首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite an increasing number of Antarctic soil diversity assessments, understanding of the bacterial community composition in the arid soil environments of the maritime/continental Antarctic transitional zone remains lacking. Most documented microbiological studies had focused on either the wetter environments of the Antarctic Peninsula/Scotia arc or the exceptionally arid deserts of the Dry Valleys of continental Antarctica. In this study, soil bacterial diversity from three relatively arid sites on Alexander Island and the physicochemical parameters that might influence it were assessed. In general, the study sites exhibited levels of pH, hydration and metal content different from previous reports of maritime or continental Antarctic soil habitats. Although the soil from Alexander Island exhibited similar phylum-level bacterial taxonomic composition to those of other cold and arid environments, each study site was found to harbour significantly different bacterial assemblages. The latter finding was supported by three complementary molecular methods selected to address different elements of diversity. Our analyses of the measured parameters suggest that the differences in bacterial communities were best explained by soil pH and copper content. Using these data, we suggest that soil pH might play an important role in structuring bacterial assemblage patterns across polar soils.  相似文献   

2.
There is increasing evidence of climate change in Antarctica, especially elevated temperature and ultraviolet B (UVB) flux within the ozone hole. Its origins are debatable, but the effects on ice recession, water availability, and summer growth conditions are demonstrable. Light-dependent, temperature-sensitive, fast-growing organisms respond to these physical and biogeographical changes. Microalgae (cyanobacteria and eukaryotic algae), which are pioneer colonists of Antarctic mineral fellfield soils, are therefore highly suitable biological indicators of such changes. In frost-heaved soil polygons containing naturally sorted fine mineral particles, microalgal growth is restricted to a shallow zone of light penetration. By virtue of this light requirement, microalgae are exposed to extreme seasonal fluctuations in temperature (air and black-body radiation), photosynthetically active radiation, UV radiation, and desiccation. Dominance of conspicuous autofluorescent indicator species with distinctive morphology allowed quantification of responses using epifluorescence microscopy, and image analysis of undisturbed, unstained communities. However, the physical changes in climate, although significant in the long term, are gradual. The changes were therefore amplified experimentally by enclosing the communities at a fellfield site on Signy Island, maritime Antarctica, in cloches (small greenhouses). These were made of polystyrene of either UV transparent or UV opaque acrylic plastic, with or without walls. During a 6-year period, statistically significant changes were observed in microalgal colonization of the soil surface and in the morphology of filamentous populations. Evidence of community succession correlated with measured changes in local environment was found. Results from Signy Island and at continental sites on Alexander Island suggested that rates of microalgal colonization and community development might change significantly during current climate changes in Antarctica. Correspondence to: D.D. Wynn-Williams.  相似文献   

3.
Passive cloches were deployed at three altitudinally distinct sites on Signy Island, maritime Antarctica, to investigate the effect of ameliorated thermal environment upon fellfield microarthropod communities Temperature was monitored at 1 5 m height, at ground surface level, and at 5 cm depth in cloche and control plots During summer (December - March), cloches elevated monthly mean temperatures by up to 2 46°C at the soil surface and 2 20°C at 5 cm depth Integrated air temperatures over consecutive 10 d periods were up to 4 65°C wanner in cloches than controls During winter (April - November), snow cover of the fellfield sites buffered temperature variation and reduced the treatment effect After eight years of these manipulations, sampling of the upper 50 mm of soil revealed consistently greater microarthropod populations within cloches than in controls (treatment effect p<0.05) Maximum difference occurred at high altitude where thermal amelioration was greatest (site effect p<0.05) Cloche populations of the numerically dominant collembolan Cryptopygus antarcticus Willem contained an increased proportion of small (length < 750 μm) individuals No species new to Signy Island were recorded Relating these microarthropod populations to the ameliorated thermal environment suggests that Antarctic invertebrate communities may respond to global warming, as predicted by global circulation models, with an increase in abundance with little increase in diversity However, this response could be indirect, the intermediate controlling factor being the percentage cover of the soil surface by vegetation, itself a function of climate change  相似文献   

4.
The McMurdo Dry Valleys of Antarctica present extreme environmental challenges. Life is restricted to patchy occurrence of lichens, mosses and invertebrates, plus soil microbial communities. Fungi have been described in lichen symbioses but relatively little is known about the occurrence of free-living soil fungi in the Dry Valleys. A challenge in estimating fungal species richness has been the extent to which estimates based on either cultivation or environmental DNA reflect the active assemblage in cold-arid soils. Here, we describe analysis for inland Dry Valleys soil of environmental DNA and RNA (cDNA) to infer total and putative metabolically active assemblages, respectively, plus cultivation approaches using a variety of laboratory growth conditions. Environmental sequences indicated a highly restricted assemblage of just seven phylotypes that affiliated phylogenetically within two known genera, Helicodendron and Zalerion, plus previously unidentified fungal phylotypes. None of the commonly encountered molds and mitosporic genera recorded from maritime Antarctic locations were encountered. A striking difference was observed in the frequency of recovery for phylotypes between libraries. This suggests that both species richness and beta diversity estimates based on DNA libraries have the potential to misinform putatively active assemblages. Cultivation yielded a cold-tolerant Zalerion strain that affiliated with DNA and RNA library clones, and a psychrotrophic yeast (Debaryomyces hansenii), which was not detected using either culture-independent approach.  相似文献   

5.
6.
Summary The distribution patterns of aerial seabirds are analysed from counts made in the Prydz Bay region, Antarctica, during the African legs of SIBEX I and II in late summer (end of February to April), and compared with those made farther west at the same time of year during FIBEX. Species composition and abundances were similar in all three surveys, with sooty shearwaters Puffinus griseus contributing approximately half of the total aerial bird energy demand. Differences between surveys are explained in terms of longitudinal or seasonal differences in sampling areas and periods. Correlations between bird distribution patterns and environmental parameters are used to infer the scale-dependent factors affecting bird dispersion at sea. Two macro-scale bird assemblages, identified by physical parameters, were separated along latitudinal gradients (temperature and salinity) associated with the Antarctic Divergence. These assemblages are consistent with the Intermediate and Southern High Latitude Groups identified during FIBEX. At smaller spatial scales, almost all species were correlated with the abundance of Antarctic krill Euphausia superba, both across the entire SIBEX I grid, and within the areas north and south of the Antarctic Divergence. Similarly, during SIBEX II, seabird densities were six times greater when krill was abundant than when krill was scarce. Sooty shearwaters, which appeared to be moving through the area, were the only abundant bird species not correlated with krill abundance. Possible reasons why previous studies have not detected correlations between seabird and krill abundances are discussed.  相似文献   

7.
Understanding the environmental factors that shape microbial communities is crucial, especially in extreme environments, like Antarctica. Two main forces were reported to influence Antarctic soil microbes: birds and plants. Both birds and plants are currently undergoing relatively large changes in their distribution and abundance due to global warming. However, we need to clearly understand the relationship between plants, birds and soil microorganisms. We therefore collected rhizosphere and bulk soils from six different sampling sites subjected to different levels of bird influence and colonized by Colobanthus quitensis and Deschampsia antarctica in Admiralty Bay, King George Island, Maritime Antarctic. Microarray and qPCR assays targeting 16S rRNA genes of specific taxa were used to assess microbial community structure, composition and abundance and analyzed with a range of soil physico-chemical parameters. The results indicated significant rhizosphere effects in four out of the six sites, including areas with different levels of bird influence. Acidobacteria were significantly more abundant in soils with little bird influence (low nitrogen) and in bulk soil. In contrast, Actinobacteria were significantly more abundant in the rhizosphere of both plant species. At two of the sampling sites under strong bird influence (penguin colonies), Firmicutes were significantly more abundant in D. antarctica rhizosphere but not in C. quitensis rhizosphere. The Firmicutes were also positively and significantly correlated to the nitrogen concentrations in the soil. We conclude that the microbial communities in Antarctic soils are driven both by bird and plants, and that the effect is taxa-specific.  相似文献   

8.
A novel Antarctic microbial endolithic community within gypsum crusts   总被引:5,自引:0,他引:5  
A novel endolithic microbial habitat is described from a climatically extreme site at Two Step Cliffs, Alexander Island, Antarctic Peninsula (71 degrees 54'S, 68 degrees 13'W). Small endolithic colonies (<3 mm in diameter) are found within the translucent gypsum crust that forms on the surface of sandstone boulders. Gypsum crusts are found on ice-free rocks throughout the Antarctic and therefore offer potential colonization sites at more inhospitable locations, including sites at higher latitudes. Cyanobacterial, bacterial and fungal components were cultured from the crust material and have been identified as Chloroglea sp., Sphingomonas sp. and Verticillium sp. respectively. A non-cultured, black-pigmented fungus was also found. Cyanobacterial primary productivity is low: at depths of 1.2 and 2.5 mm within the crust, estimates of possible cell divisions per year were < 38 and four respectively. This microniche is proposed to provide protection from desiccation, rapid temperature variation and UV radiation flux while allowing penetration of photosynthetically active radiation (PAR) for utilization by phototrophs. The endolithic communities are less extensive than those of the Dry Valleys, continental Antarctica, probably owing to only recent deglaciation (<7000 year ago).  相似文献   

9.
This article presents the results of microscopic fungi complexes in the areas of five Russian polar stations in East Antarctica and the Subantarctic. A total of 104 microfungal species have been identified. Seventyseven fungal species have been detected in samples of soils and anthropogenic materials from polar stations of East Antarctica (Progress, Mirny, Molodezhnaya, and Druzhnaya 4) using mycological methods while, in the Bellingshausen station (Subantarctic), we have isolated 87 micromycete species. The number of fungi in soils varies from individual propagules in control soils to 94000 per 1 g of soil in contaminated areas. The largest number of species is represented by the genus Penicillium (26 species). Fungal species that form the core of mycobiota in most of the studied habitats have been identified. For soils of East Antarctica, it is formed by species of the genera Aureobasidium, Cadophora, Pseudogymnoascus (Geomyces), Thelebolus, and Phoma. Significant differences are established between the mycobiota of East Antarctica and that of the Subantarctic. At the same time, a general trend towards an increase in fungal species diversity and number in the areas of polar stations compared to the control (clean) sites for all studied areas is recorded. These data indicate that a significant part of micromycetes is introduced into the Antarctic by humans (anthropogenic invasion).  相似文献   

10.
Ultraviolet radiation (UVR) research on marine macroalgae has hithero focussed on physiological effects at the organism level, while little is known on the impact of UV radiation on macroalgal assemblages and even less on interactive effects with other community drivers, e.g. consumers. Field experiments on macrobenthos are scarce, particularly in the Antarctic region. Therefore, the effects of UVR and consumers (mainly limpets were excluded) on early successional stages of a hard bottom macroalgal community on King George Island, Antarctica, were studied. In a two‐factorial design experimental units [(1) ambient radiation, 280–700 nm; (2) ambient minus UVB, 320–700 nm and (3) ambient minus UVR, 400–700 nm vs. consumer–no consumer] were installed between November 2004 and March 2005 (n= 4 plus controls). Dry mass, species richness, diversity and composition of macroalgal assemblages developing on ceramic tiles were followed. Consumers significantly suppressed green algal recruits and total algal biomass but increased macroalgal richness and diversity. Both UVA and UVB radiation negatively affected macroalgal succession. UVR decreased the density of Monostroma hariotii germlings in the first 10 weeks of the experiment, whereas the density of red algal recruits was significantly depressed by UVR at the end of the study. After 106 days macroalgal diversity was significantly higher in UV depleted than in UV‐exposed assemblages. Furthermore, species richness was significantly lower in the UV treatments and species composition differed significantly between the UV‐depleted and the UV‐exposed treatment. Marine macroalgae are very important primary producers in coastal ecosystems, serving as food for herbivores and as habitat for many organisms. Both, UVR and consumers significantly shape macroalgal succession in the Antarctic intertidal. Consumers, particularly limpets can mediate negative effects of ambient UVR on richness and diversity till a certain level. UVB radiation in general and an increase of this short wavelength due to stratospheric ozone depletion in particular may have the potential to affect the zonation, composition and diversity of Antarctic intertidal seaweeds altering trophic interactions in this system.  相似文献   

11.
In the present study, we surveyed the distribution and diversity of fungal assemblages associated with 10 species of marine animals from Antarctica. The collections yielded 83 taxa from 27 distinct genera, which were identified using molecular biology methods. The most abundant taxa were Cladosporium sp. 1, Debaryomyces hansenii, Glaciozyma martinii, Metschnikowia australis, Pseudogymnoascus destructans, Thelebolus cf. globosus, Pseudogymnoascus pannorum, Tolypocladium tundrense, Metschnikowia australis, and different Penicillium species. The diversity, richness, and dominance of fungal assemblages ranged among the host; however, in general, the fungal community, which was composed of endemic and cold-adapted cosmopolitan taxa distributed across the different sites of Antarctic Peninsula, displayed high diversity, richness, and dominance indices. Our results contribute to knowledge about fungal diversity in the marine environment across the Antarctic Peninsula and their phylogenetic relationships with species that occur in other cold, temperate, and tropical regions of the World. Additionally, despite their extreme habitats, marine Antarctic animals shelter cryptic and complex fungal assemblages represented by endemic and cosmopolitan cold-adapted taxa, which may represent interesting models to study different symbiotic associations between fungi and their animal hosts in the extreme conditions of Antarctica.  相似文献   

12.
A 15 week field experiment (austral summer Nov–Mar) was carried out in an intertidal hard bottom platform in Antarctica (King George Island). To test whether grazing and ultraviolet radiation (UVR) influenced the succession of a benthic microalgal assemblage, a two-factorial design was used (1) ambient radiation, >280 nm; (2) ambient minus UV-B, >320 nm; (3) ambient minus UVR, >400 nm versus grazer–no grazer). On four sampling occasions microalgae were identified, counted and carbon contents were calculated. The assemblage was dominated by the diatom genera Navicula and Cocconeis. Biomass was generally low in all treatments but was significantly reduced by grazing throughout the experiment. No significant UV effects were found. Grazer absence particularly favoured diatoms of the genus Cocconeis. We conclude that the Antarctic microalgal assemblage was unaffected by present day UVR whereas grazers acted as important drivers on the intertidal microalgal community structure.  相似文献   

13.
Since the discovery of penicillin, fungi have been an important source of bioactive natural products. However, as a specific resource, the bioactive potentiality and specificity of fungal metabolites from the Antarctic region have had little attention. In this paper, we investigated the diversity patterns and biological activities of cultivable fungi isolated from soil samples in Fildes Peninsula, King George Island, Antarctica. Fungal communities showed low abundance and diversity; a total of 150 cultivable fungi were isolated from eight soil samples. After being dereplicated by morphological characteristics and chemical fingerprints, 47 fungal isolates were identified by ITS-rDNA sequencing. We confirmed that these isolates belonged to at least 11 different genera and clustered into nine groups corresponding to taxonomic orders in the phylogenetic analysis. Using two different fermentation conditions, 94 crude extracts acquired from the abovementioned different metabolite characteristic isolates were screened by bioactivity assay and 18 isolates produced biologically active compounds. Compared with HPLC–DAD–UV fingerprint analysis of culture extracts and standard compounds, two bioactive components secalonic acid and chetracins were identified. Our research suggests that the abundance and diversity of Antarctic cultivable fungal communities exhibit unique ecological characteristics and potential producers of novel natural bioactive products.  相似文献   

14.
Fungi isolated from Antarctic material   总被引:1,自引:1,他引:0  
Summary Fungi isolated from samples of soil, penguin, skua and petrel dung and bird feathers in the Victoria Land, Antarctica, from Inexpressible Island to Cape King, were studied. All material was collected in December 1987–January 1988. Fungi occurred prevalently in bird dung and in soil, especially when mosses were present. The main species isolated were: the keratinophilic Chrysosporium verrucosum and Geomyces pannorum var. pannorum, Phoma herbarum and Thelebolus microsporus. A variety of filamentous fungi and yeasts were also encountered in soil, dung and bird feathers samples in different localities: Acremonium strictum, Cladosporium herbarum, Scolecobasidium salinum, Mortierella antarctica, Paecilomyces farinosus, Phialophora fastigiata, the thermophilic Scytalidium thermophile and Thermomyces lanuginosus, Verticillium sp., Mycelia sterilia and Cryptococcus albidus and Torulaspora delbrueckii. Most of the fungal isolates appeared to be cold-tolerant. Results from this study are discussed in conjuction with data from previous Antarctic studies in this area.  相似文献   

15.
Anthropogenic activities often cause specialized and fragmentation‐sensitive species to be replaced by competitive commensal or invasive species, resulting in reduced diversity and biotic homogenization. However, biotic homogenization driven by increased dominance of a native species has rarely been investigated. Increased abundance of competitive species can have important consequences for assemblage dynamics including homogenization of foraging strategies and, potentially, ecological services. This study assesses how changes to bird assemblages due to the occurrence of an aggressive honeyeater alter the foraging profiles of avifauna in 400 woodland sites in nine study regions across eastern Australia, and explores the potential implications for ecological services. We compared beta diversity among sites with a high and low abundance of the aggressive Noisy Miner Manorina melanocephala. Shifts in ecological characteristics of bird assemblages of sites with high and low abundance of Noisy Miners, including mean and variation in niche position, bill length and body size, were explored. Sites with a high abundance of Noisy Miners were more taxonomically and ecologically homogeneous and had fewer species than sites with a low abundance of Noisy Miners. The mean niche positions of bird assemblages changed and were increasingly dominated by larger vertebrate feeders, granivores and frugivores as Noisy Miner abundance increased. The mean body size and bill length of the insectivore species present at a site increased with Noisy Miner abundance. This change in the bird community along with reduced diversity in foraging strategies implies a loss of the ecological functions provided by smaller‐bodied species, potentially affecting plant dispersal and regeneration, insect herbivory and ultimately woodland resilience. Our study demonstrates a substantial shift in ecological profile over a broad geographical area as a result of a single native species.  相似文献   

16.
Summary Robertskollen is a group of geologically similar nunataks in western Dronning Maud Land, Antarctica, with breeding colonies of snow petrels Pagodroma nivea at some of the nunataks. Transects determining macro-plant structure and cover were conducted along an a priori determined bird-influence gradient to assess the relative importance of ornithogenic products and physical factors on plant assemblages. Fine-scale (intra-transect) dispersion patterns of plants were determined primarily by physical factors affecting water availability (i.e. the amount of drift-snow available and the effects of shelter and shade on evaporation rates). Coarse-scale (inter-transect) analysis of plant dispersion patterns, however, showed significant responses along the bird-influence gradient, with consistent responses between nunataks. Plant cover was directly related to bird-influence, but was depressed within bird colonies, apparently due to excessive nutrient enrichment. Mites (Acari) were the only arthropods recorded at Robertskollen and total mite abundance was related to plant cover, although specific responses varied. Thallus diameters of the abundant lichen Umbilicaria decussata decreased with decreasing bird influence, suggesting that nutrients limit plant growth away from bird colonies. Soil concentrations of major plant nutrients, N, P and K, were significantly greater close to bird colonies. We conclude that nutrients in ornithogenic products have direct causal effects on the abundance and dispersion of the biota of inland Antarctic nunataks, and that the effects of nutrient enrichment are detectable at different spatial scales from the effects of physical factors.  相似文献   

17.

In this study, we accessed culturable fungal assemblages present in the sediments of three lakes potentially impacted anthropogenically in the Fildes Peninsula, King George Island, Antarctica and identified 63 taxa. Cladosporium sp. 2, Pseudeurotium hygrophilum, and Pseudogymnoascus verrucosus were recovered from the sampled sediments of all lakes. High concentrations of metals and the lowest fungal diversity indices were detected in the sediments of the Central Lake, which can be influenced by human activities due to their proximity to research stations to those of the other two lakes, which were far from the Antarctic stations. At least one type of biological activity was demonstrated by 40 fungal extracts. Among these, P. hygrophilum, P. verrucosus, Penicillium glabrum, and Penicillium solitum demonstrated strong trypanocidal, herbicidal, and antifungal activities. Our results suggest that an increase of the anthropogenic activities in the region might have affected the microbial diversity and composition. In addition, the fungal diversity in these lakes may be a useful model to study the effect of anthropogenic activities in Antarctica. We isolated a diverse group of fungal taxa from Antarctic lake sediments, which have the potential to produce novel compounds for the both the medical and agriculture sectors.

  相似文献   

18.
[目的] 探究青藏高原不同地区高寒草原紫花针茅根际和体内真菌群落的组成、多样性等特征,及与土壤环境因子(理化性质和酶活性)间的相互关系。[方法] 从青藏高原不同地区采集紫花针茅样品,应用土壤化学方法分析根际土壤理化性质和酶活性,并采用Illumina Miseq高通量测序技术,解析根际土壤和体内真菌群落组成和丰度、Alpha多样性和菌群结构,同时分析了紫花针茅根际真菌种群多样性与土壤环境因子的相关性,厘清了影响紫花针茅根际真菌区系的土壤环境因素。[结果] 三个采样地的根际土壤呈中性偏碱,土壤理化性质和酶活性变化各异。高通量测序共得到314801条有效序列和4491个OTUs;XZ样地的紫花针茅真菌多样性和丰富度相对偏低,GS样地最高。在门分类水平上,子囊菌门Ascomycota和担子菌门Basidiomycota是主要内生真菌类群,占总菌群的88.28%。不同采样地区紫花针茅体内真菌群落结构存在明显差异,而根际土壤真菌群落结构差异不大。相关性分析表明,紫花针茅真菌多样性与土壤pH、有效钾、铁、钙、镁、多酚氧化酶、过氧化物酶和脱氢酶呈显著(P<0.05)或极显著(P<0.01)正相关,而与海拔、土壤酸性磷酸酶呈极显著负相关。RDA分析发现,紫花针茅根际土壤真菌不同,影响的土壤环境因子也不同。[结论] 青藏高原高寒草地紫花针茅根际和体内栖息着丰富的真菌群落,其组成和多样性受多种土壤环境因子影响,且影响不同真菌群落的主要土壤环境因子也不同。本研究对于有益微生物资源的开发、利用及保护具有重要意义,并为紫花针茅草原保育和合理开发利用提供科学依据。  相似文献   

19.
《Fungal biology》2022,126(10):640-647
We detected the fungal assemblages present in lake sediments on James Ross Island, Antarctica, using DNA metabarcoding. A total of 132 amplicon sequence variants (ASVs) were assigned, dominated by taxa of the phyla Ascomycota, Basidiomycota, Mortierellomycota and Mucoromycota. The less common phyla Chytridiomycota, Rozellomycota, Monoblepharomycota, Basidiobolomycota, Aphelidiomycota and the fungus-like Straminopila were also detected. Fungal sp. 1, Fungal sp. 2, Spizellomycetales sp. 1, Rozellomycotina sp. 1, Talaromyces rubicundus and Betamyces sp. dominated the assemblages. In general, the assemblages displayed high diversity and richness, and moderate dominance. Saprophytic, pathogenic and symbiotic fungi were detected. The metabarcoding data indicated that Antarctic lakes may represent a hotspot of fungal diversity in Antarctica. The sediments of these lakes may accumulate different fungal fragments and active fungal mycelia and their propagules, deposited over long periods of time. Lakes in the Antarctic Peninsula region are sensitive environments threatened by the effects of regional climatic changes. The abundance of sequences of little-known Rozellomycota and Chytridiomycota (Spizellomycetales) taxa in these ecosystems highlights the need for further studies to identify if they are metabolically active in the sediments and whether they have potentially pathogenic capabilities.  相似文献   

20.
Inter‐specific interactions are important drivers and maintainers of biodiversity. Compared to trophic and competitive interactions, the role of non‐trophic facilitation among species has received less attention. Cavity‐nesting bees nest in old beetle borings in dead wood, with restricted diameters corresponding to the body size of the bee species. The aim of this study was to test the hypothesis that the functional diversity of cavity‐producing wood boring beetles ‐ in terms of cavity diameters ‐ drives the size diversity of cavity‐nesting bees. The invertebrate communities were sampled in 30 sites, located in forested landscapes along an elevational gradient. We regressed the species richness and abundance of cavity nesting bees against the species richness and abundance of wood boring beetles, non‐wood boring beetles and elevation. The proportion of cavity nesting bees in bee species assemblage was regressed against the species richness and abundance of wood boring beetles. We also tested the relationships between the size diversity of cavity nesting bees and wood boring beetles. The species richness and abundance of cavity nesting bees increased with the species richness and abundance of wood boring beetles. No such relationship was found for non‐wood boring beetles. The abundance of wood boring beetles was also related to an increased proportion of cavity nesting bee individuals. Moreover, the size diversity of cavity‐nesting bees increased with the functional diversity of wood boring beetles. Specifically, the mean and dispersion of bee body sizes increased with the functional dispersion of large wood boring beetles. The positive relationships between cavity producing bees and cavity nesting bees suggest that non‐trophic facilitative interactions between species assemblages play important roles in organizing bee species assemblages. Considering a community‐wide approach may therefore be required if we are to successfully understand and conserve wild bee species assemblages in forested landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号