首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abraham TM  Loeb DD 《Journal of virology》2007,81(21):11577-11584
Previous analysis of hepatitis B virus (HBV) indicated base pairing between two cis-acting sequences, the 5' half of the upper stem of epsilon and phi, contributes to the synthesis of minus-strand DNA. Our goal was to identify other cis-acting sequences on the pregenomic RNA (pgRNA) involved in the synthesis of minus-strand DNA. We found that large portions of the pgRNA could be deleted or substituted without an appreciable decrease in the level of minus-strand DNA synthesized, indicating that most of the pgRNA is dispensable and that a specific size of the pgRNA is not required for this process. Our results indicated that the cis-acting sequences for the synthesis of minus-strand DNA are present near the 5' and 3' ends of the pgRNA. In addition, we found that the first-strand template switch could be directed to a new location when a 72-nucleotide (nt) fragment, which contained the cis-acting sequences present near the 3' end of the pgRNA, was introduced at that location. Within this 72-nt region, we uncovered two new cis-acting sequences, which flank the acceptor site. We show that one of these sequences, named omega and located 3' of the acceptor site, base pairs with phi to contribute to the synthesis of minus-strand DNA. Thus, base pairing between three cis-acting elements (5' half of the upper stem of epsilon, phi, and omega) are necessary for the synthesis of HBV minus-strand DNA. We propose that this topology of pgRNA facilitates first-strand template switch and/or the initiation of synthesis of minus-strand DNA.  相似文献   

2.
Heron hepatitis B virus (HHBV) is an avian hepadnavirus that is closely related to duck hepatitis B virus (DHBV). To learn more about the mechanism of hepadnavirus replication, we characterized a clone of HHBV that contains a substitution of DHBV sequence from nucleotide coordinates 403 to 1364. This clone, named HDE1, expresses a chimeric pregenomic RNA, a chimeric polymerase (P) protein, and a core (C) protein with a one-amino-acid substitution at its carboxy terminus. We have shown that HDE1 is defective for minus-strand DNA synthesis, resulting in an overall reduction of viral DNA. HDE1 was also defective for plus-strand DNA synthesis, resulting in aberrant ratios of replication intermediates. Genetic complementation assays indicated that HDE1 replication proteins, C and P, are functional for replication and wild-type HHBV proteins do not rescue either defect. These findings indicate that the HDE1 substitution mutation acts primarily in cis. By restoring nucleotides 403 to 902 to the HHBV sequence, we showed that cis-acting sequences for plus-strand DNA synthesis are located in the 5' half of the HDE1 chimeric region. These data indicate the presence of one or more formerly unrecognized cis-acting sequences for DNA synthesis within the chimeric region (nucleotides 403 to 1364). These cis-acting sequences in the middle of the genome might interact directly or indirectly with known cis elements that are located near the ends of the genome. Our findings suggest that a specific higher-order template structure is involved in the mechanism of hepadnavirus DNA replication.  相似文献   

3.
Ostrow KM  Loeb DD 《Journal of virology》2004,78(16):8780-8787
Packaging of hepadnavirus pregenomic RNA (pgRNA) into capsids, or encapsidation, requires several viral components. The viral polymerase (P) and the capsid subunit (C) are necessary for pgRNA encapsidation. Previous studies of duck hepatitis B virus (DHBV) indicated that two cis-acting sequences on pgRNA are required for encapsidation: epsilon, which is near the 5' end of pgRNA, and region II, located near the middle of pgRNA. Later studies suggested that the intervening sequence between these two elements may also make a contribution. It has been demonstrated for DHBV that epsilon interacts with P to facilitate encapsidation, but it is not known how other cis-acting sequences contribute to encapsidation. We analyzed chimeras of DHBV and a related virus, heron hepatitis B virus (HHBV), to gain insight into the interactions between the various viral components during pgRNA encapsidation. We learned that having epsilon and P derived from the same virus was not sufficient for high levels of encapsidation, implying that other viral interactions contribute to encapsidation. Chimeric analysis showed that a large sequence containing region II may interact with P and/or C for efficient encapsidation. Further analysis demonstrated that possibly an RNA-RNA interaction between the intervening sequence and region II facilitates pgRNA encapsidation. Together, these results identify functional interactions among various viral components that contribute to pgRNA encapsidation.  相似文献   

4.
Ostrow KM  Loeb DD 《Journal of virology》2002,76(18):9087-9095
Previous analysis of duck hepatitis B virus (DHBV) indicated the presence of at least two cis-acting sequences required for efficient encapsidation of its pregenomic RNA (pgRNA), epsilon and region II. epsilon, an RNA stem-loop near the 5' end of the pgRNA, has been characterized in detail, while region II, located in the middle of the pgRNA, is not as well defined. Our initial aim was to identify the sequence important for the function of region II in DHBV. We scanned region II and the surrounding sequence by using a quantitative encapsidation assay. We found that the sequence between nucleotides (nt) 438 and 720 contributed to efficient pgRNA encapsidation, while the sequence between nt 538 and 610 made the largest contribution to encapsidation. Additionally, deletions between the two encapsidation sequences, epsilon and region II, had variable effects on encapsidation, while substitutions of heterologous sequence between epsilon and region II disrupted the ability of the pgRNA to be encapsidated efficiently. Overall, these data indicate that the intervening sequences between epsilon and region II play a role in encapsidation. We also analyzed heron hepatitis B virus (HHBV) for the presence of region II and found features similar to DHBV: a broad region necessary for efficient encapsidation that contained a critical region II sequence. Furthermore, we analyzed variants of DHBV that were substituted with HHBV sequence over region II and found that the chimeras were not fully functional for RNA encapsidation. These results indicate that sequences within region II may need to be compatible with other viral components in order to function in pgRNA encapsidation.  相似文献   

5.
Isolation and characterization of a hepatitis B virus endemic in herons.   总被引:13,自引:21,他引:13       下载免费PDF全文
R Sprengel  E F Kaleta    H Will 《Journal of virology》1988,62(10):3832-3839
A new hepadnavirus (designated heron hepatitis B virus [HHBV]) has been isolated; this virus is endemic in grey herons (Ardea cinerea) in Germany and closely related to duck hepatitis B virus (DHBV) by morphology of viral particles and size of the genome and of the major viral envelope and core proteins. Despite its striking similarities to DHBV, HHBV cannot be transmitted to ducks by infection or by transfection with cloned viral DNA. After the viral genome was cloned and sequenced, a comparative sequence analysis revealed an identical genome organization of HHBV and DHBV (pre-C/C-, pre-S/S-, and pol-ORFs). An open reading frame, designated X in mammalian hepadnaviruses, is not present in DHBV. DHBV and HHBV differ by 21.6% base exchanges, and thus they are less closely related than the two known rodent hepatitis B viruses (16.4%). The nucleocapsid protein and the 17-kilodalton envelope protein sequences of DHBV and HHBV are well conserved. In contrast, the pre-S part of the 34-kilodalton envelope protein which is believed to mediate virus attachment to the cell is highly divergent (less than 50% homology). The availability of two closely related avian hepadnaviruses will now allow us to test recombinant viruses in vivo and in vitro for host specificity-determining sequences.  相似文献   

6.
7.
8.
Functionally relevant hepadnavirus-cell surface interactions were investigated with the duck hepatitis B virus (DHBV) animal model by using an in vitro infection competition assay. Recombinant DHBV pre-S polypeptides, produced in Escherichia coli, were shown to inhibit DHBV infection in a dose-dependent manner, indicating that monomeric pre-S chains were capable of interfering with virus-receptor interaction. Particle-associated pre-S was, however, 30-fold more active, suggesting that cooperative interactions enhance particle binding. An 85-amino-acid pre-S sequence, spanning about half of the DHBV pre-S chain, was characterized by deletion analysis as essential for maximal inhibition. Pre-S polypeptides from heron hepatitis B virus (HHBV) competed DHBV infection equally well despite a 50% difference in amino acid sequence and a much-reduced infectivity of HHBV for duck hepatocytes. These observations are taken to indicate (i) that the functionality of the DHBV pre-S subdomain, which interacts with the cellular receptor, is determined predominantly by a defined three-dimensional structure rather than by primary sequence elements; (ii) that cellular uptake of hepadnaviruses is a multistep process involving more than a single cellular receptor component; and (iii) that gp180, a cellular receptor candidate unable to discriminate between DHBV and HHBV, is a common component of the cellular receptor complex for avian hepadnaviruses.  相似文献   

9.
10.
S Perri  D Ganem 《Journal of virology》1997,71(11):8448-8455
The viral polymerase and several cis-acting sequences are essential for hepadnaviral DNA replication, but additional host factors are likely to be involved in this process. We previously identified two sequences, UBS and DBS (upstream and downstream binding sites), present in multiple copies in and adjacent to the pregenomic RNA (pgRNA) terminal redundancy, that were specifically recognized by a 65-kDa host factor, p65. The possible roles of these two sequences in hepatitis B virus (HBV) replication were investigated in the context of the intact viral genome. UBS is contained within the terminal redundancy of pgRNA, and the 5' copy of this sequence is essential for viral replication. Mutations within the central core of UBS ablate p65 binding and selectively block synthesis of plus-strand DNA, without affecting RNA packaging or minus-strand synthesis. The DBS sequence, which is located downstream of the pgRNA polyadenylation site, overlaps the core (C) protein coding region. All mutations introduced into this site severely affected viral replication. However, these effects were shown to result from dominant negative effects of mutant core polypeptides rather than from cis-acting effects on RNA recognition. Thus, the 5' UBS but not DBS sites play important cis-acting roles in HBV DNA replication; however, the involvement of p65 in these roles remains a matter for investigation.  相似文献   

11.
12.
Hepadnaviruses utilize two template switches (primer translocation and circularization) during synthesis of plus-strand DNA to generate a relaxed-circular (RC) DNA genome. In duck hepatitis B virus (DHBV) three cis-acting sequences, 3E, M, and 5E, contribute to both template switches through base pairing, 3E with the 3' portion of M and 5E with the 5' portion of M. Human hepatitis B virus (HBV) also contains multiple cis-acting sequences that contribute to the accumulation of RC DNA, but the mechanisms through which these sequences contribute were previously unknown. Three of the HBV cis-acting sequences (h3E, hM, and h5E) occupy positions equivalent to those of the DHBV 3E, M, and 5E. We present evidence that h3E and hM contribute to the synthesis of RC DNA through base pairing during both primer translocation and circularization. Mutations that disrupt predicted base pairing inhibit both template switches while mutations that restore the predicted base pairing restore function. Therefore, the h3E-hM base pairing appears to be a conserved requirement for template switching during plus-strand DNA synthesis of HBV and DHBV. Also, we show that base pairing is not sufficient to explain the mechanism of h3E and hM, as mutating sequences adjacent to the base pairing regions inhibited both template switches. Finally, we did not identify predicted base pairing between h5E and the hM region, indicating a possible difference between HBV and DHBV. The significance of these similarities and differences between HBV and DHBV will be discussed.  相似文献   

13.
For hepadnaviruses, the RNA primer for plus-strand DNA synthesis is generated by the final RNase H cleavage of the pregenomic RNA at an 11 nt sequence called DR1 during the synthesis of minus-strand DNA. This RNA primer initiates synthesis at one of two distinct sites on the minus-strand DNA template, resulting in two different end products; duplex linear DNA or relaxed circular DNA. Duplex linear DNA is made when initiation of synthesis occurs at DR1. Relaxed circular DNA, the major product, is made when the RNA primer translocates to the sequence complementary to DR1, called DR2 before initiation of DNA synthesis. We studied the mechanism that determines the site of the final RNase H cleavage in hepatitis B virus (HBV). We showed that the sites of the final RNase H cleavage are always a fixed number of nucleotides from the 5' end of the pregenomic RNA. This finding is similar to what was found previously for duck hepatitis B virus (DHBV), and suggests that all hepadnaviruses use a similar mechanism. Also, we studied the role of complementarity between the RNA primer and the acceptor site at DR2 in HBV. By increasing the complementarity, we were able to increase the level of priming at DR2 over that seen in the wild-type virus. This finding suggests that the level of initiation of plus-strand DNA synthesis at DR2 is sub-maximal for wild-type HBV. Finally, we studied the role of the sequence at the 5' end of the RNA primer that is outside of the DR sequence. We found that substitutions or insertions in this region affected the level of priming at DR1 and DR2.  相似文献   

14.
Synthesis of minus-strand DNA of human hepatitis B virus (HBV) can be divided into three phases: initiation of DNA synthesis, the template switch, and elongation of minus-strand DNA. Although much is known about minus-strand DNA synthesis, the mechanism(s) by which this occurs has not been completely elucidated. Through a deletion analysis, we have identified a cis-acting element involved in minus-strand DNA synthesis that lies within a 27-nucleotide region between DR2 and the 3' copy of DR1. A subset of this region (termed Phi) has been hypothesized to base pair with the 5' half of epsilon (H. Tang and A. McLachlan, Virology, 303:199-210, 2002). To test the proposed model, we used a genetic approach in which multiple sets of variants that disrupted and then restored putative base pairing between the 5' half of epsilon and phi were analyzed. Primer extension analysis, using two primers simultaneously, was performed to measure encapsidated pregenomic RNA (pgRNA) and minus-strand DNA synthesized in cell culture. The efficiency of minus-strand DNA synthesis was defined as the amount of minus-strand DNA synthesized per encapsidation event. Our results indicate that base pairing between phi and the 5' half of epsilon contributes to efficient minus-strand DNA synthesis. Additional results are consistent with the idea that the primary sequence of phi and/or epsilon also contributes to function. How base pairing between phi and epsilon contributes to minus-strand DNA synthesis is not known, but a simple speculation is that phi base pairs with the 5' half of epsilon to juxtapose the donor and acceptor sites to facilitate the first-strand template switch.  相似文献   

15.
16.
Havert MB  Ji L  Loeb DD 《Journal of virology》2002,76(6):2763-2769
The synthesis of the hepadnavirus relaxed circular DNA genome requires two template switches, primer translocation and circularization, during plus-strand DNA synthesis. Repeated sequences serve as donor and acceptor templates for these template switches, with direct repeat 1 (DR1) and DR2 for primer translocation and 5'r and 3'r for circularization. These donor and acceptor sequences are at, or near, the ends of the minus-strand DNA. Analysis of plus-strand DNA synthesis of duck hepatitis B virus (DHBV) has indicated that there are at least three other cis-acting sequences that make contributions during the synthesis of relaxed circular DNA. These sequences, 5E, M, and 3E, are located near the 5' end, the middle, and the 3' end of minus-strand DNA, respectively. The mechanism by which these sequences contribute to the synthesis of plus-strand DNA was unclear. Our aim was to better understand the mechanism by which 5E and M act. We localized the DHBV 5E element to a short sequence of approximately 30 nucleotides that is 100 nucleotides 3' of DR2 on minus-strand DNA. We found that the new 5E mutants were partially defective for primer translocation/utilization at DR2. They were also invariably defective for circularization. In addition, examination of several new DHBV M variants indicated that they too were defective for primer translocation/utilization and circularization. Thus, this analysis indicated that 5E and M play roles in both primer translocation/utilization and circularization. In conjunction with earlier findings that 3E functions in both template switches, our findings indicate that the processes of primer translocation and circularization share a common underlying mechanism.  相似文献   

17.
18.
J Jung  HY Kim  T Kim  BH Shin  GS Park  S Park  YJ Chwae  HJ Shin  K Kim 《PloS one》2012,7(7):e41087
To investigate the contributions of carboxyl-terminal nucleic acid binding domain of HBV core (C) protein for hepatitis B virus (HBV) replication, chimeric HBV C proteins were generated by substituting varying lengths of the carboxyl-terminus of duck hepatitis B virus (DHBV) C protein for the corresponding regions of HBV C protein. All chimeric C proteins formed core particles. A chimeric C protein with 221-262 amino acids of DHBV C protein, in place of 146-185 amino acids of the HBV C protein, supported HBV pregenomic RNA (pgRNA) encapsidation and DNA synthesis: 40% amino acid sequence identity or 45% homology in the nucleic-acid binding domain of HBV C protein was sufficient for pgRNA encapsidation and DNA synthesis, although we predominantly detected spliced DNA. A chimeric C protein with 221-241 and 251-262 amino acids of DHBV C, in place of HBV C 146-166 and 176-185 amino acids, respectively, could rescue full-length DNA synthesis. However, a reciprocal C chimera with 242-250 of DHBV C ((242)RAGSPLPRS(250)) introduced in place of 167-175 of HBV C ((167)RRRSQSPRR(175)) significantly decreased pgRNA encapsidation and DNA synthesis, and full-length DNA was not detected, demonstrating that the arginine-rich (167)RRRSQSPRR(175) domain may be critical for efficient viral replication. Five amino acids differing between viral species (underlined above) were tested for replication rescue; R169 and R175 were found to be important.  相似文献   

19.
The hepadnavirus P gene contains amino acid sequences which share homology with all known RNases H. In this study, we made four mutants in which single amino acids of the duck hepatitis B virus (DHBV) RNase H region were altered. In two of them, amino acids at locations comprising the putative catalytic site were changed, while the remaining mutants had alterations at amino acids conserved among hepadnaviruses. Transfection of these mutant genomes into permissive cells resulted in synthesis of several discrete viral nucleic acid species, ranging in apparent sizes from approximately 500 to 3,000 bp, numbered I, II, III, IV, and V. While the locations of the species were similar in all mutants, the proportions of the species varied among the mutants. Analysis of the nucleic acid species revealed that they were hybrid molecules of RNA and minus-strand DNA, indicating that the RNase H activity was missing or greatly reduced in these mutants. Primer extension experiments showed that the mutant viruses initiated minus-strand viral DNA synthesis normally. The 3' termini of minus-strand DNA in species II, III, and IV were mapped just downstream of nucleotides 1659, 1220, and 721, respectively. Species V contained essentially full-length minus-strand viral DNA. A parallel amino acid change in the putative catalytic site of the HBV RNase H domain resulted in accumulation of low-molecular-weight hybrid molecules consisting of RNA and minus-strand DNA and similar in size and pattern to those seen with DHBV. These studies demonstrate experimentally the involvement of the C-terminal portion of the P gene in RNase H activity in both DHBV and human hepatitis B virus and indicate that the amino acids essential for RNase H activity of hepadnavirus P protein are also important for the efficient elongation of minus-strand viral DNA.  相似文献   

20.
Chronic hepatitis B virus (HBV) infection, a serious public health problem leading to cirrhosis and hepatocellular carcinoma, is currently treated with either pegylated alpha interferon (pegIFN-α) or one of the five nucleos(t)ide analogue viral DNA polymerase inhibitors. However, neither pegIFN-α nor nucleos(t)ide analogues are capable of reliably curing the viral infection. In order to develop novel antiviral drugs against HBV, we established a cell-based screening assay by using an immortalized mouse hepatocyte-derived stable cell line supporting a high level of HBV replication in a tetracycline-inducible manner. Screening of a library consisting of 26,900 small molecules led to the discovery of a series of sulfamoylbenzamide (SBA) derivatives that significantly reduced the amount of cytoplasmic HBV DNA. Structure-activity relationship studies have thus far identified a group of fluorine-substituted SBAs with submicromolar antiviral activity against HBV in human hepatoma cells. Mechanistic analyses reveal that the compounds dose dependently inhibit the formation of pregenomic RNA (pgRNA)-containing nucleocapsids of HBV but not other animal hepadnaviruses, such as woodchuck hepatitis virus (WHV) and duck hepatitis B virus (DHBV). Moreover, heterologous genetic complementation studies of capsid protein, DNA polymerase, and pgRNA between HBV and WHV suggest that HBV capsid protein confers sensitivity to the SBAs. In summary, SBAs represent a novel chemical entity with superior activity and a unique antiviral mechanism and are thus warranted for further development as novel antiviral therapeutics for the treatment of chronic hepatitis B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号