首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The endogenous protease activity in various commercially available laundry detergents of international companies was studied. The maximum protease activity was found at 50 degrees C in pH range 10.5-11.0 in all the tested laundry detergents. The endogenous protease activity in the tested detergents retained up to 70% on incubation at 40 degrees C for 1 h, whereas less than 30% activity was only found on incubation at 50 degrees C for 1 h. The alkaline protease from an alkalophilic strain of Bacillus cereus was studied for its compatibility in commercial detergents. The cell free fermented broth from shake flask culture of the organism showed maximum activity at pH 10.5 and 50 degrees C. The protease from B. cereus showed much higher residual activity (more than 80%) on incubation with laundry detergents at 50 degrees C for 1 h or longer. The protease enzyme from B. cereus was found to be superior over the endogenous proteases present in the tested commercial laundry detergents in comparison to the enzyme stability during the washing at higher temperature, e.g., 40-50 degrees C.  相似文献   

2.
AIMS: Crude cyclic lipopeptide (CLP) biosurfactants from two Bacillus subtilis strains (DM-03 and DM-04) were studied for their compatibility and stability with some locally available commercial laundry detergents. METHODS AND RESULTS: CLP biosurfactants from both B. subtilis strains were stable over the pH range of 7.0-12.0, and heating them at 80 degrees C for 60 min did not result in any loss of their surface-active property. Crude CLP biosurfactants showed good emulsion formation capability with vegetable oils, and demonstrated excellent compatibility and stability with all the tested laundry detergents. CONCLUSION: CLP biosurfactants from B. subtilis strains act additively with other components of the detergents to further improve the wash quality of detergents. The thermal resistance and extreme alkaline pH stability of B. subtilis CLP biosurfactants favour their inclusion in laundry detergent formulations. SIGNIFICANCE AND IMPACT OF THE STUDY: This study has great significance because it is already known that microbial biosurfactants are considered safer alternative to chemical or synthetic surfactants owing to lower toxicity, ease of biodegradability and low ecological impact. The present study provides further evidence that CLP biosurfactants from B. subtilis strains can be employed in laundry detergents.  相似文献   

3.
A new screening method for 6beta-hydroperoxycholest-4-en-3-one (HCEO)-forming cholesterol oxidase was devised in this study. As the result of the screening, a novel cholesterol oxidase producer (strain DS-1) was isolated and identified as Chromobacterium sp. Extracellular cholesterol oxidase of strain DS-1 was purified from the culture supernatant. The molecular mass of the purified enzyme was 58 kDa. This enzyme showed a visible adsorption spectrum having peaks at 355 and 450 nm, like a typical flavoprotein. The enzyme oxidized cholesterol to HCEO, with the consumption of 2 mol of O2 and the formation of 1 mol of H2O2 for every 1 mol of cholesterol oxidized. The enzyme oxidized 3beta-hydroxysteroids such as cholesterol, beta-cholestanol, and pregnenolone at high rates. The Km value for cholesterol was 26 microM. The enzyme was stable at pH 3 to 11 and most active at pH 7.0-7.5, showing optimal activity at pH 7.0 and 65 degrees C. The enzyme retained about 80% of its activity after incubation for 30 min at 85 degrees C. The thermal stability of the enzyme was the highest among the cholesterol oxidases tested. Moreover, the enzyme was more stable in the presence of various organic solvents and detergents than commercially available cholesterol oxidases.  相似文献   

4.
5'-Nucleotidase is a member of a recently identified class of membrane proteins that is anchored via a phosphatidylinositol-containing glycolipid. The enzyme was readily solubilized with full retention of catalytic activity by nonionic and anionic detergents such as alkylthioglucosides, deoxycholate, and 3-[(3-cholamidopropyl)-dimethylammonio]-1-propane-sulfonate (CHAPS), while the cationic detergent dodecyltrimethylammonium bromide (DTAB) caused loss of activity. 5'-Nucleotidase was released only at high detergent concentrations, suggesting that it is tightly associated with the membrane. DTAB and deoxycholate caused a loss of heat stability, while alkylthioglucosides had no effect. CHAPS produced a remarkable increase in the heat stability of the partially purified (glycoprotein fraction) and purified enzyme. Arrhenius plots of solubilized 5'-nucleotidase showed "break points" for all detergents in the temperature range 30-37 degrees C. SDS-PAGE of pure 5'-nucleotidase showed a single subunit of molecular mass 70 kilodaltons (kDa), while sucrose density gradient sedimentation gave a peak of activity corresponding to 132 kDa, indicating that the enzyme exists as a dimer. Gel filtration of the solubilized enzyme in several detergents showed apparent molecular masses between 200-630 kDa, suggesting that lymphocyte 5'-nucleotidase may be present in high molecular mass aggregates in its native state.  相似文献   

5.
The effects of several commonly used detergents on the saccharide-binding activities of lectins were investigated using lectin-mediated agglutination of formalin-fixed erythrocytes and affinity chromatography of glycoproteins on columns of lectins immobilized on polyacrylic hydrazide-Sepharose. In the hemagglutination assays, Ricinus communis I (RCA1) and II (RCAII), concanavalin A (Con A), and the agglutinins from peanut (PNA), soybean (SBA), wheat germ (WGA), and Limulus polyphemus (LPA) were tested with several concentrations of switterionic, cationic, anionic, and nonionic detergents. It was found that increasing detergent concentrations eventually affected hemagglutination titers in both test and control samples, and the highest detergent concentrations not affecting lectin hemagglutinating activities were determined. The effects of detergents on specific binding of [3H]fetuin and asialo[3H]fetuin to and elution from columns of immobilized lectins were less severe when compared with lectins in solution, suggesting that the lectins are stabilized by covalent attachment to agarose beads. Nonionic detergents did not affect the binding efficiency of the immobilized lectins tested at concentrations used for membrane solubilization while cationic and zwitterionic detergents caused significant inhibition of Con A- and SBA-Sepharose activities. In sodium deoxycholate (greater than 1%) only RCAI-Sepharose retained its activity, whereas the activities of the other lectins were reduced dramatically. Low concentrations of sodium dodecyl sulfate (0.05%) inhibited only the activity of immobilized SBA, but at higher concentration (0.1%) and prolonged periods of incubation (16 h, 23 degrees C) most of the lectins were inactivated. These data are compared with previous reports on the use of detergents in lectin affinity chromatography, and the conditions for the optimal use of detergents are detailed.  相似文献   

6.
Phytase from Aspergillus niger van Teighem efficiently hydrolyses phytate phosphorus present in various commercial live stock feeds and was not inactivated by various formulations and antibiotics present. The enzyme retained 90-95% phytase activity at 55 degrees C, pH 2.5 after 72 h of incubation with all the commercial feeds tested, thus indicating its suitability in feed application. The phytase hydrolysis increased with the increase in temperature and a significant release of 41 nmols P(i)/ml in phytase-treated feed over control sample was observed at 55 degrees C after 48 h. Besides this, the enzyme was maximally effective when used under acidic condition, releasing 21 and 42 nmols P(i)/ml at pH 1.5 and 2.5, respectively. As the pH shifted towards 5.5, significant decline in phosphorus release was observed. However, the enzyme was able to retain almost complete phytase activity in the presence of feed constituent even after 48 h over various pH tested. Thus it can be a potential candidate in animal nutrition where the ability of present phytase to retain activity over period of time in the presence of feed constituent is desired.  相似文献   

7.
The cleaning power of detergents seems to have peaked; all detergents contain similar ingredients and are based on similar detergency mechanisms. To improve detergency, modern types of heavy-duty powder detegents and automatic dishwasher detergents usually contain one or more enzymes, such as protease, amylase, cellulase, and lipase. Alkaliphilic Bacillus strains are often good sources of alkaline extracellular enzymes, the properties of which fulfil the essential requirements for enzymes to be used in detergents. We have isolated numbers of alkaliphilic Bacillus that produce such alkaline detergent enzymes, including cellulase (CMCase), protease, α-amylase, and debranching enzymes, and have succeeded in large-scale industrial production of some of these enzymes. Here, we describe the enzymatic properties, genetics, and structures of the detergent enzymes that we have developed. Received: January 22, 1998 / Accepted: February 16, 1998  相似文献   

8.
Bacillus stearothermophilus grew better on complex and semisynthetic medium than on synthetic medium supplemented with amino acids. Amylase production on the complex medium containing beef extract or corn steep liquor was higher than on semisynthetic medium containing peptone (0.4%). The synthetic medium, however, did not provide a good yield of extracellular amylase. Among the carbohydrates which favored the production of amylase are, in order starch > dextrin > glycogen > cellobiose > maltohexaose-maltopeptaose > maltotetraose and maltotriose. The monosaccharides repressed the enzyme production, whereas inositol and d-sorbitol favored amylase production. Organic and inorganic salts increased amylase production in the order of KCI > sodium malate > potassium succinate, while the yield was comparatively lower with other organic salts of Na and K. Amino acids, in particular isoleucine, cysteine, phenylalanine, and aspartic acids, were found to be vital for amylase synthesis. Medium containing CaCl(2) 2H(2)O enhanced amylase production over that on Ca -deficient medium. The detergents Tween-80 and Triton X-100 increased biomass but significantly suppressed amylase synthesis. The amylase powder obtained from the culture filtrate by prechilled acetone treatment was stable over a wide pH range and liquefied thick starch slurries at 80 degrees C. The crude amylase, after (NH(4))(2)SO(4) fractionation, had an activity of 210.6 U mg. The optimum temperature and pH of the enzyme were found to be 82 degrees C and 6.9, respectively. Ca was required for the thermostability of the enzyme preparation.  相似文献   

9.
Amylases that are active under acidic conditions (pH <6), at higher temperatures (>70 degrees C) and have less reliance on Ca(2+) are required for starch hydrolysis. The alpha-amylase gene of Bacillus licheniformis MTCC 6598 was cloned and expressed in Escherichia coli BL21. The calcium-binding site spanning amino acid residues from 104 to 200 in the loop regions of domain B and D430 in domain C of amylase were changed by site-directed mutagenesis and the resultant mutant amylases were analyzed. Calcium-binding residues, N104, D161, D183, D200 and D430, were replaced with D104 and N161, N183, N200 and N430, respectively. Mutant amylase with N104D had a slightly decreased activity at 30 degrees C but a significantly improved specific activity at pH 5 and 70 degrees C, which is desirable character for a food enzyme. The amylase mutants with D183N or D200N lost all activity while the mutant amylase with D161N retained its activity at 30 degrees C but had significantly less activity at 70 degrees C. On the other hand, the activity of the mutant amylase with D430N was not changed at 30 degrees C but had an improved activity at 70 degrees C.  相似文献   

10.
In this study, we investigated the application of cellulase and protease purified from rumen bacteria as detergent additives. Cellulase and protease were purified from the rumen cellulytic bacteria Fibrobacter succinogenes S85, and Prevotella ruminicola 23, respectively. An inhibitor test indicated that the purified protease belongs to the category of serine proteases and metalloproteases. Both the enzymes were effective at a high temperature (50 degrees C) and neutral pH (pH 7-8), but the protease activity increased with the increase in temperature and pH. The purified protease was treated with ten types of surfactants/detergents; it was found to retain over 60% of its activity in the presence of anionic and nonionic detergents. The cellulose plus protease combination was still effective after treatment with Triton X-100 and Tween 80, but the residual activity was low after treatment with Tween 20 than that after treatment with other nonionic detergents. Washing tests indicated that enzyme addition produced no significant improvement in the removal of grass stains, but individual enzyme addition in surfactants/detergents, especially in nonionic detergents, could improve the washing performance of the detergents by improving its ability to remove blood stains. This suggested that the surfactant/detergent class, enzyme properties, and the mixing ratio of ingredients should be considered simultaneously to enhance the washing performance.  相似文献   

11.
The stability of crude extracellular protease produced by Bacillus licheniformis RP1, isolated from polluted water, in various solid laundry detergents was investigated. The enzyme had an optimum pH and temperature at pH 10.0–11.0 and 65–70 °C. Enzyme activity was inhibited by PMSF, suggesting that the preparation contains a serine-protease. The alkaline protease showed extreme stability towards non-ionic (5% Tween 20% and 5% Triton X-100) and anionic (0.5% SDS) surfactants, which retained 100% and above 73%, respectively, of its initial activity after preincubation 60 min at 40 °C.

The RP1 protease showed excellent stability and compatibility with a wide range of commercial solid detergents at temperatures from 40 to 50 °C, suggesting its further application in detergent industry. The enzyme retained 95% of its initial activity with Ariel followed by Axion (94%) then Dixan (93.5%) after preincubation 60 min at 40 °C in the presence of 7 mg/ml of detergents. In the presence of Nadhif and New Det, the enzyme retained about 83.5% of the original activity. The effects of additives such as maltodextrin, sucrose and PEG 4000 on the stability of the enzyme during spray-drying and during subsequent storage in New Det detergent were also examined. All additives tested enhanced stability of the enzyme.  相似文献   


12.
Alkaline xylanases from alkaliphilic Bacillus strains NCL (87-6-10) and Sam III were compared with the commercial xylanases Pulpzyme HC and Biopulp for their compatibility with detergents and proteases for laundry applications. Among the four xylanases evaluated, the enzyme from the alkaliphilic Bacillus strain NCL (87-6-10) was the most compatible. The enzyme retained its full activity (40 °C for 1 h) in the presence of detergents, whereas Pulpzyme HC and Sam III showed only 30% and 50% of their initial activity, respectively. Biopulp, though stable to detergents, had only marginal activity (5%)at pH 10. However, all four enzymes retained significant activity (80%) for 60 min in the presence of the proteases Alcalase and Conidiobolus protease. Supplementation of the enzyme enhanced the cleaning ability of the detergents.  相似文献   

13.
Five strains of the extreme thermophilic Rhodothermus marinus were screened for the production of amylolytic and pullulytic activities. The culture medium for the selected strain, R. marinus ITI 990, was optimized using central composite designs for enhanced enzyme production. The optimized medium containing 1.5 gl(-1) of maltose and 8.3 gl(-1) of yeast extract yielded amylase, pullulanase and alpha-glucosidase activities of 45, 33 and 2.1 nkatml(-1), respectively. Among the various carbon sources tested, maltose was most effective for the formation of these enzymes, followed by soluble maize starch, glycogen and pullulan. The crude amylase and pullulanase showed maximum activities at pH 6.5-7.0, and 85 and 80 degrees C, respectively. At 85 degrees C amylase and pullulanase had half lives of 3 h and 30 min, respectively.  相似文献   

14.
The temperature dependence of lipid-depleted beef heart cytochrome c oxidase activity was studied in a series of chemically homogeneous detergents. The detergents that were tested included C10 to C18 maltosides, C8 to C12 glucosides, C8 to C16 Zwittergents, and C12 poly(oxyethylene) ethers. The observed rates of electron transport were dependent upon the structure of the polar head group and the length of the hydrocarbon tail. Of the detergents tested, the alkyl maltosides were the best in terms of both high rates of electron transport and superior enzyme stability. With the maltosides, changing the length of the alkyl tail affected the activity of cytochrome c oxidase in a manner quite similar to that reported with synthetic phosphatidylcholines and phosphatidylethanolamines [Vik, S. B., & Capaldi, R. A. (1977) Biochemistry 16, 5755-5759], suggesting that the alkyl maltosides can mimic some of the features of the membrane environment. In each of the detergents, the activation enthalpy (determined from the slope of an Arrhenius plot) was nearly identical, suggesting that the same electron-transfer step within cytochrome c oxidase is rate limiting. This result has been interpreted as evidence for the existence of two or more conformers of cytochrome c oxidase, one of which is significantly more active than the other(s). The enzyme turnover number, which changes by 2 orders of magnitude depending upon the structure of the bound detergent, may reflect the ability of each detergent to alter the equilibrium between the active and nearly inactive conformers.  相似文献   

15.
16.
Codling moth, Cydia pomonella (L.), is the major pest of apple (Malus spp.) in the western United States and many other regions of the world. The codling moth granulovirus (CpGV) provides a selective and safe means of its control. We assessed the long-term stability and storage potential of two commercial formulations of CpGV, Cyd-X, and Virosoft. All assays were performed with individual C. pomonella neonate larvae in 2-ml vials on 1 ml of artificial larval diet that was surface inoculated with 10 microl of the test virus suspension. Baseline quantitative assays for the two formulations revealed that the LC50 and LC95 values (occlusion bodies per vial) did not differ significantly between the formulations. For year-long studies on Cyd-X stability, the product was stored at -20, 2, 25, and 35 degrees C, and quantitative bioassays were conducted after 0, 3, 6, and 12 mo of storage. Cyd-X retained good larvicidal activity from -20 to 25 degrees C, and it was the least negatively affected at the lowest temperature. Storage of Cyd-X at 35 degrees C was detrimental to its larvicidal activity within 3 mo of storage. For longer term storage studies, Cyd-X and Virosoft formulations were stored at 2, 25, and 35 degrees C, and assayed for larvicidal activity over a 3-yr period. For recently produced product, a 10-microl sample of a 10(-5) dilution of both formulations resulted in 95-100% mortality in neonate larvae. Larvicidal activity for the Cyd-X formulation remained essentially unaffected for 156 wk when stored at 2 and 25 degrees C, but it began to decline significantly after 20 wk of storage at 35 degrees C. The Virosoft formulation stored at 2 degrees C also remained active throughout the 3-yr study, but it began to decline in larvicidal activity after 144 wk at 25 degrees C and 40 wk at 35 degrees C. The information reported in this study should be useful to growers and commercial suppliers for avoiding decreases in CpGV potency due to improper storage conditions.  相似文献   

17.
Chemically modified papain for applications in detergent formulations   总被引:1,自引:0,他引:1  
Papain was modified using succinic anhydride, and the modified papain so obtained was compared with the native papain for its activity and stability in detergents. This study was done using commercial enzyme detergents as references. It was found that modified papain retained activity comparable to the commercial enzyme detergents. Chemically modified papain may prove to be an inexpensive alternative to alkaline proteases that are used in detergents.  相似文献   

18.
A moderately halophilic alkalitolerant Bacillus sp. Strain TSCVKK, with an ability to produce extracellular halophilic, alkalitolerant, surfactant, and detergent-stable alpha-amylase was isolated from soil samples obtained from a salt-manufacturing industry in Chennai. The culture conditions for higher amylase production were optimized with respect to NaCl, substrate, pH, and temperature. Maximum amylase production of 592 mU/ml was achieved in the medium at 48 h with 10% NaCl, 1% dextrin, 0.4% yeast extract, 0.2% tryptone, and 0.2% CaCl2 at pH 8.0 at 30 °C. The enzyme activity in the culture supernatant was highest with 10% NaCl at pH 7.5 and 55 °C. The amylase that was partially purified by acetone precipitation was highly stable in various surfactants and detergents. Glucose, maltose, and maltooligosaccharides were the main end products of starch hydrolysis indicating that it is an alpha-amylase.  相似文献   

19.
酸性木聚糖酶产生菌的筛选及产酶条件   总被引:21,自引:0,他引:21  
从150株真菌中筛选到8株产木聚糖酶活力在100U/mL以上的菌株,其中活力最高的为黑曲霉(编号149)(Aspergilusniger)。该菌株产酶较适培养基为:麸皮半纤维素4%,NaNO31%,麸皮1%,用不加(NH4)2SO4和尿素的Mandels氏营养盐液配制。28℃~30℃振荡培养60h,酶活力最高可达375.2U/mL。该酶最适作用pH为46,在pH3~11之间基本稳定。该菌株发酵液中含有木聚糖酶(相对活力100)外还有淀粉酶(18),甘露聚糖酶(098),β木糖苷酶(094)和纤维素酶(017)。  相似文献   

20.
A novel alkalothermophilic actinomycete having optimum growth at pH 9 and 50 degrees C was isolated from self-heating compost from the Barabanki district of Uttar Pradesh, India. Based on its morphology, susceptibility of spores to heat and novobiocin, guaninecytosine content of chromosomal DNA and cell wall composition, the organism was classified under Thermomonospora. The alkalothermophilic actinomycete produced 23 IU/ml carboxymethyl cellulase (CMCase). The CMCase was purified by fractional ammonium sulphate precipitation followed by cellulose affinity chromatography and Sephacryl S-200 gel filtration. The CMCase had a molecular weight of 38 KD and pI of 4.1. The enzyme exhibited optimum activity at pH 5 and temperature 50 degrees C. The CMCase showed pH stability in the range 7-10. The enzyme retained 100% activity at 50 degrees C for 72 h and had half-lives of 7 and 3 h at 60 degrees C and 70 degrees C, respectively. The CMCase was stable in the presence of commercial detergents such as Ariel, Henko and Surf Excel, indicating its potential as an additive to laundry detergents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号