首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dynamics of the establishment of, and reactivation from, gammaherpesviruses latency has not been quantitatively analyzed in the natural host. Gammaherpesvirus 68 (gammaHV68) is a murine gammaherpesvirus genetically related to primate gammaherpesviruses that establishes a latent infection in infected mice. We used limiting dilution reactivation (frequency of cells reactivating gammaHV68 in vitro) and limiting dilution PCR (frequency of cells carrying gammaHV68 genome) assays to compare gammaHV68 latency in normal (C57BL/6) and B-cell-deficient (MuMT) mice. After intraperitoneal (i.p.) inoculation, latent gammaHV68 was detected in the spleen, bone marrow, and peritoneal cells. Both B-cell-deficient and C57BL/6 mice established latent infection in peritoneal cells after either i.p. or intranasal (i.n.) inoculation. In contrast, establishment of splenic latency was less efficient in B-cell-deficient than in C57BL/6 mice after i.n. inoculation. Analysis of reactivation efficiency (reactivation frequency compared to frequency of cells carrying gammaHV68 genome) revealed that (i) regardless of route or mouse strain, splenic cells reactivated gammaHV68 less efficiently than peritoneal cells, (ii) the frequency of cells carrying gammaHV68 genome was generally comparable over the course of infection between C57BL/6 and B-cell-deficient mice, (iii) between 28 and 250 days after infection, cells from B-cell-deficient mice reactivated gammaHV68 10- to 100-fold more efficiently than cells from C57BL/6 mice, (iv) at 7 weeks postinfection, B-cell-deficient mice had more genome-positive peritoneal cells than C57BL/6 mice, and (v) mixing cells (ratio of 3 to 1) that reactivated inefficiently with cells that reactivated efficiently did not significantly decrease reactivation efficiency. Consistent with a failure to normally regulate chronic gammaHV68 infection, the majority of infected B-cell-deficient mice died between 100 and 200 days postinfection. We conclude that (i) B cells are not required for establishment of gammaHV68 latency, (ii) there are organ-specific differences in the efficiency of gammaHV68 reactivation, (iii) B cells play a crucial role in regulating reactivation of gammaHV68 from latency, and (iv) B cells are important for controlling chronic gammaHV68 infection.  相似文献   

2.
The mechanisms by which gammaherpesviruses maintain latency are unclear. Here we used a murine gammaherpesvirus model to show that previously uninfected B cells in immunocompetent mice can acquire virus during latency. In vivo depletion of T cells allowed viral reactivation, as measured by increased viral loads, but not enhanced transfer of virus to new cells. In the absence of both immune T cells and antibody following the transfer of latently infected cells into naïve animals, there was robust infection of new B cells. These data confirm that both T cells and antibody contribute to the control of gammaherpesvirus latency, reactivation, and spread.  相似文献   

3.
Murine gammaherpesvirus 68 (gamma HV-68; also referred to as MHV-68) is a gammaherpesvirus which infects murid rodents. Previous studies showed that CD8 T cells are important for controlling gamma HV-68 replication during the first 2 weeks of infection and suggested a role for B cells in latent or persistent gamma HV-68 infection. To further define the importance of B cells and CD8 T cells during acute and chronic gamma HV-68 infection, we examined splenic infection in mice with null mutations in the transmembrane domain of the mu-heavy-chain constant region (MuMT; B-cell and antibody deficient) or in the beta2-microglobulin gene (beta2 -/-; CD8 deficient). Immunocompetent mice infected intraperitoneally with gamma HV-68 demonstrated peak splenic titers 9 to 10 days postinfection, cleared infectious virus 15 to 20 days postinfection, and harbored low levels of latent virus at 6 weeks postinfection. Beta2-/- mice showed peak splenic gamma HV-68 titers similar to those of normal mice but were unable to clear infectious virus completely from the spleen, demonstrating persistent infectious virus 6 weeks postinfection. These data indicate that CD8 T cells are important for clearing infectious gamma HV-68 from the spleen. Infected MuMT mice did not demonstrate detectable infectious gamma HV-68 in the spleen at any time after infection, indicating that mature B lymphocytes are necessary for acute splenic infection by gamma HV-68. Despite the lack of measurable acute infection, MuMT spleen cells harbored latent virus 6 weeks postinfection at a level about 100-fold higher than that in normal mice. These data demonstrate establishment of latency by a herpesvirus in an organ in the absence of acute viral replication in that organ. In addition, they demonstrate that gamma HV-68 can establish latency in a cell type other than mature B lymphocytes.  相似文献   

4.
Signaling lymphocyte activation molecule (SLAM)-associated protein (SAP)) interactions with SLAM family proteins play important roles in immune function. SAP-deficient mice have defective B cell function, including impairment of germinal center formation, production of class-switched Ig, and development of memory B cells. B cells are the major reservoir of latency for both EBV and the homologous murine gammaherpesvirus, gammaherpesvirus 68. There is a strong association between the B cell life cycle and viral latency in that the virus preferentially establishes latency in activated germinal center B cells, which provides access to memory B cells, a major reservoir of long-term latency. In the current studies, we have analyzed the establishment and maintenance of gammaHV68 latency in wild-type and SAP-deficient mice. The results show that, despite SAP-associated defects in germinal center and memory B cell formation, latency was established and maintained in memory B cells at comparable frequencies to wild-type mice, although the paucity of memory B cells translated into a 10-fold reduction in latent load. Furthermore, there were defects in normal latency reservoirs within the germinal center cells and IgD(+)"naive" B cells in SAP-deficient mice, showing a profound effect of the SAP mutation on latency reservoirs.  相似文献   

5.
Murine gammaherpesvirus 68 (gammaHV68) infection of mice results in the establishment of a chronic infection, which is largely maintained through latent infection of B lymphocytes. Acute virus replication is almost entirely cleared by 2 weeks postinfection. Spontaneous reactivation of gammaHV68 from latently infected splenocytes upon ex vivo culture can readily be detected at the early stages of infection (e.g., day 16). However, by 6 weeks postinfection, very little spontaneous reactivation is detected upon explant into tissue culture. Here we report that stimulation of latently infected splenic B cells harvested at late times postinfection with cross-linking surface immunoglobulin (Ig), in conjunction with anti-CD40 antibody treatment, triggers virus reactivation. As expected, this treatment resulted in B-cell activation, as assessed by upregulation of CD69 on B cells, and ultimately B-cell proliferation. Since anti-Ig/anti-CD40 stimulation resulted in splenic B-cell proliferation, we assessed whether this reactivation stimulus could overcome the previously characterized defect in virus reactivation of a v-cyclin null gammaHV68 mutant. This analysis demonstrated that anti-Ig/anti-CD40 stimulation could drive reactivation of the v-cyclin null mutant virus in latently infected splenocytes, but not to the levels observed with wild-type gammaHV68. Thus, there appears to be a role for the v-cyclin in B cells following anti-Ig/anti-CD40 stimulation independent of the induction of the cell cycle. Finally, to assess signals that are not mediated through the B-cell receptor, we demonstrate that addition of lipopolysaccharide to explanted splenocyte cultures also enhanced virus reactivation. These studies complement and extend previous analyses of Epstein-Barr virus and Kaposi's sarcoma-associated virus reactivation from latently infected cell lines by investigating reactivation of gammaHV68 from latently infected primary B cells recovered from infected hosts.  相似文献   

6.
Murine gammaherpesvirus 68 (γHV68 or MHV68) is genetically related to the human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), providing a useful system for in vivo studies of the virus-host relationship. To begin to address fundamental questions about the mechanisms of the establishment of gammaherpesvirus latency, we previously generated a replication-defective γHV68 lacking the expression of the single-stranded DNA binding protein encoded by orf6. In work presented here, we demonstrate that this mutant virus established a long-term infection in vivo that was molecularly identical to wild-type virus latency. Thus, despite the absence of an acute phase of lytic replication, the mutant virus established a chronic infection in which the viral genome (i) was maintained as an episome and (ii) expressed latency-associated, but not lytic replication-associated, genes. Macrophages purified from mice infected with the replication-defective virus harbored viral genome at a frequency that was nearly identical to that of wild-type γHV68; however, the frequency of B cells harboring viral genome was greatly reduced in the absence of lytic replication. Thus, this replication-defective gammaherpesvirus efficiently established in vivo infection in macrophages that was molecularly indistinguishable from wild-type virus latency. These data point to a critical role for lytic replication or reactivation in the establishment or maintenance of latent infection in B cells.  相似文献   

7.
Murine gammaherpesvirus 68 (gammaHV68), like Epstein-Barr virus (EBV), establishes a chronic infection in its host by gaining access to the memory B-cell reservoir, where it persists undetected by the host's immune system. EBV encodes a membrane protein, LMP1, that appears to function as a constitutively active CD40 receptor, and is hypothesized to play a central role in EBV-driven differentiation of infected naive B cells to a memory B-cell phenotype. However, it has recently been shown that there is a critical role for CD40-CD40L interaction in B-cell immortalization by EBV (K.-I. Imadome, M. Shirakata, N. Shimizu, S. Nonoyama, and Y. Yamanashi, Proc. Natl. Acad. Sci. USA 100:7836-7840, 2003), indicating that LMP1 does not adequately recapitulate all of the necessary functions of CD40. The role of CD40 receptor expression on B cells for the establishment and maintenance of gammaHV68 latency is unclear. Data previously obtained with a competition model, demonstrated that in the face of CD40-sufficient B cells, gammaHV68 latency in CD40-deficient B cells waned over time in chimeric mice (I.-J. Kim, E. Flano, D. L. Woodland, F. E. Lund, T. D. Randall, and M. A. Blackman, J. Immunol. 171:886-892, 2003). To further investigate the role of CD40 in gammaHV68 latency in vivo, we have characterized the infection of CD40 knockout (CD40(-/-)) mice. Here we report that, consistent with previous observations, gammaHV68 efficiently established a latent infection in B cells of CD40(-/-) mice. Notably, unlike the infection of normal C57BL/6 mice, significant ex vivo reactivation from splenocytes harvested from infected CD40(-/-) mice 42 days postinfection was observed. In addition, in contrast to gammaHV68 infection of C57BL/6 mice, the frequency of infected naive B cells remained fairly stable over a 3-month period postinfection. Furthermore, a slightly higher frequency of gammaHV68 infection was observed in immunoglobulin D (IgD)-negative B cells, which was stably maintained over a period of 3 months postinfection. The presence of virus in IgD-negative B cells indicates that gammaHV68 may either directly infect memory B cells present in CD40(-/-) mice or be capable of driving differentiation of naive CD40(-/-) B cells. A possible explanation for the apparent discrepancy between the failure of gammaHV68 latency to be maintained in CD40-deficient B cells in the presence of CD40-sufficient B cells and the stable maintenance of gammaHV68 B-cell latency in CD40(-/-) mice came from examining virus replication in the lungs of infected CD40(-/-) mice, where we observed significantly higher levels of virus replication at late times postinfection compared to those in infected C57BL/6 mice. Taken together, these findings are consistent with a model in which chronic virus infection of CD40(-/-) mice is maintained through virus reactivation in the lungs and reseeding of latency reservoirs.  相似文献   

8.
Gammaherpesviruses such as Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus are important human pathogens that establish long-term latent infections. Understanding of the initiation and maintenance of latent infections has important implications for the prevention and treatment of gammaherpesvirus-related diseases. Although much is known about gammaherpesvirus pathogenesis, it is unclear how the infectious dose of a virus influences its ability to establish latent infection. To examine the relationship between the infectious dose and gammaherpesvirus latency, we inoculated wild-type mice with 0.01 to 10(6) PFU of murine gammaherpesvirus 68 (gammaHV68) and quantitatively measured latency and acute-phase replication. Surprisingly, during latency, the frequencies of ex vivo reactivation were similar over a 10(7)-fold range of doses for i.p. infection and over a 10(4)-fold range of doses for intranasal infection. Further, the frequencies of cells harboring viral genome during latency did not differ substantially over similar dose ranges. Although the kinetics of acute-phase replication were delayed at small doses of virus, the peak titer did not differ significantly between mice infected with a large dose of virus and those infected with a small dose of virus. The results presented here indicate that any initiation of infection leads to substantial acute-phase replication and subsequent establishment of a maximal level of latency. Thus, infections with doses as small as 0.1 PFU of gammaHV68 result in stable levels of acute-phase replication and latent infection. These results demonstrate that the equilibrium level of establishment of gammaherpesvirus latency is independent of the infectious dose and route of infection.  相似文献   

9.
Gammaherpesviruses establish a life-long chronic infection that is tightly controlled by the host immune response. We previously demonstrated that viruses lacking the gammaherpesvirus 68 (gammaHV68) viral cyclin (v-cyclin) exhibited a severe defect in reactivation from latency and persistent replication. In this analysis of chronic infection, we demonstrate that the v-cyclin is required for gammaHV68-associated mortality in B-cell-deficient mice. Furthermore, we identify the v-cyclin as the first gene product required for maintenance of gammaherpesvirus latency in vivo in the absence of B lymphocytes. While the v-cyclin was necessary for maintenance of latency in the absence of B cells, maintenance of v-cyclin-deficient viruses was equivalent to that of wild-type gammaHV68 in the presence of B cells. These results support a model in which maintenance of chronic gammaHV68 infection requires v-cyclin-dependent reactivation and reseeding of non-B-cell latency reservoirs in the absence of B cells and raise the possibility that B cells represent a long-lived latency reservoir maintained independently of reactivation. These results highlight distinct mechanisms for the maintenance of chronic infection in immunocompetent and B-cell-deficient mice and suggest that the different latency reservoirs have distinct gene requirements for the maintenance of latency.  相似文献   

10.
Toll-like receptors (TLRs) are known predominantly for their role in activating the innate immune response. Recently, TLR signaling via MyD88 has been reported to play an important function in development of a B-cell response. Since B cells are a major latency reservoir for murine gammaherpesvirus 68 (MHV68), we investigated the role of TLR signaling in the establishment and maintenance of MHV68 latency in vivo. Mice deficient in MyD88 (MyD88(-/-)) or TLR3 (TLR3(-/-)) were infected with MHV68. Analysis of splenocytes recovered at day 16 postinfection from MyD88(-/-) mice compared to those from wild-type control mice revealed a lower frequency of (i) activated B cells, (ii) germinal-center B cells, and (iii) class-switched B cells. Accompanying this substantial defect in the B-cell response was an approximately 10-fold decrease in the establishment of splenic latency. In contrast, no defect in viral latency was observed in TLR3(-/-) mice. Analysis of MHV68-specific antibody responses also demonstrated a substantial decrease in the kinetics of the response in MyD88(-/-) mice. Analysis of wild-type x MyD88(-/-) mixed-bone-marrow chimeric mice demonstrated that there is a selective failure of MyD88(-/-) B cells to participate in germinal-center reactions as well as to become activated and undergo class switching. In addition, while MHV68 established latency efficiently in the MyD88-sufficient B cells, there was again a ca. 10-fold reduction in the frequency of MyD88(-/-) B cells harboring latent MHV68. This phenotype indicates that MyD88 is important for the establishment of MHV68 latency and is directly related to the role of MyD88 in the generation of a B-cell response. Furthermore, the generation of a B-cell response to MHV68 was intrinsic to B cells and was independent of the interleukin-1 receptor, a cytokine receptor that also signals through MyD88. These data provide evidence for a unique role for MyD88 in the establishment of MHV68 latency.  相似文献   

11.
Gammaherpesviruses are important pathogens whose lifelong survival in the host depends critically on their capacity to establish and reactivate from latency, processes regulated by both viral genes and the host immune response. Previous work has demonstrated that gamma interferon (IFN-gamma) is a key regulator of chronic infection with murine gammaherpesvirus 68 (gammaHV68), a virus that establishes latent infection in B lymphocytes, macrophages, and dendritic cells. In mice deficient in IFN-gamma or the IFN-gamma receptor, gammaHV68 gene expression is altered during chronic infection, and peritoneal cells explanted from these mice reactivate more efficiently ex vivo than cells derived from wild-type mice. Furthermore, treatment with IFN-gamma inhibits reactivation of gammaHV68 from latently infected wild-type peritoneal cells, and depletion of IFN-gamma from wild-type mice increases the efficiency of reactivation of explanted peritoneal cells. These profound effects of IFN-gamma on chronic gammaHV68 latency and reactivation raise the question of which cells respond to IFN-gamma to control chronic gammaHV68 infection. Here, we show that IFN-gamma inhibited reactivation of peritoneal cells and spleen cells harvested from mice lacking B lymphocytes, but not wild-type spleen cells, suggesting that IFN-gamma may inhibit reactivation in a cell type-specific manner. To directly test this hypothesis, we expressed the diphtheria toxin receptor specifically on either B lymphocytes or macrophages and used diphtheria toxin treatment to deplete these specific cells in vivo and in vitro after establishing latency. We demonstrate that macrophages, but not B cells, are responsive to IFN-gamma-mediated suppression of gammaHV68 reactivation. These data indicate that the regulation of gammaherpesvirus latency by IFN-gamma is cell type specific and raise the possibility that cell type-specific immune deficiency may alter latency in distinct and important ways.  相似文献   

12.
13.
While antiviral antibody plays a key role in resistance to acute viral infection, the contribution of antibody to the control of latent virus infection is less well understood. Gammaherpesvirus 68 (gammaHV68) infection of mice provides a model well suited to defining contributions of specific immune system components to the control of viral latency. B cells play a critical role in regulating gammaHV68 latency, but the mechanism(s) by which B cells regulate latency is not known. In the experiments reported here, we determined the effect of passively transferred antibody on established gammaHV68 latency in B-cell-deficient (B-cell(-/-)) mice. Immune antibody decreased the frequency of cells reactivating ex vivo from latency in splenocytes (>10-fold) and peritoneal cells (>100-fold) and the frequency of cells carrying latent viral genome in splenocytes (>5-fold) and peritoneal cells (>50-fold). This effect required virus-specific antibody and was observed when total and virus-specific serum antibody concentrations in recipient B-cell(-/-) mice were <8% of those in normal mice during latent infection. Passive transfer of antibody specific for the lytic cycle gammaHV68 RCA protein, but not passive transfer of antibody specific for the v-cyclin protein or the latent protein M2, decreased both the frequency of cells reactivating ex vivo from latency and the frequency of cells carrying the latent viral genome. Therefore, antibody specific for lytic cycle viral antigens can play an important role in the control of gammaherpesvirus latency in immunocompromised hosts. Based on these findings, we propose a model in which ongoing productive replication is essential for maintaining high levels of latently infected cells in immunocompromised hosts. We confirmed this model by the treatment of latently infected B-cell(-/-) mice with the antiviral drug cidofovir.  相似文献   

14.
15.
We have previously demonstrated that it is possible to effectively vaccinate against long-term murine gammaherpesvirus 68 (gamma HV68) latency by using a reactivation-deficient virus as a vaccine (S. A. Tibbetts, J. S. McClellan, S. Gangappa, S. H. Speck, and H. W. Virgin IV, J. Virol. 77:2522-2529, 2003). Immune antibody was capable of recapitulating aspects of this vaccination. This led us to determine whether antibody is required for vaccination against latency. Using mice lacking antigen-specific antibody responses, we demonstrate here that antibody and B cells are not required for vaccination against latency. We also show that surveillance of latent infection in normal animals depends on CD4 and CD8 T cells, suggesting that T cells might be capable of preventing the establishment of latency. In the absence of an antibody response, CD4 T cells but not CD8 T cells are required for effective vaccination against latency in peritoneal cells, while either CD4 or CD8 T cells can prevent the establishment of splenic latency. Therefore, CD4 T cells play a critical role in immune surveillance of gammaherpesvirus latency and can mediate vaccination against latency in the absence of antibody responses.  相似文献   

16.
Murine gammaherpesvirus 68 (MHV68) is a gammaherpesvirus that was first isolated from murid rodents. MHV68 establishes a latent infection in the spleen and other lymphoid organs. Several gammaherpesviruses, including herpesvirus saimiri, human herpesvirus 8, and MHV68, encode proteins with extensive homology to the D-type cyclins. To study the function of the cyclin homologue, a recombinant MHV68 has been constructed that lacks the cyclin homologue and expresses beta-galactosidase as a marker (MHV68(cy-)). MHV68(cy-) grows in vitro with kinetics and to titers similar to those of the wild type. BALB/c mice infected with mixtures of equivalent amounts of the wild type and MHV68(cy-) show deficient growth of the MHV68(cy-) in an acute infection. Infection of SCID mice with virus mixtures also showed decreased MHV68(cy-) virus growth, indicating that the deficiency is not mediated by T or B cells. Although mice infected with mixtures containing 100 times as much MHV68(cy-) had greater splenic titers of the mutant virus than wild-type virus in acute infection, at 28 days postinfection splenocytes from these mice reactivated primarily wild-type virus. Quantitative PCR data indicate that equivalent genomes were present in the latent state. Reinsertion of the cyclin homologue into the cyclin-deleted virus restored the wild-type phenotype. These results indicate that the MHV68 cyclin D homologue mediates important functions in the acute infection and is required for efficient reactivation from latency.  相似文献   

17.
Loh J  Thomas DA  Revell PA  Ley TJ  Virgin HW 《Journal of virology》2004,78(22):12519-12528
Gammaherpesviruses can establish lifelong latent infections in lymphoid cells of their hosts despite active antiviral immunity. Identification of the immune mechanisms which regulate gammaherpesvirus latent infection is therefore essential for understanding how gammaherpesviruses persist for the lifetime of their host. Recently, an individual with chronic active Epstein-Barr virus infection was found to have mutations in perforin, and studies using murine gammaherpesvirus 68 (gammaHV68) as a small-animal model for gammaherpesvirus infection have similarly revealed a critical role for perforin in regulating latent infection. These results suggest involvement of the perforin/granzyme granule exocytosis pathway in immune regulation of gammaherpesvirus latent infection. In this study, we examined gammaHV68 infection of knockout mice to identify specific molecules within the perforin/granzyme pathway which are essential for regulating gammaherpesvirus latent infection. We show that granzymes A and B and the granzyme B substrate, caspase 3, are important for regulating gammaHV68 latent infection. Interestingly, we show for the first time that orphan granzymes encoded in the granzyme B gene cluster are also critical for regulating viral infection. The requirement for specific granzymes differs for early versus late forms of latent infection. These data indicate that different granzymes play important and distinct roles in regulating latent gammaherpesvirus infection.  相似文献   

18.
Murine gammaherpesvirus 68 (gammaHV68 [also known as MHV-68]) establishes a latent infection in mice, providing a small-animal model with which to identify host and viral factors that regulate gammaherpesvirus latency. While gammaHV68 establishes a latent infection in multiple tissues, including splenocytes and peritoneal cells, the requirements for latent infection within these tissues are poorly defined. Here we report the characterization of a spontaneous 9.5-kb-deletion mutant of gammaHV68 that lacks the M1, M2, M3, and M4 genes and eight viral tRNA-like genes. Previously, this locus has been shown to contain the latency-associated M2, M3, and viral tRNA-like genes. Through characterization of this mutant, we found that the M1, M2, M3, M4 genes and the viral tRNA-like genes are dispensable for (i) in vitro replication and (ii) the establishment and maintenance of latency in vivo and reactivation from latency following intraperitoneal infection. In contrast, following intranasal infection with this mutant, there was a defect in splenic latency at both early and late times, a phenotype not observed in peritoneal cells. These results indicate (i) that there are different genetic requirements for the establishment of latency in different latent reservoirs and (ii) that the genetic requirements for latency depend on the route of infection. While some of these phenotypes have been observed with specific mutations in the M1 and M2 genes, other phenotypes have never been observed with the available gammaHV68 mutants. These studies highlight the importance of loss-of-function mutations in defining the genetic requirements for the establishment and maintenance of herpesvirus latency.  相似文献   

19.
The peripheral B cell compartment in mice and humans is maintained by continuous production of transitional B cells in the bone marrow. In other species, however, including rabbits, B lymphopoiesis in the bone marrow abates early in life, and it is unclear how the peripheral B cell compartment is maintained. We identified transitional B cells in rabbits and classified them into T1 (CD24(high)CD21(low)) and T2 (CD24(high)CD21(+)) B cell subsets. By neutralizing B cell-activating factor in vivo, we found an arrest in peripheral B cell development at the T1 B cell stage. Surprisingly, T1 B cells were present in GALT, blood, and spleen of adult rabbits, long after B lymphopoiesis was arrested. T1 B cells were distinct from their counterparts in other species because they are proliferating and the Ig genes are somatically diversified. We designate these newly described cells as T1d B cells and propose a model in which they develop in GALT, self renew, continuously differentiate into mature B cells, and thereby maintain peripheral B cell homeostasis in adults in the absence of B lymphopoiesis.  相似文献   

20.
Gammaherpesviruses subvert eukaryotic signaling pathways to favor latent infections in their cellular reservoirs. To this end, they express proteins that regulate or replace functionally specific signaling proteins of eukaryotic cells. Here we describe a new type of such viral-host interaction that is established through M2, a protein encoded by murine gammaherpesvirus 68. M2 associates with Vav proteins, a family of phosphorylation-dependent Rho/Rac exchange factors that play critical roles in lymphocyte signaling. M2 expression leads to Vav1 hyperphosphorylation and to the subsequent stimulation of its exchange activity towards Rac1, a process mediated by the formation of a trimolecular complex with Src kinases. This heteromolecular complex is coordinated by proline-rich and Src family-dependent phosphorylated regions of M2. Infection of Vav-deficient mice with gammaherpesvirus 68 results in increased long-term levels of latency in germinal center B lymphocytes, corroborating the importance of the M2/Vav cross talk in the process of viral latency. These results reveal a novel strategy used by the murine gammaherpesvirus family to subvert the lymphocyte signaling machinery to its own benefit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号