首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present work, NAD+-dependent formate dehydrogenase (FDH), encoded by fdh gene from Candida boidinii was successfully displayed on Escherichia coli cell surface using ice nucleation protein (INP) from Pseudomonas borealis DL7 as an anchoring protein. Localization of matlose binding protein (MBP)-INP-FDH fusion protein on the E. coli cell surface was characterized by SDS-PAGE and enzymatic activity assay. FDH activity was monitored through the oxidation of formate catalyzed by cell-surface-displayed FDH with its cofactor NAD+, and the production of NADH can be detected spectrometrically at 340 nm. After induction for 24 h in Luria-Bertani medium containing isopropyl-β-d-thiogalactopyranoside, over 80% of MBP-INP-FDH fusion protein present on the surface of E. coli cells. The cell-surface-displayed FDH showed optimal temperature of 50 °C and optimal pH of 9.0. Additionally, the cell-surface-displayed FDH retained its original enzymatic activity after incubation at 4 °C for one month with the half-life of 17 days at 40 °C and 38 h at 50 °C. The FDH activity could be inhibited to different extents by some transition metal ions and anions. Moreover, the E. coli cells expressing FDH showed different tolerance to solvents. The recombinant whole cell exhibited high formate specificity. Finally, the E. coli cell expressing FDH was used to assay formate with a wide linear range of 5–700 μM and a low limit of detection of 2 μM. It is anticipated that the genetically engineered cells may have a broad application in biosensors, biofuels and cofactor regeneration system.  相似文献   

2.
l-Amino acid oxidases (LAAOs) are useful catalysts for the deracemisation of racemic amino acid substrates when combined with abiotic reductants. The gene nadB encoding the l-aspartate amino acid oxidase from Pseudomonas putida (PpLASPO) has been cloned and expressed in E. coli. The purified PpLASPO enzyme displayed a KM for l-aspartic acid of 2.26 mM and a kcat = 10.6 s−1, with lower activity also displayed towards l-asparagine, for which pronounced substrate inhibition was also observed. The pH optimum of the enzyme was recorded at pH 7.4. The enzyme was stable for 60 min at up to 40 °C, but rapid losses in activity were observed at 50 °C. A mutational analysis of the enzyme, based on its sequence homology with the LASPO from E. coli of known structure, appeared to confirm roles in substrate binding or catalysis for residues His244, His351, Arg386 and Arg290 and also for Thr259 and Gln242. The high activity of the enzyme, and its promiscuous acceptance of both l-asparagine and l-glutamate as substrates, if with low activity, suggests that PpLASPO may provide a good model enzyme for evolution studies towards AAOs of altered or improved properties in the future.  相似文献   

3.
An efficient purification system for purifying recombinant Bacillus subtilis 168 catalase (KatA) expressed in Escherichia coli was developed. The basic region containing 252–273 amino acids derived from E. coli ribosomal protein L2 was used as an affinity tag while the small ubiquitin-like modifier (SUMO) was introduced as one specific protease cleavage site between the target protein and the purification tags. L2 (252–273)–SUMO fusion protein purification method can be effectively applied to purify the recombinant catalase using cation exchange resin. This purification procedure was used to purify the KatA and achieved a purification fold of 30.5, a specific activity of 48,227.2 U/mg and an activity recovery of 74.5%. The enzyme showed a Soret peak at 407 nm. The enzyme kept its activity between pH 5 and 10 and between 30 °C and 60 °C, with the highest activity at pH 8.0 and 37 °C. The enzyme displayed an apparent Km of 39.08 mM for hydrogen peroxide. These results agree well with the previous reports about B. subtilis catalase. L2 (252–273)–SUMO fusion protein purification technique provides a novel and effective fusion expression system for the production of recombinant proteins.  相似文献   

4.
In this study, 115 marine bacterial isolates were screened for cellulase enzymatic activity and enzyme with a molecular mass of 40 kDa was purified from culture supernatant of the marine bacterium Bacillus sp. H1666 using ion exchange and size exclusion chromatography method. Growth of bacterial strain H1666 with efficient cellulase enzyme production was observed on untreated wheat straw and rice bran. The biochemical properties of the extracted cellulase were studied and enzyme was found active over a range of pH 3–9. The optimum cellulase activity was observed at pH 7 and temperature 50 °C. The enzyme was also shown to be slightly thermo-stable with 40% residual activity at 60 °C for 4 h. The potential applicability of enzyme was tested on dried green seaweed (Ulva lactuca) and 450 mg/g increase in glucose yield was obtained after saccharification. MALDI TOF–TOF analysis of cellulase peptide fingerprint showed similarity to the sequence of the glycoside hydrolase family protein.  相似文献   

5.
Enzyme stabilization via immobilization is one of the preferred processes as it provides the advantages of recovery and reusability. In this study, Thermomyces lanuginosus lipase has been immobilized through crosslinking using 2% glutaraldehyde and hen egg white, as an approach towards CLEA preparation. The immobilization efficiency and the properties of the immobilized enzyme in terms of stability to pH, temperature, and denaturants was studied and compared with the free enzyme. Immobilization efficiency of 56% was achieved with hen egg white. The immobilized enzyme displayed a shift in optimum pH towards the acidic side with an optimum at pH 4.0 whereas the pH optimum for free enzyme was at pH 6.0. The immobilized enzyme was stable at higher temperature retaining about 83% of its maximum activity as compared to the free enzyme retaining only 41% activity at 70 °C. The denaturation of lipase in free form was rapid with a half-life of 2 h at 60 °C and 58 min at 70 °C as compared to 12 h at 60 °C and 2 h at 70 °C for the immobilized enzyme. The effect of denaturants, urea and guanidine hydrochloride on the free and immobilized enzyme was studied and the immobilized enzyme was found to be more stable towards denaturants retaining 74% activity in 8 M urea and 98% in 6 M GndHCl as compared to 42% and 33% respectively in the case of free enzyme. The apparent Km (2.08 mM) and apparent Vmax (0.95 μmol/min) of immobilized enzyme was lower as compared to free enzyme; Km (8.0 mM) and Vmax (2.857 μmol/min). The immobilized enzyme was reused several times for the hydrolysis of olive oil.  相似文献   

6.
In this study, lipolytic enzyme production by Thermus thermophilus HB27 at bioreactor scale has been investigated. Cultivation was performed in a 5-L stirred tank bioreactor in discontinuous mode, at an agitation speed of 200 rpm. Different variables affecting intra- and extra-cellular lipolytic enzyme production such as culture temperature and aeration rate have been analysed. The bacterium was able to grow within the temperature range tested (from 60 to 70 °C) with an optimum value of 70 °C for intra- and extra-cellular lipolytic enzyme production.On the other hand, various aeration levels (from 0 to 2.5 L/min) were employed. A continuous supply of air was necessary, but no significant improvement in biomass or enzyme production was detected when air flow rates were increased above 1 L/min. Total lipolytic enzyme production reached a maximum of 167 U/L after 3 days, and a relatively high concentration of extra-cellular activity was detected (40% of the total amount). Enzyme yield was around 158 U/g cells. Moreover, it is noteworthy that the lipolytic activity obtained operating at optimal conditions (70 °C and air flow of 1 L/min) was about five-fold higher than that attained in shake flask cultures  相似文献   

7.
Soil metagenome conceals a great variety of unexploited genes for industrially important enzymes. To identify novel genes conferring lipolytic activity, one metagenomic library comprising of 200,000 transformants were constructed. Among the 48,000 clones screened, 19 clones which exhibited lipolytic activity were obtained. After sequence analysis, 19 different lipolytic genes were identified. One of these genes, designated as estWSD, consisted of 1152 nucleotides, encoding a 383-amino-acid protein. Multiple sequence alignment and phylogenetic analysis indicated that EstWSD and its closest homologues may constitute a new family of bacterial lipolytic enzymes. The best substrate for the purified EstWSD among the ρ-nitrophenol esters examined was ρ-nitrophenol butyrate. Recombinant EstWSD displayed a pH optimum of 7.0 and a temperature optimum of 50 °С. This enzyme retained 52% of maximal activity after incubation at 50 °C for 3 h. Furthermore, EstWSD also exhibited salt tolerance with over 51% of its initial activity in the presence of up to 4.5 M NaCl for 1 h. In particular, this enzyme showed remarkable stability in 15% and 30% dimethylsulfoxide, ρ-xylene, hexane, heptane, and octane even after incubation for 72 h. To our knowledge, it is the first report to find a novel esterase belonging to a new lipolytic family and possessing such variety of excellent features. All these characteristics suggest that EstWSD may be a potential candidate for application in industrial processes.  相似文献   

8.
《Process Biochemistry》2010,45(6):821-828
Maltogenic amylases (MAases), a subclass of cyclodextrin (CD)-hydrolyzing enzymes, belong to glycoside hydrolase family 13. A gene corresponding to MA in Geobacillus caldoxylosilyticus TK4 (GcaTK4MA) was cloned into pET28a(+) vector and expressed in Escherichia coli with 6xHis-tag at the N-terminus. Herein, we report on the biochemical properties of a new thermo- and pH-stable MA. GcaTK4MA has similar properties those of other MAases in terms of the primary structure, preference for CD over starch and having an extra domain at its N- and C-terminals. The recombinant protein was purified efficiently by using one-step nickel affinity chromatography. The purified enzyme exhibited optimal activity for β-CD hydrolysis at 50 °C and pH 7.0. When the enzyme was separately incubated at 4 °C and 50 °C in the buffer solutions (pH 3.0–9.0) up to 7 days, it was seen that the enzyme had the higher stability at 50 °C than 4 °C. The enzyme retained about 80% of its original activity when it was incubated at 50 °C for 7 days. The enzyme activity was significantly inhibited by SDS and EDTA at the final concentration of 1%. These results suggest that this is the first reported MA having an extremely pH- and thermal stabilities.  相似文献   

9.
A protein extract containing ficin was immobilized on glyoxyl agarose at pH 10 and 25 °C. The free enzyme remained fully active after 24 h at pH 10. However the enzyme immobilized on the support retained only 30% of the activity after this time using a small substrate. After checking the stability of ficin preparations obtained after different enzyme-support multi-interaction times, it was found that it reached a maximum at 3 h (40-folds more stable than the free enzyme at pH 5). The immobilized enzyme was active in a wide range of pH (e.g., retained double activity at pH 10 than the free enzyme) and temperatures (e.g., at 80 °C retained three-folds more activity than the free enzyme). The activity versus casein almost matched the results using the small substrate (60%) at 55 °C. However, in the presence of 2 M of urea, it became three times more active than the free enzyme. The immobilized enzyme could be reused five cycles at 55 °C without losing activity.  相似文献   

10.
《Process Biochemistry》2014,49(9):1440-1447
Functional expression of a thermostable phytase from A. niger was achieved in Kluyveromyces lactis GG799 cells. Effective secretion of recombinant enzyme (198 U ml−1) in the fermentation broth at 72 h incubation at 22 °C was obtained. Purified enzyme showed a specific activity of 72 U mg−1) and was detected on SDS-PAGE as a heavily glycosylated protein with a molecular weight of ≥140 kDa. Optimum temperature of the enzyme was at 55 °C and it showed a characteristic bi-hump pH profile with two pH optima (at pH 2.5 and 5.5). Enzyme showed considerable pepsin resistance with 60% activity retention after incubation with pepsin at the ratio of 1:1000. Enzyme was thermostable retaining 69 and 37% activity at 90 and 100 °C for 10 min respectively and remained active at these temperatures till 1 h. Deglycosylation studies demonstrated negligible effect of N-linked glycans on thermal properties. Multiple sequence alignment data revealed a conserved Asn at position 345 of this phytase which might contribute to its thermal properties. This thermostable phytase coupled with its noticeable protease resistance could be a better alternative to current commercial phytases.  相似文献   

11.
Effects of conventional heating (CH) and microwave (MW) on the structure and activity of horseradish peroxidase (HRP) in buffer solution were studied. CH incubation between 30 and 45 °C increased activity of HRP, reaching 170% of residual activity (RA) after 4–6 h at 45 °C. CH treatment at 50 and 60 °C caused HRP inactivation: RA was 5.7 and 16.7% after 12 h, respectively. Secondary and tertiary HRP structural changes were analyzed by circular dichroism (CD) and intrinsic fluorescence emission, respectively. Under CH, activation of the enzyme was attributed to conformational changes in secondary and tertiary structures. MW treatment had significant effects on the residual activity of HRP. MW treatment at 45 °C/30 W followed by CH treatment 45 °C regenerated the enzyme activity. The greatest loss in activity occurred at 60 °C/60 W/30 min (RA 16.9%); without recovery of the original activity. The inactivation of MW-treated HRP was related to the loss of tertiary structure, indicating changes around the tryptophan environment.  相似文献   

12.
The psychrotrophic Sanguibacter antarcticus KOPRI 21702T, isolated from Antarctic seawater, produced a cold-adapted chitinolytic enzyme that is a new 55 kDa family 18 chitinase (Chi21702). Chi21702 exhibited high activities toward pNP-(GlcNAc)2 and pNP-(GlcNAc)3 with no activity for pNP-GlcNAc, indicating that it prefers chitin chains longer than dimers, just as endochitinases do. A mixture of GlcNAc and GlcNAc2 was produced as a main product by Chi21702 activity from chitin oligosaccharides and swollen chitin, while less GlcNAc3 was produced. These results show that Chi21702 has an endochitinase activity, randomly hydrolyzing chitin at internal sites. Chi21702 displayed chitinase activity at 0–40 °C (optimal temperature of 37 °C), maintained its activity at pH 4–11 (optimal pH of 7.6). Interestingly, Chi21702 exhibited relative activities of 40% and 60% at 0 and 10 °C, respectively, in comparison to 100% at 37 °C, which is higher than those of the previously characterized, cold-adapted, chitinases from bacterial strains.  相似文献   

13.
Tannase production by Bacillus subtilis PAB2, was investigated under solid state fermentation using tamarind seed as sole carbon source and it was found as the highest titer (73.44 U/gds). The enzyme was purified to homogeneity, which showed the molecular mass around 52 kDa (Km = 0.445 mM, Vmax = 125.8 mM/mg/min and Kcat = 2.88 min–1). The enzyme was found stable in a range of pH (3.0–8.0) and temperature (30–70 °C) with an optimal activity at pH 5.0, pI of 4.4 and at 40 °C temperature. It exhibited half-life (t1/2) of 4.5 h at 60 °C. The enzyme comprised a typical secondary structure containing α-helix (9.3%), β-pleated sheet (33.6%) and β-turn (17.2%). The native conformation of the enzyme was alike a 44 nm spherical nanoparticle upon aggregation. Thermodynamic parameters of tannase revealed that it was stable at 40 °C and showed Q10, ΔGd and ΔSd values of 2.08, 99.37 KJ/mol and 252.38 J mol−1 K−1, respectively. Organic solvents were stimulatory with regard to enzyme activity. Moreover, the altered enzyme activity was determined to be correlated with the changes in structural conformation in presence of inducer and inhibitor. Tannase was explored to have no cytotoxicity on Vero cell line as well as rat model study.  相似文献   

14.
An investigation was conducted on the production of β-galactosidase (β-gal) by different strains of Kluyveromyces, using lactose as a carbon source. The maximum enzymatic activity of 3.8 ± 0.2 U/mL was achieved by using Kluyveromyces lactis strain NRRL Y1564 after 28 h of fermentation at 180 rpm and 30 °C. β-gal was then immobilized onto chitosan and characterized based on its optimal operation pH and temperature, its thermal stability and its kinetic parameters (Km and Vmax) using o-nitrophenyl β-d-galactopyranoside as substrate. The optimal pH for soluble β-gal activity was found to be 6.5 while the optimal pH for immobilized β-gal activity was found to be 7.0, while the optimal operating temperatures were 50 °C and 37 °C, respectively. At 50 °C, the immobilized enzyme showed an increased thermal stability, being 8 times more stable than the soluble enzyme. The immobilized enzyme was reused for 10 cycles, showing stability since it retained more than 70% of its initial activity. The immobilized enzyme retained 100% of its initial activity when it was stored at 4 °C and pH 7.0 for 93 days. The soluble β-gal lost 9.4% of its initial activity when it was stored at the same conditions.  相似文献   

15.
《Process Biochemistry》2010,45(7):1052-1056
A new enzyme was isolated from the fungus combs in the nest of Odontotermes formosanus and identified as a laccase. The single laccase was purified with a purification factor of 16.83 by ammonium sulphate precipitation and anion exchange chromatography, to a specific activity of 211.11 U mg−1. Its molecular mass was 65 kDa. The optimum pH value and temperature were 4.0 °C and 10 °C with ABTS as the substrate, respectively. The enzyme activity stabilized at temperatures between 10 °C and 30 °C and decreased rapidly when the temperature was above 30 °C. The Vmax and Km values were 3.62 μmol min−1 mg−1 and 119.52 μM, respectively. Ethanol concentration affected laccase activity, inhibiting 60% of enzyme activity at a concentration of 70%. Metal ions of Mg2+, Ba2+ and Fe2+ showed inhibition on enzyme activity of 17.2%, 5.3% and 9.4%, respectively, with the increase of metal ions concentration from 1 mM to 5 mM. Especially Fe2+ strongly inhibited enzyme activity up to 89% inhibition at a concentration of 1 mM.  相似文献   

16.
《Process Biochemistry》2010,45(1):75-80
Xylanase is an important industrial enzyme. In this research, to improve the thermostability and biochemical properties of a xylanase from Aspergillus niger F19, five arginine substitutions and a disulfide bond were introduced by site-directed mutagenesis. The wild-type gene xylB and the mutant gene xylCX8 were expressed in Pichia pastoris. Compare to those of the wild-type enzyme, the optimal reaction temperature for the mutant enzyme increased from 45 °C to 50 °C, the half-life of the mutant enzyme extended from 10 min to 180 min, and the specific activity increased from 2127 U/mg to 3330 U/mg. However, the Vmax and Km of the mutant xylanase decreased. The enzyme activity in broth obtained from shake flask cultures could be induced to 1850 U/mL in 7 days, which is higher than results reported previously. Furthermore, the highest achievable enzyme activity was 7340 U/mL from 140 g/L of biomass in a 3 L fermentor used in our study.  相似文献   

17.
Industrial application of α-galactosidase requires efficient methods to immobilize the enzyme, yielding a biocatalyst with high activity and stability compared to free enzyme. An α-galactosidase from tomato fruit was immobilized on galactose-containing polymeric beads. The immobilized enzyme exhibited an activity of 0.62 U/g of support and activity yield of 46%. The optimum pH and temperature for the activity of both free and immobilized enzymes were found as pH 4.0 and 37 °C, respectively. Immobilized α-galactosidase was more stable than free enzyme in the range of pH 4.0–6.0 and more than 85% of the initial activity was recovered. The decrease in reaction rate of the immobilized enzyme at temperatures above 37 °C was much slower than that of the free counterpart. The immobilized enzyme shows 53% activity at 60 °C while free enzyme decreases 33% at the same temperature. The immobilized enzyme retained 50% of its initial activity after 17 cycles of reuse at 37 °C. Under same storage conditions, the free enzyme lost about 71% of its initial activity over a period of 7 months, whereas the immobilized enzyme lost about only 47% of its initial activity over the same period. Operational stability of the immobilized enzyme was also studied and the operational half-life (t1/2 was determined as 6.72 h for p-nitrophenyl α-d-galactopyranoside (PNPG) as substrate. The kinetic parameters were determined by using PNPG as substrate. The Km and Vmax values were measured as 1.07 mM and 0.01 U/mg for free enzyme and 0.89 mM and 0.1 U/mg for immobilized enzyme, respectively. The synthesis of the galactose-containing polymeric beads and the enzyme immobilization procedure are very simple and also easy to carry out.  相似文献   

18.
《Process Biochemistry》2014,49(5):775-782
A novel β-galactosidase gene (Tnap1577) from the hyperthermophilic bacterium Thermotoga naphthophila RUK-10 was cloned and expressed in Escherichia coli BL21 (DE3) cells to produce β-galactosidase. The recombinant β-galactosidase was purified in three steps: heat treatment to deactivate E. coli proteins, Ni-NTA affinity chromatography and Q-sepharose chromatography. The optimum temperatures for the hydrolysis of o-nitrophenyl-β-d-galactoside (o-NPG) and lactose with the recombinant β-galactosidase were found to be 90 °C and 70 °C, respectively. The corresponding optimum pH values were 6.8 and 5.8, respectively. The molecular mass of the enzyme was estimated to be 70 kDa by SDS-PAGE analysis. Thermostability studies showed that the half-lives of the recombinant enzyme at 75 °C, 80 °C, 85 °C and 90 °C were 10.5, 4, 1, and 0.3 h, respectively. Kinetic studies on the recombinant β-galactosidase revealed Km values for the hydrolysis of o-NPG and lactose of 1.31 mM and 1.43 mM, respectively. These values are considerably lower than those reported for other hyperthermophilic β-galactosidases, indicating high intrinsic affinity for these substrates. The recombinant β-galactosidase from Thermotoga naphthophila RUK-10 also showed transglycosylation activity in the synthesis of alkyl galactopyranoside. This additional activity suggests the enzyme has potential for broader biotechnological applications beyond the degradation of lactose.  相似文献   

19.
The glycerophosphate oxidase is a flavoprotein responsible for the catalysis of the oxidation of the glycerophosphate to dihydroxyacetone phosphate, through the reduction of the oxygen to hydrogen peroxide. The glycerophosphate oxidase from baker's yeast was specific for l-α-glycerol phosphate. It was estimated by monitoring the consumption of oxygen with an oxygraph. An increase of 32% in consumption of oxygen was obtained when the enzyme was concentrated 16-fold. The assay of enzyme was determined by the peroxidase chromogen method followed at 500 nm. The procedure for the standardization of the activity of the glycerophosphate oxidase from baker's yeast was accomplished, and the pH and temperature stability showed that the enzyme presented a high stability at pH 8.0, and the thermal stability was maintained up to 60 °C during 1 h. Such method allowed quantifying in the range 92–230 mM of glycerol phosphate, an important intermediate metabolite from lipid biosynthesis and glycolytic routes.  相似文献   

20.
Four homologues of alanine aminotransferase have been isolated from shoots of wheat seedlings and purified by saline precipitation, gel filtration, preparative electrophoresis and anion exchange chromatography on Protein-Pak Q 8HR column attached to HPLC. Alanine aminotransferase 1 (AlaAT1) and 2 (AlaAT2) were purified 303- and 452-fold, respectively, whereas l-glutamate: glyoxylate aminotransferase 1 (GGAT1) and 2 (GGAT2) were purified 485- and 440-fold, respectively. Consistent inhibition of AlaAT (EC 2.6.1.2) and GGAT (EC 2.6.1.4) activities by p-hydroxymercuribenzoate points on participation of cysteine residues in the enzyme activity. The molecular weight of AlaAT1 and AlaAT2 was estimated to be 65 kDa and both of them are monomers in native state. Nonsignificant differences between Km using alanine as substrate and catalytic efficiency (kcat/Km) for l-alanine in reaction with 2-oxoglutarate indicate comparable kinetic constants for AlaAT1 and AlaAT2. Similar kinetic constants for l-alanine in reaction with 2-oxoglutarate and for l-glutamate in reaction with pyruvate for all four homologues suggest equally efficient reaction in both forward and reverse directions. GGAT1 and GGAT2 were able to catalyze transamination between l-glutamate and glyoxylate, l-alanine and glyoxylate and reverse reactions between glycine and 2-oxoglutarate or pyruvate. Both GGATs also consisted of a single subunit with molecular weight of about 50 kDa. The estimated Km for GGAT1 (3.22 M) and GGAT2 (1.27 M) using l-glutamate as substrate was lower in transamination with glyoxylate than with pyruvate (9.52 and 9.09 mM, respectively). Moreover, distinctively higher values of catalytic efficiency for l-glutamate in reaction with glyoxylate than for l-glutamate in reaction with pyruvate confirm involvement of these homologues into photorespiratory metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号