首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 499 毫秒
1.
Lv M  Wang J  Wang X  Zuo T  Zhu Y  Kong W  Yu X 《PloS one》2011,6(6):e20890
Tetherin (BST-2/CD317) is an interferon-inducible antiviral protein that restricts the release of enveloped viruses from infected cells. The HIV-1 accessory protein Vpu can efficiently antagonize this restriction. In this study, we analyzed mutations of the transmembrane (TM) domain of Vpu, including deletions and substitutions, to delineate amino acids important for HIV-1 viral particle release and in interactions with tetherin. The mutants had similar subcellular localization patterns with that of wild-type Vpu and were functional with respect to CD4 downregulation. We showed that the hydrophobic binding surface for tetherin lies in the core of the Vpu TM domain. Three consecutive hydrophobic isoleucine residues in the middle region of the Vpu TM domain, I15, I16 and I17, were important for stabilizing the tetherin binding interface and determining its sensitivity to tetherin. Changing the polarity of the amino acids at these positions resulted in severe impairment of Vpu-induced tetherin targeting and antagonism. Taken together, these data reveal a model of specific hydrophobic interactions between Vpu and tetherin, which can be potentially targeted in the development of novel anti-HIV-1 drugs.  相似文献   

2.
Tetherin, also known as BST-2/CD317/HM1.24, is an antiviral cellular protein that inhibits the release of HIV-1 particles from infected cells. HIV-1 viral protein U (Vpu) is a specific antagonist of human tetherin that might contribute to the high virulence of HIV-1. In this study, we show that three amino acid residues (I34, L37, and L41) in the transmembrane (TM) domain of human tetherin are critical for the interaction with Vpu by using a live cell-based assay. We also found that the conservation of an additional amino acid at position 45 and two residues downstream of position 22, which are absent from monkey tetherins, are required for the antagonism by Vpu. Moreover, computer-assisted structural modeling and mutagenesis studies suggest that an alignment of these four amino acid residues (I34, L37, L41, and T45) on the same helical face in the TM domain is crucial for the Vpu-mediated antagonism of human tetherin. These results contribute to the molecular understanding of human tetherin-specific antagonism by HIV-1 Vpu.  相似文献   

3.
HIV-1 groups M and N emerged within the last century following two independent cross-species transmissions of SIVcpz from chimpanzees to humans. In contrast to pandemic group M strains, HIV-1 group N viruses are exceedingly rare, with only about a dozen infections identified, all but one in individuals from Cameroon. Poor adaptation to the human host may be responsible for this limited spread of HIV-1 group N in the human population. Here, we analyzed the function of Vpu proteins from seven group N strains from Cameroon, the place where this zoonosis originally emerged. We found that these N-Vpus acquired four amino acid substitutions (E15A, V19A and IV25/26LL) in their transmembrane domain (TMD) that allow efficient interaction with human tetherin. However, despite these adaptive changes, most N-Vpus still antagonize human tetherin only poorly and fail to down-modulate CD4, the natural killer (NK) cell ligand NTB-A as well as the lipid-antigen presenting protein CD1d. These functional deficiencies were mapped to amino acid changes in the cytoplasmic domain that disrupt putative adaptor protein binding sites and an otherwise highly conserved ßTrCP-binding DSGxxS motif. As a consequence, N-Vpus exhibited aberrant intracellular localization and/or failed to recruit the ubiquitin-ligase complex to induce tetherin degradation. The only exception was the Vpu of a group N strain recently discovered in France, but originally acquired in Togo, which contained intact cytoplasmic motifs and counteracted tetherin as effectively as the Vpus of pandemic HIV-1 M strains. These results indicate that HIV-1 group N Vpu is under strong host-specific selection pressure and that the acquisition of effective tetherin antagonism may lead to the emergence of viral variants with increased transmission fitness.  相似文献   

4.
Tetherin/BST-2/CD317 is a recently identified antiviral protein that blocks the release of nascent retrovirus, and other virus, particles from infected cells. An HIV-1 accessory protein, Vpu, acts as an antagonist of tetherin. Here, we show that positive selection is evident in primate tetherin sequences and that HIV-1 Vpu appears to have specifically adapted to antagonize variants of tetherin found in humans and chimpanzees. Tetherin variants found in rhesus macaques (rh), African green monkeys (agm) and mice were able to inhibit HIV-1 particle release, but were resistant to antagonism by HIV-1 Vpu. Notably, reciprocal exchange of transmembrane domains between human and monkey tetherins conferred sensitivity and resistance to Vpu, identifying this protein domain as a critical determinant of Vpu function. Indeed, differences between hu-tetherin and rh-tetherin at several positions in the transmembrane domain affected sensitivity to antagonism by Vpu. Two alterations in the hu-tetherin transmembrane domain, that correspond to differences found in rh- and agm-tetherin proteins, were sufficient to render hu-tetherin completely resistant to HIV-1 Vpu. Interestingly, transmembrane and cytoplasmic domain sequences in primate tetherins exhibit variation at numerous codons that is likely the result of positive selection, and some of these changes coincide with determinants of HIV-1 Vpu sensitivity. Overall, these data indicate that tetherin could impose a barrier to viral zoonosis as a consequence of positive selection that has been driven by ancient viral antagonists, and that the HIV-1 Vpu protein has specialized to target the transmembrane domains found in human/chimpanzee tetherin proteins.  相似文献   

5.
In different primate lentiviruses, three proteins (Vpu, Env and Nef) have been shown to have anti-tetherin activities. SIVden is a primate lentivirus harbored by a Cercopithecus denti (C. denti) whose genome code for a Vpu gene. We have compared the activity of HIV-1 Vpu and of SIVden Vpu on tetherin proteins from humans, from C. denti and from Cercopithecus neglectus (C. neglectus), a monkey species that is naturally infected by SIVdeb, a virus closely related to SIVden but which does not encode a Vpu protein. Here, we demonstrate that SIVden Vpu, is active against C. denti tetherin, but not against human tetherin. Interestingly, C. neglectus tetherin was more sensitive to SIVden Vpu than to HIV-1 Vpu. We also identify residues in the tetherin transmembrane domains that are responsible for the species-specific Vpu effect. Simultaneous mutation (P40L and T45I) of human tetherin conferred sensitivity to SIVden Vpu, while abolishing its sensitivity to HIV-1 Vpu. We next analyzed the anti-tetherin activity of the Nef proteins from HIV-1, SIVden and SIVdeb. All three Nef proteins were unable to rescue virus release in the presence of human or C. denti tetherin. Conversely, SIVdeb Nef enhanced virus release in the presence of C. neglectus tetherin, suggesting that SIVdeb relies on Nef in its natural host. Finally, while HIV-1 Vpu not only removed human tetherin from the cell surface but also directed it for degradation, SIVden Vpu only induced the redistribution of both C. denti and C. neglectus tetherins, resulting in a predominantly perinuclear localization.  相似文献   

6.
Lau D  Kwan W  Guatelli J 《Journal of virology》2011,85(19):9834-9846
The interferon-inducible transmembrane protein BST-2 (CD317, tetherin) restricts the release of several enveloped viruses from infected cells. BST-2 is broadly active against retroviruses, including HIV-1 and HIV-2. To counteract this host defense, HIV-1 uses the accessory protein Vpu, whereas HIV-2 uses its envelope glycoprotein (Env). In both cases, viral antagonism is associated with decreased expression of BST-2 at the cell surface. Here, we provide evidence supporting a role for the clathrin-mediated endocytic pathway in the downregulation of BST-2 from the cell surface and the counteraction of restricted virion release. A catalytically inactive, dominant negative version of the vesicle "pinch-ase" dynamin 2 (dyn2K44A) inhibited the downregulation of BST-2 by Vpu, and it inhibited the release of wild-type (Vpu-expressing) HIV-1 virions. Similarly, dyn2K44A inhibited the downregulation of BST-2 by HIV-2 Env, and it inhibited the release of vpu-negative HIV-1 virions when HIV-2 Env was provided in trans. dyn2K44A inhibited Env more robustly than Vpu, suggesting that dynamin 2, while a cofactor for both Env and Vpu, might support just one of several pathways though which Vpu counteracts BST-2. In support of a role for clathrin in these effects, the C-terminal domain of the clathrin assembly protein AP180 also inhibited the downregulation of BST-2 by either Vpu or HIV-2 Env. Consistent with modulation of the postendocytic itinerary of BST-2, Vpu enhanced the accumulation of cell surface-derived BST-2 in transferrin-containing endosomes. Vpu also inhibited the transport of BST-2 from a brefeldin A-insensitive compartment to the cell surface, consistent with a block to endosomal recycling. We propose that HIV-1 Vpu, and probably HIV-2 Env, traps BST-2 in an endosomal compartment following endocytosis, reducing its level at the cell surface to counteract restricted viral release.  相似文献   

7.
Cole G  Simonetti K  Ademi I  Sharpe S 《Biochemistry》2012,51(25):5033-5040
Tetherin/Bst-2 is a cell surface protein that can act as a restriction factor against a number of enveloped viruses, including HIV-1. It acts by tethering new virus particles to the host cell membrane, promoting their internalization and degradation. Tetherin is a type II membrane protein, with an N-terminal transmembrane domain, an extracellular coiled-coil domain, and a C-terminal GPI anchor. This double membrane anchor is important for anti-HIV activity, as is dimerization of the coiled-coil domain, but despite recent crystal structures of the coiled-coil ectodomains of human and mouse tetherin, the topology of tetherin with respect to host and viral membranes has yet to be determined. The tetherin transmembrane domain is also thought to mediate interactions with the HIV-1 encoded integral membrane protein Vpu, which is an antagonist of tetherin, through direct binding to the transmembrane region of Vpu. Using a combination of SDS-PAGE, size exclusion chromatography, and pyrene excimer fluorescence, we show that in the absence of the coiled-coil domain the transmembrane domain of human tetherin forms parallel homodimers in membrane mimetic environments. Transmembrane domain dimerization does not require disulfide bond formation and is favored in TFE, SDS micelles, and POPC liposomes. This observation has implications for functional models of tetherin, suggesting that both transmembrane domains in the dimeric molecule are inserted into the same lipid bilayer, rather than into opposing membranes.  相似文献   

8.
Tetherin (CD317/BST2) is an interferon-induced membrane protein that inhibits the release of diverse enveloped viral particles. Several mammalian viruses have evolved countermeasures that inactivate tetherin, with the prototype being the HIV-1 Vpu protein. Here we show that the human herpesvirus Kaposi''s sarcoma-associated herpesvirus (KSHV) is sensitive to tetherin restriction and its activity is counteracted by the KSHV encoded RING-CH E3 ubiquitin ligase K5. Tetherin expression in KSHV-infected cells inhibits viral particle release, as does depletion of K5 protein using RNA interference. K5 induces a species-specific downregulation of human tetherin from the cell surface followed by its endosomal degradation. We show that K5 targets a single lysine (K18) in the cytoplasmic tail of tetherin for ubiquitination, leading to relocalization of tetherin to CD63-positive endosomal compartments. Tetherin degradation is dependent on ESCRT-mediated endosomal sorting, but does not require a tyrosine-based sorting signal in the tetherin cytoplasmic tail. Importantly, we also show that the ability of K5 to substitute for Vpu in HIV-1 release is entirely dependent on K18 and the RING-CH domain of K5. By contrast, while Vpu induces ubiquitination of tetherin cytoplasmic tail lysine residues, mutation of these positions has no effect on its antagonism of tetherin function, and residual tetherin is associated with the trans-Golgi network (TGN) in Vpu-expressing cells. Taken together our results demonstrate that K5 is a mechanistically distinct viral countermeasure to tetherin-mediated restriction, and that herpesvirus particle release is sensitive to this mode of antiviral inhibition.  相似文献   

9.
Tetherin, also known as BST2, CD317 or HM1.24, was recently identified as an interferon-inducible host–cell factor that interferes with the detachment of virus particles from infected cells. HIV-1 overcomes this restriction by expressing an accessory protein, Vpu, which counteracts tetherin. Since lentiviruses of the SIVsmm/mac/HIV-2 lineage do not have a vpu gene, this activity has likely been assumed by other viral gene products. We found that deletion of the SIVmac239 nef gene significantly impaired virus release in cells expressing rhesus macaque tetherin. Virus release could be restored by expressing Nef in trans. However, Nef was unable to facilitate virus release in the presence of human tetherin. Conversely, Vpu enhanced virus release in the presence of human tetherin, but not in the presence of rhesus tetherin. In accordance with the species-specificity of Nef in mediating virus release, SIV Nef downregulated cell-surface expression of rhesus tetherin, but did not downregulate human tetherin. The specificity of SIV Nef for rhesus tetherin mapped to four amino acids in the cytoplasmic domain of the molecule that are missing from human tetherin, whereas the specificity of Vpu for human tetherin mapped to amino acid differences in the transmembrane domain. Nef alleles of SIVsmm, HIV-2 and HIV-1 were also able to rescue virus release in the presence of both rhesus macaque and sooty mangabey tetherin, but were generally ineffective against human tetherin. Thus, the ability of Nef to antagonize tetherin from these Old World primates appears to be conserved among the primate lentiviruses. These results identify Nef as the viral gene product of SIV that opposes restriction by tetherin in rhesus macaques and sooty mangabeys, and reveal species-specificity in the activities of both Nef and Vpu in overcoming tetherin in their respective hosts.  相似文献   

10.
The HIV-1 accessory protein Vpu counteracts tetherin (BST-2/CD317) by preventing its incorporation into virions, reducing its surface expression, and ultimately promoting its degradation. Here we characterize a putative trafficking motif, EXXXLV, in the second alpha helix of the subtype-B Vpu cytoplasmic tail as being required for efficient tetherin antagonism. Mutation of this motif prevents ESCRT-dependent degradation of tetherin/Vpu complexes, tetherin cell surface downregulation, but not its physical interaction with Vpu. Importantly, this motif is required for efficient cell-free virion release from CD4+ T cells, particularly after their exposure to type-1 interferon, indicating that the ability to reduce surface tetherin levels and promote its degradation is important to counteract restriction under conditions that the virus likely encounters in vivo. Vpu EXXXLV mutants accumulate with tetherin at the cell surface and in endosomal compartments, but retain the ability to bind both β-TrCP2 and HRS, indicating that this motif is required for a post-binding trafficking event that commits tetherin for ESCRT-dependent degradation and prevents its transit to the plasma membrane and viral budding zones. We further found that while Vpu function is dependent on clathrin, and the entire second alpha helix of the Vpu tail can be functionally complemented by a clathrin adaptor binding peptide derived from HIV-1 Nef, none of the canonical clathrin adaptors nor retromer are required for this process. Finally we show that residual activity of Vpu EXXXLV mutants requires an intact endocytic motif in tetherin, suggesting that physical association of Vpu with tetherin during its recycling may be sufficient to compromise tetherin activity to some degree.  相似文献   

11.
Human tetherin is a host restriction factor that inhibits replication of enveloped viruses by blocking viral release. Tetherin has an unusual topology that includes an N-terminal cytoplasmic tail, a single transmembrane domain, an extracellular domain, and a C-terminal glycosylphosphatidylinositol anchor. Tetherin is not well conserved across species, so it inhibits viral replication in a species-specific manner. Thus, studies of tetherin activities from different species provide an important tool for understanding its antiviral mechanism. Here, we report cloning of equine tetherin and characterization of its antiviral activity. Equine tetherin shares 53%, 40%, 36%, and 34% amino acid sequence identity with feline, human, simian, and murine tetherins, respectively. Like the feline tetherin, equine tetherin has a shorter N-terminal domain than human tetherin. Equine tetherin is localized on the cell surface and strongly blocks human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency virus (SIV), and equine infectious anemia virus (EIAV) release from virus-producing cells. The antiviral activity of equine tetherin is neutralized by EIAV envelope protein, but not by the HIV-1 accessory protein Vpu, which is a human tetherin antagonist, and EIAV envelope protein does not counteract human tetherin. These results shed new light on our understanding of the species-specific tetherin antiviral mechanism.  相似文献   

12.
The interferon-inducible cellular protein tetherin (CD317/BST-2) inhibits the release of a broad range of enveloped viruses. The HIV-1 accessory protein Vpu enhances virus particle release by counteracting this host restriction factor. While the antagonism of human tetherin by Vpu has been associated with both proteasomal and lysosomal degradation, the link between Vpu-mediated tetherin degradation and the ability of Vpu to counteract the antiviral activity of tetherin remains poorly understood. Here, we show that human tetherin is expressed at low levels in African green monkey kidney (COS) cells. However, Vpu markedly increases tetherin expression in this cell line, apparently by sequestering it in an internal compartment that bears lysosomal markers. This stabilization of tetherin by Vpu requires the transmembrane sequence of human tetherin. Although Vpu stabilizes human tetherin in COS cells, it still counteracts the ability of tetherin to suppress virus release. The enhancement of virus release by Vpu in COS cells is associated with a modest reduction in cell-surface tetherin expression, even though the overall expression of tetherin is higher in the presence of Vpu. This study demonstrates that COS cells provide a model system in which Vpu-mediated enhancement of HIV-1 release is uncoupled from Vpu-mediated tetherin degradation.  相似文献   

13.
HIV-1 Vpu prevents incorporation of tetherin (BST2/ CD317) into budding virions and targets it for ESCRT-dependent endosomal degradation via a clathrin-dependent process. This requires a variant acidic dileucine-sorting motif (ExxxLV) in Vpu. Structural studies demonstrate that recombinant Vpu/tetherin fusions can form a ternary complex with the clathrin adaptor AP-1. However, open questions still exist about Vpu’s mechanism of action. Particularly, whether endosomal degradation and the recruitment of the E3 ubiquitin ligase SCFβTRCP1/2 to a conserved phosphorylated binding site, DSGNES, are required for antagonism. Re-evaluation of the phenotype of Vpu phosphorylation mutants and naturally occurring allelic variants reveals that the requirement for the Vpu phosphoserine motif in tetherin antagonism is dissociable from SCFβTRCP1/2 and ESCRT-dependent tetherin degradation. Vpu phospho-mutants phenocopy ExxxLV mutants, and can be rescued by direct clathrin interaction in the absence of SCFβTRCP1/2 recruitment. Moreover, we demonstrate physical interaction between Vpu and AP-1 or AP-2 in cells. This requires Vpu/tetherin transmembrane domain interactions as well as the ExxxLV motif. Importantly, it also requires the Vpu phosphoserine motif and adjacent acidic residues. Taken together these data explain the discordance between the role of SCFβTRCP1/2 and Vpu phosphorylation in tetherin antagonism, and indicate that phosphorylation of Vpu in Vpu/tetherin complexes regulates promiscuous recruitment of adaptors, implicating clathrin-dependent sorting as an essential first step in tetherin antagonism.  相似文献   

14.
Human immunodeficiency virus type 1 (HIV-1) Vpu enhances the release of viral particles from infected cells by interfering with the function of BST-2/tetherin, a cellular protein inhibiting virus release. The Vpu protein encoded by NL4-3, a widely used HIV-1 laboratory strain, antagonizes human BST-2 but not monkey or murine BST-2, leading to the conclusion that BST-2 antagonism by Vpu is species specific. In contrast, we recently identified several primary Vpu isolates, such as Vpu of HIV-1DH12, capable of antagonizing both human and rhesus BST-2. Here we report that while Vpu interacts with human BST-2 primarily through their respective transmembrane domains, antagonism of rhesus BST-2 by Vpu involved an interaction of their cytoplasmic domains. Importantly, a Vpu mutant carrying two mutations in its transmembrane domain (A14L and W22A), rendering it incompetent for interaction with human BST-2, was able to interact with human BST-2 carrying the rhesus BST-2 cytoplasmic domain and partially neutralized the ability of this BST-2 variant to inhibit viral release. Bimolecular fluorescence complementation analysis to detect Vpu–BST-2 interactions suggested that the physical interaction of Vpu with rhesus or chimpanzee BST-2 involves a 5-residue motif in the cytoplasmic domain of BST-2 previously identified as important for the antagonism of monkey and great ape BST-2 by simian immunodeficiency virus (SIV) Nef. Thus, our study identifies a novel mechanism of antagonism of monkey and great ape BST-2 by Vpu that targets the same motif in BST-2 used by SIV Nef and might explain the expanded host range observed for Vpu isolates in our previous study.  相似文献   

15.
Nef is the viral gene product employed by the majority of primate lentiviruses to overcome restriction by tetherin (BST-2 or CD317), an interferon-inducible transmembrane protein that inhibits the detachment of enveloped viruses from infected cells. Although the mechanisms of tetherin antagonism by HIV-1 Vpu and HIV-2 Env have been investigated in detail, comparatively little is known about tetherin antagonism by SIV Nef. Here we demonstrate a direct physical interaction between SIV Nef and rhesus macaque tetherin, define the residues in Nef required for tetherin antagonism, and show that the anti-tetherin activity of Nef is dependent on clathrin-mediated endocytosis. SIV Nef co-immunoprecipitated with rhesus macaque tetherin and the Nef core domain bound directly to a peptide corresponding to the cytoplasmic domain of rhesus tetherin by surface plasmon resonance. An analysis of alanine-scanning substitutions identified residues throughout the N-terminal, globular core and flexible loop regions of Nef that were required for tetherin antagonism. Although there was significant overlap with sequences required for CD4 downregulation, tetherin antagonism was genetically separable from this activity, as well as from other Nef functions, including MHC class I-downregulation and infectivity enhancement. Consistent with a role for clathrin and dynamin 2 in the endocytosis of tetherin, dominant-negative mutants of AP180 and dynamin 2 impaired the ability of Nef to downmodulate tetherin and to counteract restriction. Taken together, these results reveal that the mechanism of tetherin antagonism by Nef depends on a physical interaction between Nef and tetherin, requires sequences throughout Nef, but is genetically separable from other Nef functions, and leads to the removal of tetherin from sites of virus release at the plasma membrane by clathrin-mediated endocytosis.  相似文献   

16.
The recently identified restriction factor tetherin/BST-2/CD317 is an interferon-inducible trans-membrane protein that restricts HIV-1 particle release in the absence of the HIV-1 countermeasure viral protein U (Vpu). It is known that Tantalus monkey CV1 cells can be rendered non-permissive to HIV-1 release upon stimulation with type 1 interferon, despite the presence of Vpu, suggesting species-specific sensitivity of tetherin proteins to viral countermeasures such as Vpu. Here we demonstrate that Tantalus monkey tetherin restricts HIV-1 by nearly two orders of magnitude, but in contrast to human tetherin the Tantalus protein is insensitive to HIV-1 Vpu. We have investigated tetherin''s sensitivity to Vpu using positive selection analyses, seeking evidence for evolutionary conflict between tetherin and viral countermeasures. We provide evidence that tetherin has undergone positive selection during primate evolution. Mutation of a single amino acid (showing evidence of positive selection) in the trans-membrane cap of human tetherin to that in Tantalus monkey (T45I) substantially impacts on sensitivity to HIV-1 Vpu, but not on antiviral activity. Finally, we provide evidence that cellular steady state levels of tetherin are substantially reduced by Vpu, and that the T45I mutation abrogates this effect. This study provides evidence that tetherin is important in protecting mammals against viral infection, and that the HIV-1 Vpu–mediated countermeasure is specifically adapted to act against human tetherin. It also emphasizes the power of selection analyses to illuminate the molecular details of host–virus interactions. This work suggests that tetherin binding agents might protect it from viral encoded countermeasures and thus make powerful antivirals.  相似文献   

17.
Tetherin (BST-2 or CD317) is an interferon-inducible transmembrane protein that inhibits virus release from infected cells. Whereas HIV-1 Vpu and HIV-2 Env counteract human tetherin, most SIVs use Nef to antagonize the tetherin proteins of their nonhuman primate hosts. Here, we show that compensatory changes in the cytoplasmic domain of SIV gp41, acquired by a nef-deleted virus that regained a pathogenic phenotype in infected rhesus macaques, restore resistance to tetherin. These changes facilitate virus release in the presence of rhesus tetherin, but not human tetherin, and enhance virus replication in interferon-treated primary lymphocytes. The substitutions in gp41 result in a selective physical association with rhesus tetherin, and the internalization and sequestration of rhesus tetherin by a mechanism that depends on a conserved endocytosis motif in gp41. These results are consistent with HIV-2 Env antagonism of human tetherin and suggest that the ability to oppose tetherin is important for lentiviral pathogenesis.  相似文献   

18.
Vigan R  Neil SJ 《Journal of virology》2011,85(19):9737-9748
Tetherin (BST-2/CD317) is thought to restrict retroviral particle release by cross-linking nascent viral and cellular membranes. Unlike the Vpu proteins encoded by human immunodeficiency virus type 1 (HIV-1) group M strains (M-Vpu), those from the nonpandemic HIV-1 group O (O-Vpu) are not able to counteract tetherin activity. Here, we characterized the basis of this defect in O-Vpu. O-Vpu differs from M-Vpu in that it fails to interact with tetherin and downregulate it from the cell surface. Unlike M-Vpu, O-Vpu localizes to the endoplasmic reticulum (ER) rather than the trans-Golgi network (TGN). Interestingly M-Vpu bearing an ER retention signal at the C terminus localizes similarly to O-Vpu. While it still interacts with tetherin, it fails to promote virus release, suggesting that O-Vpu deficiency correlates with its cellular distribution in the endoplasmic reticulum as well as its failure to bind tetherin. O-Vpu-M-Vpu chimeras were designed to identify the minimal changes required to restore tetherin antagonism. While several chimeric proteins bearing residues of the M-Vpu transmembrane domain into the O-Vpu transmembrane domain recovered tetherin binding in coimmunoprecipitation studies, efficient antagonism required an additional glutamic acid-to-lysine change in the membrane-proximal hinge region of the O-Vpu cytoplasmic tail that was sufficient to abolish ER retention and permit TGN localization.  相似文献   

19.
During human immunodeficiency virus-1 (HIV-1) assembly, the host proteins CD4 (the HIV-1 receptor) and tetherin (an interferon stimulated anti-viral protein) both reduce viral fitness. The HIV-1 accessory gene Vpu counteracts both of these proteins, but it is thought to do so through two distinct mechanisms. Modulation of CD4 likely occurs through proteasomal degradation from the endoplasmic reticulum. The exact mechanism of tetherin modulation is less clear, with possible roles for degradation and alteration of protein transport to the plasma membrane. Most investigations of Vpu function have used different assays for CD4 and tetherin. In addition, many of these investigations used exogenously expressed Vpu, which could result in variable expression levels. Thus, few studies have investigated these two Vpu functions in parallel assays, making direct comparisons difficult. Here, we present results from a rapid assay used to simultaneously investigate Vpu-targeting of both tetherin and a viral glycoprotein, gibbon ape leukemia virus envelope (GaLV Env). We previously reported that Vpu modulates GaLV Env and prevents its incorporation into HIV-1 particles through a recognition motif similar to that found in CD4. Using this assay, we performed a comprehensive mutagenic scan of Vpu in its native proviral context to identify features required for both types of activity. We observed considerable overlap in the Vpu sequences required to modulate tetherin and GaLV Env. We found that features in the cytoplasmic tail of Vpu, specifically within the cytoplasmic tail hinge region, were required for modulation of both tetherin and GaLV Env. Interestingly, these same regions features have been determined to be critical for CD4 downmodulation. We also observed a role for the transmembrane domain in the restriction of tetherin, as previously reported, but not of GaLV Env. We propose that Vpu may target both proteins in a mechanistically similar manner, albeit in different cellular locations.  相似文献   

20.
The HIV-1 Vpu protein is expressed from a bi-cistronic message late in the viral life cycle. It functions during viral assembly to maximise infectious virus release by targeting CD4 for proteosomal degradation and counteracting the antiviral protein tetherin (BST2/CD317). Single genome analysis of vpu repertoires throughout infection in 14 individuals infected with HIV-1 clade B revealed extensive amino acid diversity of the Vpu protein. For the most part, this variation in Vpu increases over the course of infection and is associated with predicted epitopes of the individual''s MHC class I haplotype, suggesting CD8+ T cell pressure is the major driver of Vpu sequence diversity within the host. Despite this variability, the Vpu functions of targeting CD4 and counteracting both physical virus restriction and NF-κB activation by tetherin are rigorously maintained throughout HIV-1 infection. Only a minority of circulating alleles bear lesions in either of these activities at any given time, suggesting functional Vpu mutants are heavily selected against even at later stages of infection. Comparison of Vpu proteins defective for one or several functions reveals novel determinants of CD4 downregulation, counteraction of tetherin restriction, and inhibition of NF-κB signalling. These data affirm the importance of Vpu functions for in vivo persistence of HIV-1 within infected individuals, not simply for transmission, and highlight its potential as a target for antiviral therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号