and the small binding pocket accommodates the smaller substituent.  相似文献   

12.
Transaminases, which catalyze the stereoselective transfer of an amino group between an amino donor and a prochiral ketone substrate, are interesting biocatalytic tools for the generation of optically pure chiral amines. In particular, amine transaminases (ATAs) are of industrial interest because they are capable of performing reductive amination reactions using a broad range of amine donors and acceptors. The most remarkable example of ATAs industrial application is in the production process of the anti-hyperglycaemic drug sitagliptin (Januvia®/Janumet®), which generated around 6 billion U.S. dollars of revenue to Merck in 2016. In this review, an update about the availability of microbial ATAs, discovered by both screening and database-mining approaches, or obtained by protein engineering of wild-type enzymes, will be provided. Current challenges in ATAs application and possible solutions will be also discussed. In particular, innovative biocatalytic process strategies aimed at the improvement of ATAs performances in chiral amines synthesis, e.g., using in situ product removal process strategies or flow reactors, will be presented. The progress in the industrial exploitation of these enzymes will be highlighted by selected examples of large-scale ATA-catalyzed processes.  相似文献   

13.
The distribution of ω-amino acid transaminases in microorganisms was investigated, ω-Amino acid: pyruvate transaminase (ω-APT) was found in bacteria and yeasts, but not in actinomycetes and fungi. On the contrary, aminobutyrate: α-ketoglutarate transaminase (GABA-T) was shown in most of the microorganisms from bacteria to fungi. β-Alanine is a preferred amino donor for the co-APT reaction. Although bacterial and yeast GABA-T are inactive for β-alanine, fungal and actinomycete enzymes react with this compound and γ-aminobutyrate. In comparing these results with those of plant and mammalian enzymes, two different pathways of co-amino acid metabolism are suggested for bacteria, yeast and plants, i.e. one for β-alanine and the other for γ-aminobutyrate, catalyzed by ω-APT and GABA-T, respectively. In actinomycetes, fungi, and mammals GABA-T may be involved in the metabolism of both ω-amino acids. In addition, evolutionary changes of ω-amino acid transaminases are discussed.  相似文献   

14.
A transaminase from Vibrio fluvialis JS17 showing activity toward chiral amines was purified to homogeneity and its enzymatic properties were characterized. The transaminase showed an apparent molecular mass of 100 kDa as determined by gel filtration chromatography and a subunit mass of 50 kDa by MALDI-TOF mass spectrometry, suggesting a dimeric structure. The enzyme had an isoelectric point of 5.4 and its absorption spectrum exhibited maxima at 320 and 405 nm. The optimal pH and temperature for enzyme activity were 9.2 and 37 degrees C, respectively. Pyruvate and pyridoxal 5'-phosphate increased enzyme stability whereas (S)-alpha-methylbenzylamine reversibly inactivated the enzyme. The transaminase gene was cloned from a V. fluvialis JS17 genomic library. The deduced amino acid sequence (453 residues) showed significant homology with omega-amino acid:pyruvate transaminases (omega-APT) from various bacterial strains (80 identical residues with four omega-APTs). However, of 159 conserved residues in the four omega-APTs, 79 were not conserved in the transaminase from V. fluvialis JS17. Taken together with the sequence homology results, and the lack of activity toward beta-alanine (a typical amino donor for the omega-APT), the results suggest that the transaminase is a novel amine:pyruvate transaminase that has not been reported to date.  相似文献   

15.
Pyridoxal-5′-phosphate (PLP)-dependent transaminases are industrially important enzymes catalyzing the stereoselective amination of ketones and keto acids. Transaminases of PLP fold type IV are characterized by (R)- or (S)-stereoselective transfer of amino groups, depending on the substrate profile of the enzyme. PLP fold type IV transaminases include branched-chain amino acid transaminases (BCATs), D-amino acid transaminases and (R)-amine:pyruvate transaminases. Recently, transaminases with a mixed type of activity were identified and characterized. Here, we report biochemical and structural characterization of a transaminase from myxobacterium Haliangium ochraceum (Hoch3033), which is active towards keto analogs of branched-chain amino acids (specific substrates for BCATs) and (R)-(+)-α-methylbenzylamine (specific substrate for (R)-amine:pyruvate transaminases). The enzyme is characterized by an alkaline pH optimum (pH 10.0–10.5) and a tolerance to high salt concentrations (up to 2 M NaCl). The structure of Hoch3033 was determined at 2.35 Å resolution. The overall fold of the enzyme was similar to those of known enzymes of PLP fold type IV. The mixed type of activity of Hoch3033 was implemented within the BCAT-like active site. However, in the active site of Hoch3033, we observed substitutions of specificity-determining residues that are important for substrate binding in canonical BCATs. We suggest that these changes result in the loss of activity towards α-ketoglutarate and increase the affinity towards (R)-(+)-α-methylbenzylamine. These results complement our knowledge of the catalytic diversity of transaminases and indicate the need for further research to understand the structural basis of substrate specificity in these enzymes.  相似文献   

16.
S C Bhatia  S Bhatia  S Rous 《Life sciences》1975,17(2):267-273
Livers of fed and fasted rats were perfused in situ in the presence and absence of 4.8 mM quinolinate, an in vivo inhibitor of phosphoenolpyruvate carboxykinase. An assay of the hepatic activities of serine dehydratase and serine pyruvate transaminase and a comparison of the in vivo incorporation of radioactivity from serine 3-14C and serine U-14C into blood glucose were also carried out in the above nutritional states. Our results demonstrate that gluconeogenesis from L-serine proceeds through two pathways. One, involving the reversal of the biosynthetic route of serine, bypasses conversion to pyruvate phosphoenolpyruvate and oxaloacetate and is not inhibited by quinolinate. This pathway appears to be the only one active in the fed state but produces a very insignificant amount of glucose. The other involves serine dehydratase mediated conversion of serine to pyruvate, is inhibited by quinolinate and becomes predominant during starvation.  相似文献   

17.
Two acetylornithine δ-transaminases which have different physical and kinetic properties have been isolated from a mutant of E. coli W. Sephadex gel filtration has shown the molecular weight of one transaminase to be approximately 119,000; the second transaminase has a molecular weight of about 61,000. The two transaminases can be separated by ammonium sulfate fractionation. The Km values of the smaller and larger molecular-weight species for Nα-acetylornithine are 3.1 mm and 1.3 mm, respectively. The Km for α-ketoglutarate is 1.1 mm for both enzymes. The presence of arginine in the growth medium represses the synthesis of the 119,000 molecular-weight transaminase and induces the synthesis of the 61,000 molecular-weight species.  相似文献   

18.
The metabolism of sucrose to long chain fatty acids in the endosperm of developing castor bean (Ricinus communis L.) seeds requires a combination of cytosolic and proplastid enzymes. The total activity and the subcellular distribution of the intermediate enzymic steps responsible for the conversion of sucrose to pyruvate have been determined. Hexose phosphate synthesis from sucrose occurs in the cytosol along with the first oxidative step in the pentose phosphate pathway, glucose-6-phosphate dehydrogenase. The proplastids contain the necessary complement of glycolytic enzymes to account for the in vivo rates of acetate synthesis from glucose 6-phosphate. These organelles also contain the majority of the cellular 6-phosphogluconate dehydrogenase, transketolase, and transaldolase activities.  相似文献   

19.
Pyruvate derivatives halogenated at C3 were shown to be donor substrates in the transketolase reaction. No drastic differences between the derivatives were observed in the value of the catalytic constant, whereas the Michaelis constant increased in the following order: Br-pyruvate < Cl-pyruvate < Cl2-pyruvate < F-pyruvate < Br2-pyruvate. The presence of the halogenated pyruvate derivatives increased the affinity of apotransketolase for the coenzyme; of note, the extent of this effect was equal with both of the active centers of the enzyme. In contrast, the presence of any other substrate known to date, including hydroxypyruvate (i.e. pyruvate hydroxylated at C3), induced nonequivalence of the active centers in that they differed in the extent to which the affinity for the coenzyme increased. Consequently, the β-hydroxyl of dihydroxyethylthiamine diphosphate (an intermediate of the transketolase reaction) played an important role in the phenomenon of non-equivalence of the active centers associated with the coenzyme binding. The fundamental possibility was demonstrated of using halogenated pyruvate derivatives as donors of the halogen-hydroxyethyl group in organic synthesis of halogenated carbohydrates involving transketolase.  相似文献   

20.
This work describes the establishment of a full kinetic model, including values of apparent kinetic parameters, for the whole cell E. coli mediated synthesis of the chiral amino-alcohol (2S,3R)-2-amino-1,3,4-butanetriol (ABT), using (S)-(−)-α-methylbenzylamine (MBA) as amino donor. The whole cell biocatalyst expressed the CV2025 ω-transaminase from Chromobacterium violaceum. Establishment of the most suitable reaction mechanism and determination of the complete forward and reverse kinetic parameter values for the reversible bioconversion where obtained using a hybrid methodology. This combined traditional initial rate experiments to identify a solution in the vicinity of the global minimum, with nonlinear regression methods to determine the exact location of the solution. The systematic procedure included selection and statistical evaluation of different kinetic models that best described the measured reaction rates and which ultimately provided new insights into the reaction mechanism; in particular the possible formation of a dead end complex between the amino donor and the cofactor enzyme complex. The hybrid methodology was combined with a microscale experimental platform, to significantly reduce both the number of experiments required as well as the time and material required for full kinetic parameter estimation. The equilibrium constant was determined to be 849, and the forward and reverse rate constants were found to be 97 and 13 min−1, respectively, which greatly favoured the asymmetric synthesis of chiral ABT. Using the established kinetic model, the asymmetric synthesis of ABT was simulated, and excellent agreement was found between the experimental and predicted data over a range of reaction conditions. A sensitivity analysis combined with various simulations suggested the crucial bottleneck of the reaction was the second half reaction of the ping pong bi–bi mechanism, in part due to the low Michaelis constant of substrate l-erythrulose (ERY). The toxicity of MBA towards the transaminase was identified as another major bottleneck. The kinetic model was useful to give early insights into the most appropriate bioconversion conditions, which can improve the rate and yield of ABT formation, as well as minimizing the toxicity and inhibition effects of the substrates and products. The systematic methodology developed here is considered to be generic and useful in regard to speeding up bioconversion process design and optimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号