首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The distribution of carbonic anhydrase in the human, monkey, and rat lung was studied by the histochemical method of Hansson. High activity of this enzyme was demonstrated in the endothelium of pulmonary capillaries. In the human and the monkey lung enzyme activity was exhibited in the whole circumference of the capillaries, but in the rat enzyme activity is confined to capillary segments having close contact with alveolar epithelium forming the blood-air barrier. Staining was inhibited by 10 microM acetazolamide, but was not affected by 10 microM Cl 13,850, an inactive acetazolamide analogue. The location of carbonic anhydrase in the lung supports the idea that pulmonary carbonic anhydrase promotes CO2 elimination from the blood into the alveolar space. Its possible functions may be to act upon plasma to accelerate the conversion of HCO-3 to CO2 and to facilitate CO2 transport through the lung tissue.  相似文献   

2.
Rat liver and rabbit skeletal muscle were studied by Hansson's method for histochemical demonstration of carbonic anhydrase activity. In histochemical model experiments purified male rat liver carbonic anhydrase was much more resistant to acetazolamide than rat erythrocyte carbonic anhydrase. Male rat liver slices showed cytoplasmic staining, which was about 1000 times more resistant to acetazolamide and ethoxzolamide than that of female rat liver or erthyrocytes of either sex. Rabbit skeletal muscle slices showed staining at the sarcolemma of all fibers, whereas the staining of the sarcoplasm varied. The walls of capillaries situated within the muscle bundles were intensely stained. The sarcoplasmic staining of a certain number of fibers was at least 1000 times less sensitive to acetazolamide than the other staining. These findings, which are in good agreement with biochemical data, show that the sulfonamides inhibit histochemical staining in a specific way. This is strong evidence for the specificity of the method.  相似文献   

3.
M H Feuston  W J Scott 《Teratology》1985,32(3):407-419
We have attempted to elucidate the mechanism of cadmium teratogenesis utilizing inbred mouse strains sensitive (C57BL/6J) or resistant (SWV) to the embryotoxic effect of this common heavy metal contaminant. Carbonic anhydrase activity of whole-embryo homogenates was moderately depressed in C57BL/6J mice compared to a slight and transient decrease in the resistant SWV mice. Embryonic erythrocytes were similarly examined, and the cadmium did not have any effect on carbonic anhydrase activity in either strain. Likewise, histochemical examination of carbonic anhydrase activity did not reveal any effect of cadmium in the embryos of their strain. Generally, the zinc concentration of embryos was not affected by cadmium administration. However, increased levels of zinc were observed in cadmium-exposed yolk sacs of both strains suggesting that cadmium produces an adverse effect on yolk sac function. Untreated C57BL/6J units (embryo plus surrounding extraembryonic membranes), embryos, and yolk sacs had much lower hemoglobin concentrations than those observed in untreated SWV units, embryos, and yolk sacs. Additionally, cadmium exposure significantly decreased C57BL/6J embryonic hemoglobin levels on gestation day 10 (PM) and increased C57BL/6J yolk sac hemoglobin levels on gestation days 10 (AM) and 10 (PM). No difference in hemoglobin concentration was observed between untreated and cadmium-treated SWV embryos or yolk sacs. We propose that cadmium induces forelimb ectrodactyly by creating an acidotic embryonic environment and that the primary site at which cadmium exerts its teratogenic effect might be the yolk sac.  相似文献   

4.
A 13-fold increase in carbonic anhydrase specific activity was found during the first 24 h in developing embryos of the sea urchin, Strongylocentrotus purpuratus. Carbonic anhydrase activity was sensitive to inhibition by 10−4 M acetazolamide. Roles for carbonic anhydrase activity in intracellular pH regulation and spicule formation are discussed.  相似文献   

5.
The cellular distribution of carbonic anhydrase is a key characteristic for the role of the enzyme in cell function. In several epithelia involved in bicarbonate transport this enzyme is located in the plasma membrane. Because bicarbonate secretion is an important mechanism in bile formation by the liver, we investigated the presence of carbonic anhydrase activity in isolated plasma membranes from rat hepatocytes. Carbonic anhydrase activity was enriched 1.79-fold in plasma membrane preparations. This activity was inhibited by acetazolamide and activated by Triton X-100, but was insensitive to Cl- or CNO-. It is highly unlikely that the low contamination of cytoplasm and intracellular membranes could account for the presence of carbonic anhydrase activity in plasma membrane preparations. Moreover, the results from resuspension/washing of plasma membrane fractions in ionic media suggest an absence of soluble carbonic anhydrase adsorption upon plasma membrane. Accordingly, the present findings provide strong evidence for the presence of carbonic anhydrase in the plasma membrane of rat hepatocytes.  相似文献   

6.
Purification and characterization of human salivary carbonic anhydrase   总被引:15,自引:0,他引:15  
A novel carbonic anhydrase was purified from human saliva with inhibitor affinity chromatography followed by ion-exchange chromatography. The molecular weight was determined to be 42,000 on sodium dodecyl sulfate polyacrylamide gel electrophoresis, indicating that the human salivary enzyme is larger than the cytosolic isoenzymes CA I, CA II, and CA III (Mr 29,000) from human tissue sources. Each molecule of the salivary enzyme had two N-linked oligosaccharide chains which were cleaved by endo-beta-N-acetylglucosaminidase F but not by endo-beta-N-acetylglucosaminidase H, indicating that the oligosaccharides are complex type. The isoelectric point was determined to be 6.4, but significant charge heterogeneity was found in different preparations. The human salivary isozyme has lower specific activity than the rat salivary isozyme and the human red blood cell isozyme II in the CO2 hydratase reaction. The inhibitory properties of the salivary isozyme resemble those of CA II with iodide, sulfanilamide, and bromopyruvic acid, but the salivary enzyme is less sensitive to acetazolamide and methazolamide than CA II. Antiserum raised in a rabbit against the salivary enzyme cross-reacted with CA II from human erythrocytes, indicating that human salivary carbonic anhydrase and CA II must share at least one antigenic site. CA I and CA III did not crossreact with this antiserum. The amount of salivary carbonic anhydrase in the saliva of the CA II-deficient patients was greatly reduced, indicating that the CA II deficiency mutation directly or indirectly affects the expression of the salivary carbonic anhydrase isozyme. From these results we conclude that the salivary carbonic anhydrase is immunologically and genetically related to CA II, but that it is a novel and distinct isozyme which we tentatively designate CA VI.  相似文献   

7.
Sulfonamide drugs mediate their main therapeutic effects through modulation of the activity of membrane and cytosolic carbonic anhydrases. How interactions of sulfonamide drugs impact structural properties and activity of carbonic anhydrases requires further study. Here the effect of acetazolamide on the structure and function of bovine carbonic anhydrase II (cytosolic form of the enzyme) was evaluated. The Far-UV CD studies indicated that carbonic anhydrase, for the most part, retains its secondary structure in the presence of acetazolamide. Fluorescence measurements using iodide ions and ANS, along with ASA calculations, revealed that in the presence of acetazolamide minimal conformational changes occurred in the carbonic anhydrase structure. These structural changes, which may involve spatial reorientation of Trp 4 and Trp 190 or some other related aminoacyl residues near the active site, considerably reduced the catalytic activity of the enzyme while its thermal stability was slightly increased. Our binding results indicated that binding of acetazolamide to the protein could occur with a 1:1 ratio, one mole of acetazolamide per one mole of the protein. However, the obtained kinetic results supported the existence of two acetazolamide binding sites on the protein structure. The occupation of each of these binding sites by acetazolamide completely inactivates the enzyme. Advanced analysis of the kinetic results revealed that there are two substrate (p-NPA) binding sites whose simultaneous occupation is required for full enzyme activity. Thus, these studies suggest that the two isoforms of CA II should exist in the medium, each of which contains one substrate binding site (catalytic site) and one acetazolamide binding site. The acetazolamide binding site is equivalent to the catalytic site, thus, inhibiting enzyme activity by a competitive mechanism.  相似文献   

8.
The activity and subcellular distribution of carbonic anhydrase in a coccolithophorid alga, CCMP 299, was examined. The enzyme could not be detected in crude cell homogenates but was present at high specific activity (27.5 unit·mg?1 protein) in chloroplasts (density, 1.14 g·cm?3) isolated in a sucrose gradient. The carbonic anhydrase activity was sensitive to known inhibitors. Inhibition at 50% (I50) was obtained with concentrations of 4.60 mM and 2.65 mM for acetazolamide and NaN3, respectively. These levels are more consistent with patterns of inhibition previously observed for chloroplastic (as compared to periplasmic) carbonic anhydrase. In this organism, carbonic anhydrase was localized in the chloroplast stroma. These findings are discussed in terms of the relationship among dissolved inorganic carbon interconversions, photosynthesis, and calcification.  相似文献   

9.
Here we report the existence, purification and characterisation of carbonic anhydrase in Plasmodium falciparum. The infected red cells contained carbonic anhydrase approximately 2 times higher than those of normal red cells. The three developmental forms of the asexual stages, ring, trophozoite and schizont were isolated from their host red cells and found to have stage-dependent activity of the carbonic anhydrase. The enzyme was purified to homogeneity from the crude extract of P. falciparum using multiple steps of fast liquid chromatographic techniques. It had a Mr of 32 kDa and was active in a monomeric form. The human red cell enzyme was also purified for comparison with the parasite enzyme. The parasite enzyme activity was sensitive to well-known sulfonamide-based inhibitors of both bacterial and mammalian enzymes, sulfanilamide and acetazolamide. The kinetic properties and the amino terminal sequences of the purified enzymes from the parasite and host red cell were found to be different, indicating that the purified protein most likely exhibited the P. falciparum carbonic anhydrase activity. In addition, the enzyme inhibitors had antimalarial effect against in vitro growth of P. falciparum. Moreover, the vital contribution of the carbonic anhydrase to the parasite survival makes the enzyme an attractive target for therapeutic evaluation.  相似文献   

10.
The presence of carbonic anhydrase (type V) was recently documented in rat and mouse pancreatic islet beta-cells by immunostaining and Western blotting. In the present study, the activity of carbonic anhydrase was measured in rat islet homogenates and shown to be about four times lower than in rat parotid cells. The pattern for the inhibitory action of acetazolamide on carbonic anhydrase activity also differed in islet and parotid cell homogenates, suggesting the presence of different isoenzymes. NaN3 inhibited carbonic anhydrase activity in islet homogenates and both D-[U-14C]glucose oxidation and glucose-stimulated insulin secretion. Acetazolamide (0.3-10.0 mM) also decreased glucose-induced insulin output but failed to affect adversely D-[U-14C]glucose oxidation, although it inhibited the conversion of D-[5-3H]glucose to [3H]OH and that of D-[U-14C]glucose to acidic metabolites. Hydrochlorothiazide (3.0-10.0 mM), which also caused a concentration-related inhibition of the secretory response, like acetazolamide (5.0-10.0 mM), decreased H(14)CO3- production from D-[U-14C]glucose (16.7 mM). Acetazolamide (5.0 mM) did not affect the activity of volume-sensitive anion channels in beta-cells but lowered intracellular pH and adversely affected both the bioelectrical response to d-glucose and its effect on the cytosolic concentration of Ca2+ in these cells. The lowering of cellular pH by acetazolamide, which could well be due to inhibition of carbonic anhydrase, might in turn account for inhibition of glycolysis. The perturbation of stimulus-secretion coupling in the beta-cells exposed to acetazolamide may thus involve impaired circulation in the pyruvate-malate shuttle, altered mitochondrial Ca2+ accumulation, and perturbation of Cl- fluxes, resulting in both decreased bioelectrical activity and insulin release.  相似文献   

11.
Synopsis The localization of carbonic anhydrase activity in the vertebrate nephron has been examined with particular reference to the proximal tubule and collecting duct. In all species studied, activity was present in the proximal tubular epithelium. In the pigeon and turtle, distinctive and similar patterns of staining were observed in the glomerulus and first portion of the proximal tubule. In the rat and rhesus monkey, the entire proximal tubule exhibited activity; in these species it has been shown previously with micropuncture techniques that there is a high absorptive capacity of this nephron segment for bicarbonate. In contrast, large portions of the dog proximal tubule were inactive; similar studies in this animal have shown tubular concentrations of bicarbonate only slightly lower than plasma levels. In the rat and dog, the entire length of the collecting duct was diffusely and intensely active; in contrast, pigeon collecting duct showed no activity. An alternating pattern of inactive and intensely active cells was observed in the collecting ducts of the toad, turtle, rabbit and monkey. A similar pattern has been described in the turtle and toad bladder, tissues utilized forin vitro studies of ion transport and H+ secretion.  相似文献   

12.
Sarcolemmal carbonic anhydrase in red and white rabbit skeletal muscle   总被引:2,自引:0,他引:2  
Sarcolemmal vesicles of white and red skeletal muscles of the rabbit were prepared by consecutive density gradient centrifugations in sucrose and dextran according to Seiler and Fleischer (1982, J. Biol. Chem. 257, 13,862-13,871). White and red muscle membrane fractions enriched in sarcolemma were characterized by high ouabain-sensitive Na+, K(+)-ATPase, by high Mg2(+)-ATPase activity, and by a high cholesterol content. Ca2(+)-ATPase activity, a marker enzyme for sarcoplasmic reticulum, was not detectable in the highly purified white and red muscle sarcolemmal fractions. White and red muscle sarcolemmal fractions exhibited no significant differences with regard to Na+, K(+)-ATPase, Mg2(+)-ATPase, and cholesterol. Specific activity of carbonic anhydrase in white muscle sarcolemmal fractions was 38 U.ml/mg and was 17.6 U.ml/mg in red muscle sarcolemma. Inhibition properties of sarcolemmal carbonic anhydrase were analyzed for acetazolamide, chlorzolamide, and cyanate. White muscle sarcolemmal carbonic anhydrase is characterized by inhibition constants, KI, toward acetazolamide of 4.6 X 10(-8) M, toward chlorzolamide of 0.75 X 10(-8) M, and toward cyanate of 1.3 X 10(-4) M. Red muscle sarcolemmal carbonic anhydrase is characterized by KI values toward acetazolamide of 8.1 X 10(-8) M, toward chlorzolamide of 6.3 X 10(-8) M, and toward cyanate of 0.81 X 10(-4) M. In contrast to the high specific carbonic anhydrase activities in sarcolemma, carbonic anhydrase activity in sarcoplasmic reticulum from white muscle varied between values of only 0.7 and 3.3 U.ml/mg. Carbonic anhydrase of red muscle sarcoplasmic reticulum ranged from 2.4 to 3.7 U.ml/mg.  相似文献   

13.
Investigations using steady-state culture conditions indicate that carbonic anhydrase activity is correlated to the photosynthetic rate in Euglena in some but not all circumstances. When cultures grown with 5% CO2 were changed to air growth, the photosynthetic rate was independent of the carbonic anhydrase activity. While experiments using the inhibitor acetazolamide indicated a close correlation between photosynthetic capacity and carbonic anhydrase activity, the inhibitor was found to be nonspecific. Acetazolamide altered photosystem activities directly as measured by the photoreduction of DCPIP in chloroplast preparations, whole-cell fluorescence transients of chlorophyll a, and by whole chain photoelectron flow. Ethoxzolamide, another inhibitor of carbonic anhydrase, was also found to inhibit photosystem activities, i.e., the photoreduction of DCPIP, and in vivo photoelectron flow, at high concentrations. Cells grown in 5% CO2 were less sensitive to the effects of acetazolamide than cells exposed to air. The rate of electron flow in chloroplasts from cells grown with 5% CO2 and exposed to 10 mM acetazolamide was 2.5-fold faster than that of chloroplasts from air-grown cells exposed to the same concentration of inhibitor. The whole cell chlorophyll a fluorescence transients of cultures grown with high CO2 were completely different from those of air-grown cells and also showed fewer effects on exposure to acetazolamide. These results suggest a reevaluation of the hypothesis that carbonic anhydrase activity regulates photosynthesis. It is also apparent that results from air-grown and 5% CO2-grown cultures cannot be directly compared in such studies.  相似文献   

14.
Existence of an internal carbonic anhydrase was demonstrated in the cyanobacterium Synechocystis PCC 6714. The enzyme, present at a low specific activity, was inducible by limitation in inorganic carbon and inhibited both in vivo and in vitro by acetazolamide. The internal inorganic carbon pool as determined by mass spectrometry, was similarly modulated by the actual inorganic carbon growth regime; its building up was also sensitive to acetazolamide. A possible role of carbonic anhydrase in inorganic carbon metabolism regulation through the control of the dimension and nature of the inorganic carbon pool is discussed.  相似文献   

15.
A spontaneous mutant of the cyanobacterium Synechocystis PCC6803 was isolated for its resistance to acetazolamide, an inhibitor of carbonic anhydrase. The mutant showed a deficiency in oxygen exchange between CO2 and H2O, a lower level of stable internal CO2 pool and a decreased capacity to adapt its photosynthetic affinity under limited inorganic carbon regime. The initial rate of uptake of inorganic carbon was identical to that of wild-type cells. It is demonstrated that the mutation affects the carbonic anhydrase activity. This could result from either of two impairments: a deficiency in the enzyme activity detectable by mass spectrometric determinations, or a modification of the cellular compartment in which the enzyme is located, preventing its activity.  相似文献   

16.
Inhibitors of carbonic anhydrase were tested for their effects on Photosystem II (PS II) activity in chloroplasts. We find that formate inhibition of PS II turnover rates increases as the pH of the reaction medium is lowered. Bicarbonate ions can inhibit PS II turnover rates. The relative potency of the anionic inhibitors N3?, I?, OAc?, and Cl? is the same for both carbonic anhydrase and PS II. The inhibitory effect of acetazolamide on PS II increases as light intensity decreases, indicating a lowering of quantum yields in the presence of the inhibitor. Imidazole inhibition of PS II increases with pH in a manner suggesting that the unprotonated form of the compound is inhibitory. Formate, bicarbonate, acetazolamide, and imidazole all inhibit DCMU-insensitive, silicomolybdate-supported oxygen evolution, indicating that the site(s) of action of the inhibitors is at, or before, the primary stable PS II electron acceptor Q. This inhibitory effect of low levels of HCO3? along with the known enhancement by HCO3? of quinone-mediated electron flow suggests an antagonistic control effect on PS II photochemistry. We conclude that the responses of PS II to anions (formate, bicarbonate), acetazolamide, and imidazole are analogous to the responses shown by carbonic anhydrase. These findings suggest that the enzyme carbonic anhydrase may provide a model system to gain insight into the “bicarbonate-effect” associated with PS II in chloroplasts.  相似文献   

17.
Summary The effects of different concentrations of acetazolamide, a specific carbonic anhydrase inhibitor, have been investigated in the quail kidney. The histochemical patterns, interpreted by means of quantitative analyses proved that 0.1 m acetazolamide inhibited the enzyme activity in all the reactive tubular segments except for distal tubules. At this site, the reaction product disappeared from the cytoplasm but strong positivity persisted at the apical surface. The luminal staining was still present at higher inhibitor concentrations up to 0.8 m acetazolamide. Under histophotometric analyses, the residual reactivity proved to be nearly the same at the increasing inhibitor concentrations assayed. The validity of the results was checked by similar investigations in other control tissues.On the basis of the properties known for carbonic anhydrase in mammalian kidney, we conclude that the luminal membrane staining in the quail distal tubules might be due to a carbonic anhydrase isoenzyme that is similar, both in affinity for acetazolamide and in intracellular localization, to the membrane-bound enzyme purified from mammalian proximal convoluted tubules.  相似文献   

18.
Carbonic anhydrase was identified in bone-resorbing cells present in sections of fetal rat femur embedded in glycolmethacrylate. Using a slight modification of the Hansson's histochemical method, we demonstrated that most chondroclasts (91.8-95.4%) and osteoclasts (95.1-96.3%) display a positive histochemical reaction for carbonic anhydrase. This staining was consistently inhibited in the presence of very low concentrations (10(-6), 10(-7) M) of the specific inhibitor acetazolamide. The number of chondroclasts reacting for carbonic anhydrase was identical to the number of acid phosphatase-stained chondroclasts determined on adjacent sections. A large majority of osteoclasts (96.3%) stained for carbonic anhydrase and for acid phosphatase (97.2%), with more osteoclasts reacting for the latter enzyme than the former (76.8 +/- 8.5 (SD) vs 85.3 +/- 9.2 cells/mm2 of endosteal bone; p less than 0.01). The observation that acetazolamide at a concentration as low as 10(-7) M inhibited Hansson's reaction, together with our histomorphometric results, validates the use of histochemical staining for carbonic anhydrase to evaluate activity of bone-resorbing cells identified in plastic-embedded fetal bone tissue.  相似文献   

19.
Basic muscle protein,a third genetic locus isoenzyme of carbonic anhydrase?   总被引:4,自引:0,他引:4  
Rabbit muscle cytosol extract contains a basic protein which represents about 2% of the total cytosol protein. It contains zinc in a 1:1 stoichiometric ratio, based on a molecular weight of 30,000, and it catalyzes the hydration of CO2. It is immunochemically distinct from the high and low activity forms of rabbit blood carbonic anhydrase. It has comparatively poor activity as an esterase, and about 20% of the CO2 hydratase activity of the rabbit blood low activity carbonic anhydrase. This CO2 hydratase activity is not inhibited by acetazolamide at concentrations which totally inhibit the activity of the blood carbonic anhydrases. The evidence obtained to date, though circumstantial, suggests that this basic metalloprotein is a carbonic anhydrase derived from a third genetic locus with properties considerably different from those of the mammalian carbonic anhydrases heretofore identified.  相似文献   

20.
The distribution of carbonic anhydrase in the kidney of the cynomolgus monkey was studied by the histochemical method of Hansson. Glomeruli and Bowman's capsule were inactive. Convoluted proximal tubules showed high enzyme activity at the brush border and the basolateral membranes and the cytoplasm. Straight proximal tubules were less intensely stained. In nephrons with long loops of Henle, the descending thin limb contained weak enzyme activity, whereas the ascending thin limb was inactive. The thick limb of Henle's loop displayed most enzyme activity at the luminal cell border. In distal convoluted tubules enzyme activity was restricted to the basal part of the cells. In the late distal tubule, intercalated cells appeared among the "ordinary" distal cells and contained abundant cytoplasmic enzyme. Many intensely stained intercalated cells were also found in the cortical and outer medullary segments of the collecting duct, intermingled with more weakly stained chief cells. In the inner medullary segment of the collecting duct, enzyme activity gradually disappeared. Many capillaries were clearly stained for enzyme activity. The capillary staining apparently varied with that of the kidney tubules; virtually all capillaries in the cortex, but very few in the inner medulla, were stained. The distribution of carbonic anhydrase in the kidney tubules of the monkey is very similar to that in man and in the rat, but the primate kidney differs from the rat kidney by the presence of capillary enzyme activity. The functional importance of this difference is not clear at present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号