首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Homologues of Drosophila germ cell determinant genes such as vasa, nanos and tudor have recently been implicated in development of the male germline in mice. In the present study, the mouse gene encoding Tudor domain containing protein 5 (TDRD5) was isolated from a 12.5-13.5 days post coitum (dpc) male-enriched subtracted cDNA library. Whole-mount in situ hybridization analysis of Tdrd5 expression in the mouse embryonic gonad indicated that this gene is upregulated in the developing testis from 12.5 dpc, with expression levels remaining higher in testis than ovary throughout embryogenesis. Expression of Tdrd5 was absent in testes isolated from We/We embryos, which lack germ cells. In situ hybridization (ISH) on cryosectioned 13.5 dpc testes suggests that expression of Tdrd5, like that of Oct4, is restricted to germ cells. Northern hybridization analysis of expression in adult tissues indicated that Tdrd5 is expressed in the testis only, implying that expression of this gene is restricted to the male germline throughout development to adulthood.  相似文献   

3.
4.
5.
6.
7.
The vertebrate gonad develops from the intermediate mesoderm as an initially bipotential organ anlage, the genital ridge. In mammals, Sry acts as a genetic switch towards testis development. Sox9 has been shown to act downstream of Sry in testis development, while Dax1 appears to counteract Sry. Few more genes have been implicated in early gonad development. However, the genetic networks controlling early differentiation events in testis and ovary are still far from being understood. In order to provide a broader basis for the molecular analysis of gonad development, high-throughput gene expression analysis was utilized to identify genes specifically expressed in the gonad. In total, among 138 genes isolated which showed tissue specific expression in the embryo, 79 were detected in the developing gonad or sex ducts. Twenty-seven have not been functionally described before, while 40 represent known genes and 12 are putative mouse orthologues. Forty-five of the latter two groups (86%) have not been described previously in the fetal gonad. In addition, 21 of the gonad specific genes showed sex-dimorphic expression suggesting a role in sex determination and/or gonad differentiation. Eighteen of the latter (86%) have not been described previously in the fetal gonad. In total we provide new data on 72 genes which may play a role in gonad or sex duct development and/or sex determination. Thus we have generated a large gene resource for the investigation of these processes, and demonstrate the suitability of high-throughput gene expression screening for the genetic analysis of organogenesis.  相似文献   

8.
9.
10.
11.
12.
The germ cell lineage is first recognized as a population of mitotically proliferating primordial germ cells that migrate toward the gonadal ridge. Shortly after arriving at the gonadal ridge, the germ cells begin to initiate a commitment to gamete production in the developing gonad. The mechanisms controlling this transition are poorly understood. We recently reported that a mouse germ cell nuclear antigen 1 (GCNA1) is initially detected in both male and female germ cells as they reach the gonad at 11.5 days postcoitum (dpc). GCNA1 is continually expressed in germ cells through all stages of gametogenesis until the diplotene/dictyate stage of meiosis I. Since GCNA1 expression commences soon after primordial germ cells arrive at the gonadal ridge, we wanted to determine whether the gonadal environment was essential for induction of GCNA1 expression. By examining GCNA1 expression in germ cells that migrate ectopically into the adrenal gland, we determined that both the gonadal and adrenal gland environments allow GCNA1 expression. We also examined GCNA1 expression in Ftz-F1 null mice, which are born lacking gonads and adrenal glands. During embryonic development in the Ftz-F1 null mice, the gonad and most germ cells undergo apoptotic degeneration at about 12.5 dpc. While most of the germ cells undergo apoptosis without expressing GCNA1, a few surviving germs cells, especially outside the involuting gonad clearly express GCNA1. Thus, although the Ftz-F1 gene is essential for gonadal and adrenal development, induction of GCNA1 expression in germ cells does not require Ftz-F1 gene products. The finding that germ cell GCNA1 expression is not restricted to the gonadal environment and is not dependent on the Ftz-F1 gene products suggests that GCNA1 expression may be initiated in the germ cell lineage by autonomous means. Mol. Reprod. Dev. 48:154–158, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
We describe the discovery and characterization of ADAMTS10, a novel metalloprotease encoded by a locus on human chromosome 19 and mouse chromosome 17. ADAMTS10 has the typical modular organization of the ADAMTS family, with five thrombospondin type 1 repeats and a cysteine-rich PLAC (protease and lacunin) domain at the carboxyl terminus. Its domain organization and primary structure is similar to a novel long form of ADAMTS6. In contrast to many ADAMTS proteases, ADAMTS10 is widely expressed in adult tissues and throughout mouse embryo development. In situ hybridization analysis showed widespread expression of Adamts10 in the mouse embryo until 12.5 days of gestation, after which it is then expressed in a more restricted fashion, with especially strong expression in developing lung, bone, and craniofacial region. Mesenchymal, not epithelial, expression in the developing lung, kidney, gonad, salivary gland, and gastrointestinal tract is a consistent feature of Adamts10 regulation. N-terminal sequencing and treatment with decanoyl-Arg-Val-Lys-Arg-chloromethylketone indicate that the ADAMTS10 zymogen is processed by a subtilisin-like proprotein convertase at two sites (Arg64/Gly and Arg233/Ser). The widespread expression of ADAMTS10 suggests that furin, a ubiquitously expressed proprotein convertase, is the likely processing enzyme. ADAMTS10 expressed in HEK293F and COS-1 cells is N-glycosylated and is secreted into the medium, as well as sequestered at the cell surface and extracellular matrix, as demonstrated by cell surface biotinylation and immunolocalization in nonpermeabilized cells. ADAMTS10 is a functional metalloprotease as demonstrated by cleavage of alpha2-macroglobulin, although physiological substrates are presently unknown.  相似文献   

14.
The CDP-ethanolamine pathway is responsible for the de novo biosynthesis of ethanolamine phospholipids, where CDP-ethanolamine is coupled with diacylglycerols to form phosphatidylethanolamine. We have disrupted the mouse gene encoding CTP:phosphoethanolamine cytidylyltransferase, Pcyt2, the main regulatory enzyme in this pathway. Intercrossings of Pcyt2(+/-) animals resulted in small litter sizes and unexpected Mendelian frequencies, with no null mice genotyped. The Pcyt2(-/-) embryos die after implantation, prior to embryonic day 8.5. Examination of mRNA expression, protein content, and enzyme activity in Pcyt2(+/-) animals revealed the anticipated 50% decrease due to the gene dosage effect but rather a 20 to 35% decrease. [(14)C]ethanolamine radiolabeling of hepatocytes, liver, heart, and brain corroborated Pcyt2 gene expression and activity data and showed a decreased rate of phosphatidylethanolamine biosynthesis in heterozygotes. Total phospholipid content was maintained in Pcyt2(+/-) tissues; however, this was not due to compensatory increases in the decarboxylation of phosphatidylserine. These results establish the necessity of Pcyt2 for murine development and demonstrate that a single Pcyt2 allele in heterozygotes can maintain phospholipid homeostasis.  相似文献   

15.
16.
17.
18.
DNA methylation at CpG sequences is involved in tissue-specific and developmentally regulated gene expression. The Sry (sex-determining region on the Y chromosome) gene encodes a master protein for initiating testis differentiation in mammals, and its expression is restricted to gonadal somatic cells at 10.5-12.5 days post-coitum (dpc) in the mouse. We found that in vitro methylation of the 5'-flanking region of the Sry gene caused suppression of reporter activity, implying that Sry gene expression could be regulated by DNA methylation-mediated gene silencing. Bisulfite restriction mapping and sodium bisulfite sequencing revealed that the 5'-flanking region of the Sry gene was hypermethylated in the 8.5-dpc embryos in which the Sry gene was not expressed. Importantly, this region was specifically hypomethylated in the gonad at 11.5 dpc, while the hypermethylated status was maintained in tissues that do not express the Sry gene. We concluded that expression of the Sry gene is under the control of an epigenetic mechanism mediated by DNA methylation.  相似文献   

19.
We have investigated the species-specific replication of polyomavirus DNA in the cell-free system that was established previously (Y. Murakami, T. Eki, M. Yamada, C. Prives, and J. Hurwitz, Proc. Natl. Acad. Sci. USA 83:6347-6351, 1986). Extracts from various species of cells supported polyomavirus DNA replication in a species-specific manner that was consistent with the host range specificity of polyomavirus; extracts prepared from mouse and hamster cells were active, whereas extracts prepared from human, monkey, and insect cells were inactive. The addition of DNA polymerase alpha-primase purified from mouse cells induced the replication of polyomavirus DNA in a cell-free system containing polyomavirus large tumor antigen and nonpermissive cell extracts, such as human and insect cell extracts. Isolated mouse DNA primase alone also induced polyomavirus DNA replication in human cell extracts but not in insect cell extracts, indicating that mouse DNA primase plays the principal role in determining permissiveness for polyomavirus DNA replication.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号