首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrite (NO(2)(-)) functions as an important nitric oxide (NO) donor under hypoxic conditions. Both nitrite and NO have been found to protect the mammalian heart and other tissues against ischemia (anoxia)-reoxygenation injury by interacting with mitochondrial electron transport complexes and limiting the generation of reactive oxygen species upon reoxygenation. The crucian carp naturally survives extended periods without oxygen in an active state, which has made it a model for studying how evolution has solved the problems of anoxic survival. We investigated the role of nitrite and NO in the anoxia tolerance of this fish by measuring NO metabolites in normoxic, anoxic, and reoxygenated crucian carp. We also cloned and sequenced crucian carp NO synthase variants and quantified their mRNA levels in several tissues in normoxia and anoxia. Despite falling levels of blood plasma nitrite, the crucian carp showed massive increases in nitrite, S-nitrosothiols (SNO), and iron-nitrosyl (FeNO) compounds in anoxic heart tissue. NO(2)(-) levels were maintained in anoxic brain, liver, and gill tissues, whereas SNO and FeNO increased in a tissue-specific manner. Reoxygenation reestablished normoxic values. We conclude that NO(2)(-) is shifted into the tissues where it acts as NO donor during anoxia, inducing cytoprotection under anoxia/reoxygenation. This can be especially important in the crucian carp heart, which maintains output in anoxia. NO(2)(-) is currently tested as a therapeutic drug against reperfusion damage of ischemic hearts, and the present study provides evolutionary precedent for such an approach.  相似文献   

2.
The addition of ascorbate to ischemic rat hearts prevents the myocardial damage associated with reoxygenation. H2O2 oxidizes myoglobin (Mb+2) to higher oxidation states (Mb+4 and Mb+5) which are rapidly reduced by ascorbate. It is proposed that the operation of a myoglobin redox cycle, in which H2O2 causes the two-electron oxidation of myoglobin, is a critical determinant of reperfusion injury. Conversely, the reduction of myoglobin, in one-electron steps, may represent an essential protective mechanism against such injury in the heart.  相似文献   

3.
C J Kay  L P Solomonson  M J Barber 《Biochemistry》1991,30(48):11445-11450
Assimilatory nitrate reductase (NR) from Chlorella is homotetrameric, each subunit containing FAD, heme, and Mo-pterin in a 1:1:1 stoichiometry. Measurements of NR activity and steady-state reduction of the heme component under conditions of NADH limitation or competitive inhibition by nitrite suggested intramolecular electron transfer between heme and Mo-pterin was a rate-limiting step and provided evidence that heme is an obligate intermediate in the transfer of electrons between FAD and Mo-pterin. In addition to the physiological substrates NADH and nitrate, various redox mediators undergo reactions with one or more of the prosthetic groups. These reactions are coupled by NR to NADH oxidation or nitrate reduction. To test whether intramolecular redox reactions of NR were rate-determining, rate constants for redox reactions between NR and several chemically diverse mediators were measured by cyclic voltammetry in the presence of NADH or nitrate. Reduction of ferrocenecarboxylic acid, dichlorophenolindophenol, and cytochrome c by NADH-reduced NR was coupled to reoxidation at a glassy carbon electrode (ferrocene and dichlorophenolindophenol) or at a bis(4-pyridyl) disulfide modified gold electrode (cytochrome c), yielding rate constants of 10.5 x 10(6), 1.7 x 10(6), and 2.7 x 10(6) M-1 s-1, respectively, at pH 7. Kinetics were consistent with a second-order reaction, implying that intramolecular heme reduction by NADH and endogenous FAD was not limiting. In contrast, reduction of methyl viologen and diquat at a glassy carbon electrode, coupled to oxidation by NR and nitrate, yielded similar kinetics for the two dyes. In both cases, second-order kinetics were not obeyed, and reoxidation of dye-reduced Mo-pterin of NR by nitrate became limiting at low scan rates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Because of a recent whole genome duplication, the hypoxia-tolerant common carp and goldfish are the only vertebrates known to possess two myoglobin (Mb) paralogs. One of these, Mb1, occurs in oxidative muscle but also in several other tissues, including capillary endothelial cells, whereas the other, Mb2, is a unique isoform specific to brain neurons. To help understand the functional roles of these diverged isoforms in the tolerance to severe hypoxia in the carp, we have compared their O(2) equilibria, carbon monoxide (CO) and O(2) binding kinetics, thiol S-nitrosation, nitrite reductase activities, and peroxidase activities. Mb1 has O(2) affinity and nitrite reductase activity comparable to most vertebrate muscle Mbs, consistent with established roles for Mbs in O(2) storage/delivery and in maintaining nitric oxide (NO) homeostasis during hypoxia. Both Mb1 and Mb2 can be S-nitrosated to similar extent, but without oxygenation-linked allosteric control. When compared with Mb1, Mb2 displays faster O(2) and CO kinetics, a lower O(2) affinity, and is slower at converting nitrite into NO. Mb2 is therefore unlikely to be primarily involved in either O(2) supply to mitochondria or the generation of NO from nitrite during hypoxia. However, Mb2 proved to be significantly faster at eliminating H(2)O(2,) a major in vivo reactive oxygen species (ROS), suggesting that this diverged Mb isoform may have a specific protective role against H(2)O(2) in the carp brain. This property might be of particular significance during reoxygenation following extended periods of hypoxia, when production of H(2)O(2) and other ROS is highest.  相似文献   

5.
We examined the effects of in vitro anoxia and in vivo hypoxia (8% O2/92% N2) on norepinephrine (NE)- and carbachol-stimulated phosphoinositide (PI) turnover in rat brain slices. The formation of 3H-labeled polyPI in cortical slices was impaired by in vitro anoxia and fully restored by reoxygenation. Accumulation of 3H-labeled myo-inositol phosphates (3H-IPs) stimulated by 10(-5) M NE was significantly reduced by anoxia (control at 60 min, 1,217 +/- 86 cpm/mg of protein; anoxia for 60 min, 651 +/- 82 cpm/mg; mean +/- SEM; n = 5; p less than 0.01), and reoxygenation following anoxia resulted in overshooting of the accumulation (control at 120 min, 1,302 +/- 70 cpm/mg; anoxia for 50 min plus oxygenation for 70 min, 1,790 +/- 126 cpm/mg; n = 5; p less than 0.01). The underlying mechanisms for the two phenomena--the decrease caused by anoxia and the overshooting caused by reoxygenation following anoxia--seemed to be completely different because of the following observations. (a) Although the suppression of NE-stimulated accumulation at low O2 tensions was also observed in Ca2+-free medium, the overshooting in response to reoxygenation was not. (b) Carbachol-stimulated accumulation was significantly reduced by anoxia and was restored by reoxygenation only to control levels. Thus, the postanoxic overshooting in accumulation of 3H-IPs seems to be a specific response to NE. (c) The decrease observed at low O2 tensions was due to a decrease in Emax value, whereas the postanoxic overshooting was due to a decrease in EC50 value.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The effect of preliminary adaptation to intermittent (40 days, 4 hrs daily at 4000 m "altitude") on the resistance of myocardial energy metabolism and contractile function to acute anoxia and subsequent reoxygenation was studied. It was found that adaptation to hypoxia significantly accelerated the restoration of creatine phosphate, ATP and creatine phosphokinase activity in myocardium in reoxygenation following acute anoxia. On the whole, this effect reduces the competition of H+ with Ca2+ in myofibrils to improve the energy supply and to accelerate the restoration of myocardial contractile function in reoxygenation.  相似文献   

7.
31P NMR spectra of heart in-situ in live guinea pigs were obtained continuously in 20.5 s time blocks during 3 min of anoxia, during subsequent reoxygenation and, in separate animals, during terminal anoxia. Reversible anoxia resulted in rapid degradation of phosphocreatine (t 1/2 = 54.5 +/- 2.5 s) which recovered fully during reoxygenation. Heart Pi increased during anoxia and returned to basal levels after oxygen was restored. During 3 min of anoxia, no significant changes in ATP levels or pH were detected. The results demonstrate that it is feasible to measure rapid fluxes of high energy phosphates by 31P NMR in intact animals during and after anoxic stress to the myocardium.  相似文献   

8.
W Leibl  J Breton 《Biochemistry》1991,30(40):9634-9642
The kinetics of electron transfer from the primary (QA) to the secondary (QB) quinone acceptor in whole cells and chromatophores of Rhodopseudomonas viridis was studied as a function of the redox state of QB and of pH by using a photovoltage technique. Under conditions where QB was oxidized, the reoxidation of QA- was found to be essentially monophasic and independent of pH with a half-time of about 20 microseconds. When QB was reduced to the semiquinone form by a preflash, the reoxidation of QA- was slowed down showing a half-time between 40 and 80 microseconds at pH less than or equal to 9. Above pH 9, the rate of the second electron transfer decreased nearly one order of magnitude per pH unit. After a further preflash, the fast and pH-independent kinetics of QA- reoxidation was essentially restored. The concentration of QA still reduced 100 microseconds after its complete reduction by a flash showed distinct binary oscillations as a function of the number of preflashes, confirming the interpretation that the electron-transfer rate depends on the redox state of QB. After addition of o-phenanthroline, the reoxidation of QA- is slowed down to the time range of seconds as expected for a back-reaction with oxidized cytochrome. Under conditions where inhibitors of the electron transfer between the quinones fail to block this reaction in a fraction of the reaction centers due to the presence of the extremely stable and strongly bound semiquinone, QB-, these reaction centers show a slow electron transfer on the first flash and a fast one on the second, i.e., an out-of-phase oscillation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Hemoglobin (Hb) E (β-Glu26Lys) remains an enigma in terms of its contributions to red blood cell (RBC) pathophysiological mechanisms; for example, EE individuals exhibit a mild chronic anemia, and HbE/β-thalassemia individuals show a range of clinical manifestations, including high morbidity and death, often resulting from cardiac dysfunction. The purpose of this study was to determine and evaluate structural and functional consequences of the HbE mutation that might account for the pathophysiology. Functional studies indicate minimal allosteric consequence to both oxygen and carbon monoxide binding properties of the ferrous derivatives of HbE. In contrast, redox-sensitive reactions are clearly impacted as seen in the following: 1) the ~2.5 times decrease in the rate at which HbE catalyzes nitrite reduction to nitric oxide (NO) relative to HbA, and 2) the accelerated rate of reduction of aquometHbE by L-cysteine (L-Cys). Sol-gel encapsulation studies imply a shift toward a higher redox potential for both the T and R HbE structures that can explain the origin of the reduced nitrite reductase activity of deoxyHbE and the accelerated rate of reduction of aquometHbE by cysteine. Deoxy- and CO HbE crystal structures (derived from crystals grown at or near physiological pH) show loss of hydrogen bonds in the microenvironment of βLys-26 and no significant tertiary conformational perturbations at the allosteric transition sites in the R and T states. Together, these data suggest a model in which the HbE mutation, as a consequence of a relative change in redox properties, decreases the overall rate of Hb-mediated production of bioactive NO.  相似文献   

10.
 Native nitrite reductases (NIRs) containing both type 1 and 2 Cu ions and type 2 Cu-depleted (T2D) NIRs from three denitrifying bacteria (Achromobacter cycloclastes IAM 1013, Alcaligenes xylosoxidans NCIB 11015, and Alcaligenes xylosoxidans GIFU 1051) have been characterized by electronic absorption, circular dichroism, and electron paramagnetic resonance spectra. The characteristic visible absorption spectra of these NIRs are due to the type 1 Cu centers, while the type 2 Cu centers hardly contribute in the same region. The intramolecular electron transfer (ET) process from the type 1 Cu to the type 2 Cu in native NIRs has been observed as the reoxidation of the type 1 Cu(I) center by pulse radiolysis, whereas no type 1 Cu in T2D NIRs exhibits the same reoxidation. The ET process obeys first-order kinetics, and observed rate constants are 1400–1900 s–1 (t1/2 = ca. 0.5 ms) at pH 7.0. In the presence of nitrite, the ET process also obeys first-order kinetics, with rate constants decreased by factors of 1/12–1/2 at the same pH. The redox potential of the type 2 Cu site is estimated to be +0.24 - +0.28 V, close to that of the type 1 Cu site. Nitrate and azide ions bound to the type 2 Cu site change the redox potential. Nitrite also would shift the redox potential of the type 2 Cu by coordination, and hence the intramolecular ET rate constant is decreased. Pulse radiolysis experiments on T2D NIRs in the presence of nitrite demonstrate that the type 1 Cu(I) site is slowly oxidized with a first-order rate constant of 0.03 s–1 at pH 7.0, suggesting that nitrite bound to the protein accepts an electron from the type 1 Cu. This result is in accord with the finding that T2D NIRs show enzymatic activities, although they are lower than those of the native enzymes. Received: 9 July 1996 / Accepted: 30 January 1997  相似文献   

11.
Li H  Samouilov A  Liu X  Zweier JL 《Biochemistry》2003,42(4):1150-1159
In addition to nitric oxide (NO) generation from specific NO synthases, NO is also formed during anoxia from nitrite reduction, and xanthine oxidase (XO) catalyzes this process. While in tissues and blood high nitrate levels are present, questions remain regarding whether nitrate is also a source of NO and if XO-mediated nitrate reduction can be an important source of NO in biological systems. To characterize the kinetics, magnitude, and mechanism of XO-mediated nitrate reduction under anaerobic conditions, EPR, chemiluminescence NO-analyzer, and NO-electrode studies were performed. Typical XO reducing substrates, xanthine, NADH, and 2,3-dihydroxybenz-aldehyde, triggered nitrate reduction to nitrite and NO. The rate of nitrite production followed Michaelis-Menten kinetics, while NO generation rates increased linearly following the accumulation of nitrite, suggesting stepwise-reduction of nitrate to nitrite then to NO. The molybdenum-binding XO inhibitor, oxypurinol, inhibited both nitrite and NO production, indicating that nitrate reduction occurs at the molybdenum site. At higher xanthine concentrations, partial inhibition was seen, suggesting formation of a substrate-bound reduced enzyme complex with xanthine blocking the molybdenum site. The pH dependence of nitrite and NO formation indicate that XO-mediated nitrate reduction occurs via an acid-catalyzed mechanism. With conditions occurring during ischemia, myocardial xanthine oxidoreductase and nitrate levels were determined to generate up to 20 microM nitrite within 10-20 min that can be further reduced to NO with rates comparable to those of maximally activated NOS. Thus, XOR catalyzed nitrate reduction to nitrite and NO occurs and can be an important source of NO production in ischemic tissues.  相似文献   

12.
Nitrate uptake and nitrite release by tomato roots in response to anoxia   总被引:1,自引:0,他引:1  
Excised root systems of tomato plants (early fruiting stage, 2nd flush) were subjected to a gradual transition from normoxia to anoxia by seating the hydroponic root medium while aeration was stopped. Oxygen level in the medium and respiration rate decreased and reached very low values after 12 h of treatment, indicating that the tissues were anoxic thereafter. Nitrate loss from the nutrient solution was strongly stimulated by anoxia (after 26 h) concomitantly with a release of nitrite starting only after 16 h of treatment. This effect was not observed in the absence of roots or in the presence of tungstate, but occurred with whole plants or with sterile in vitro cultured root tissues. These results indicate that biochemical processes in the root involve nitrate reductase. NR activity assayed in tomato roots increased during anoxia. This phenomenon appeared in intact plants and in root tissues of detopped plants. The stimulating effect of oxygen deprivation on nitrate uptake was specific; anoxia simultaneously entailed a release of orthophosphate, sulfate, and potassium by the roots. Anoxia enhanced nitrate reduction by root tissues, and nitrite ions were released into xylem sap and into medium culture. In terms of the overall balance, the amount of nitrite recovered represented only half of the amount of nitrate utilized. Nitrite reduction into nitric oxide and perhaps into nitrogen gas could account for this discrepancy. These results appear to be the first report of an increase in nitrate uptake by plant roots under anoxia of tomato at the early fruiting stage, and the rates of nitrite release in nutrient medium by the asphyxiated roots are the fastest yet reported.  相似文献   

13.
We assessed the effect of acidosis on cell killing during anoxia and reoxygenation in cultured rat neonatal cardiac myocytes. After 4.5 hours of anoxia and glycolytic inhibition with 2-deoxyglucose, loss of viability was greater than 90% at pH 7.4. In contrast, at pH 6.2-7.0, viability was virtually unchanged. To model changes of pH and oxygenation during ischemia and reperfusion, myocytes were made anoxic at pH 6.2 for 4 hours, followed by reoxygenation at pH 7.4. Under these conditions, reoxygenation precipitated loss of viability to about half the cells. When pH was increased to 7.4 without reoxygenation, similar lethal injury occurred. No cell killing occurred after reoxygenation at pH 6.2. We conclude that acidosis protects against lethal anoxic injury, and that a rapid return from acidotic to physiologic pH contributes significantly to reperfusion injury to cardiac myocytes - a 'pH paradox'.  相似文献   

14.
Cao CM  Xia Q  Zhang X  Xu WH  Jiang HD  Chen JZ 《Life sciences》2003,72(22):2451-2463
The aim of the present study is to investigate the effect of Salvia miltiorrhiza (SM) on contraction and the intracellular calcium of isolated ventricular myocytes during normoxia or anoxia and reoxygenation using a video tracking system and spectrofluorometry. Cardiac ventricular myocytes were isolated enzymatically by collagenase and exposed to 5 min of anoxia followed by 10 min of reoxygenation. SM (1-9 g/L) depressed both contraction and the [Ca(2+)](i) transient in a dose-dependent manner. SM did not affect the diastolic calcium level and the sarcolemmal Ca(2+) channel of myocytes but decreased the caffeine-induced calcium release. During anoxia, the +/-dL/dtmax, amplitudes of contraction (dL) of cell contraction and [Ca(2+)](i) transients were decreased, while the diastolic calcium level was increased. None of the parameters returned to the pre-anoxia level during reoxygenaton. However, SM (3 g/L) did attenuate the changes in cell contraction and intracellular calcium induced by anoxia and reoxygenation. It is concluded that SM has different effects on normoxic and anoxic cardiomyocytes. The SM-induced reduction of changes in contraction and intracellular calcium induced by anoxia/reoxygenation indicates that SM may be beneficial for cardiac tissue in recovery of mechanical function and intracellular calcium homeostasis.  相似文献   

15.
16.
Protective effects of L-arginine were evaluated in a human ventricular heart cell model of low-volume anoxia and reoxygenation independent of alternate cell types. Cell cultures were subjected to 90 min of low-volume anoxia and 30 min of reoxygenation. L-Arginine (0-5.0 mM) was administered during the preanoxic period or the reoxygenation phase. Nitric oxide (NO) production, NO synthase (NOS) activity, cGMP levels, and cellular injury were assessed. To evaluate the effects of the L-arginine on cell signaling, the effects of the NOS antagonist N(G)-nitro-L-arginine methyl ester, NO donor S-nitroso-N-acetyl-penicillamine, guanylate cyclase inhibitor methylene blue, cGMP analog 8-bromo-cGMP, and ATP-sensitive K+ channel antagonist glibenclamide were examined. Our data indicate that low-volume anoxia and reoxygenation increased NOS activity and facilitated the conversion of L-arginine to NO, which provided protection against cellular injury in a dose-dependent fashion. In addition, L-arginine cardioprotection was achieved by the activation of guanylate cyclase, leading to increased cGMP levels in human heart cells. This action involves a glibenclamide-sensitive, NO-cGMP-dependent pathway.  相似文献   

17.
In the developing heart, cardiomyocytes undergo terminal differentiation during a critical window around birth. Hypoxia is a major stress to preterm infants, yet its effect on the development and maturation of the heart remains unknown. We tested the hypothesis in a rat model that newborn anoxia accelerates cardiomyocyte terminal differentiation and results in reduced cardiomyocyte endowment in the developing heart via an endothelin-1-dependent mechanism. Newborn rats were exposed to anoxia twice daily from postnatal day 1 to 3, and hearts were isolated and studied at postnatal day 4 (P4), 7 (P7), and 14 (P14). Anoxia significantly increased HIF-1α protein expression and pre-proET-1 mRNA abundance in P4 neonatal hearts. Cardiomyocyte proliferation was significantly decreased by anoxia in P4 and P7, resulting in a significant reduction of cardiomyocyte number per heart weight in the P14 neonates. Furthermore, the expression of cyclin D2 was significantly decreased due to anoxia, while p27 expression was increased. Anoxia has no significant effect on cardiomyocyte binucleation or myocyte size. Consistently, prenatal hypoxia significantly decreased cardiomyocyte proliferation but had no effect on binucleation in the fetal heart. Newborn administration of PD156707, an ETA-receptor antagonist, significantly increased cardiomyocyte proliferation at P4 and cell size at P7, resulting in an increase in the heart to body weight ratio in P7 neonates. In addition, PD156707 abrogated the anoxia-mediated effects. The results suggest that hypoxia and anoxia via activation of endothelin-1 at the critical window of heart development inhibits cardiomyocyte proliferation and decreases myocyte endowment in the developing heart, which may negatively impact cardiac function later in life.  相似文献   

18.
The 5, 5-dimethyl-1-pyrroline-N-oxide (DMPO) spin adduct of myoglobin (Mb) or hemoglobin (Hb) was formed when metmyoglobin (MetMb) or methemoglobin (MetHb) reacted with H2O2 in the presence of DMPO, and both decayed with half-life of a few minutes. The DMPO spin adduct of Mb decayed with biphasic kinetics with k1 = 0.645 min-1 and k2 = 0.012 min-1, indicating that the spin adduct consisted of two kinetically heterogeneous species, stable and unstable ones. The DPMO spin adduct of Hb, however, was homogeneous. Decay of both spin adducts was accelerated in the presence of tyrosine, tryptophan or cysteine, but not phenylalanine, methionine or histidine. The decay obeyed the first order kinetics at varying concentrations of the spin adducts. The decay was accelerated by denaturation and proteolysis of protein moiety. The decay rate was not affected by the extra addition of MetMb or MetHb to each spin adduct. The decay rate of the spin adduct of Mb was increased by hematin in the presence of H2O2 and decreased by catalase. Decay of stable spin adduct of Mb, however, was not significantly changed under any experimental conditions used. These results led us to conclude that instability of the DMPO-spin adducts of Mb and Hb is due to intramolecular redox reactions between the spin adducts and amino acid residues and/or products of the reaction between heme and H2O2.  相似文献   

19.
The present study investigated the protective effects of Ginkgo biloba extract (EGb 761) on rat liver mitochondrial damage induced by in vitro anoxia/reoxygenation. Anoxia/reoxygenation was known to impair respiratory activities and mitochondrial oxidative phosphorylation efficiency. ADP/O (2.57 +/- 0.11) decreased after anoxia/reoxygenation (1.75 +/- 0.09, p < .01), as well as state 3 and uncoupled respiration (-20%, p < .01), but state 4 respiration increased (p < .01). EGb 761 (50-200 microg/ml) had no effect on mitochondrial functions before anoxia, but had a specific dose-dependent protective effect after anoxia/reoxygenation. When mitochondria were incubated with 200 microg/ml EGb 761, they showed an increase in ADP/O (2.09 +/- 0.14, p < .05) and a decrease in state 4 respiration (-22%) after anoxia/reoxygenation. In EPR spin-trapping measurement, EGb 761 decreased the EPR signal of superoxide anion produced during reoxygenation. In conclusion, EGb 761 specially protects mitochondrial ATP synthesis against anoxia/reoxygenation injury by scavenging the superoxide anion generated by mitochondria.  相似文献   

20.
Nitric oxide synthase (NOS) is strongly and transiently expressed in the developing heart but its function is not well documented. This work examined the role, either protective or detrimental, that endogenous and exogenous NO could play in the functioning of the embryonic heart submitted to hypoxia and reoxygenation. Spontaneously beating hearts isolated from 4-day-old chick embryos were either homogenized to determine basal inducible NOS (iNOS) expression and activity or submitted to 30 min anoxia followed by 100 min reoxygenation. The chrono-, dromo- and inotropic responses to anoxia/reoxygenation were determined in the presence of NOS substrate (L-arginine 10 mM), NOS inhibitor L-NIO (1–5 mM), or NO donor (DETA NONOate 10–100 M). Myocardial iNOS was detectable by immunoblotting and its activity was specifically decreased by 53% in the presence of 5 mM L-NIO. L-Arginine, L-NIO and DETA NONOate at 10 M had no significant effect on the investigated functional parameters during anoxia/reoxygenation. However, irrespective of anoxia/reoxygenation, DETA NONOate at 100 M decreased ventricular shortening velocity by about 70%, and reduced atrio-ventricular propagation by 23%. None of the used drugs affected atrial activity and hearts of all experimental groups fully recovered at the end of reoxygenation. These findings indicate that (1) by contrast with adult heart, endogenously released NO plays a minor role in the early response of the embryonic heart to reoxygenation, (2) exogenous NO has to be provided at high concentration to delay postanoxic functional recovery, and (3) sinoatrial pacemaker cells are the less responsive to NO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号