首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Objective: Some cytokines and mediators of inflammation can alter adiposity through their effects on adipocyte number. To probe the molecular basis of obesity, this study determined whether galectin‐3 was present in adipose tissue and investigated its effects on fat cell number. Research Methods and Procedures: In the first study, obesity‐prone C57BL/6J mice were fed with high‐fat (58%) diet. Epididymal fat pads were collected at Day 0, Day 60, and Day 120 after the start of high‐fat feeding. Results: Levels of adipocyte galectin‐3 protein, determined using Western blot analysis, increased as the mice became obese. Galectin‐3 mRNA and protein were then detected in human adipose tissue, primarily in the preadipocyte fraction. It was found that recombinant human galectin‐3 stimulated proliferation of primary cultured preadipocytes as well as DNA synthesis through lectin‐carbohydrate interaction. Discussion: Galectin‐3, which has been known to play a versatile role especially in immune cells, might play a role also in adipose tissue and be associated with the pathophysiology of obesity.  相似文献   

2.
We measured the combined area of posterior medial barrel subfield (PMBSF) and anterior lateral barrel subfield (ALBSF) areas in four common inbred strains (C3H/HeJ, A?/J, C57BL?/6J, DBA/2J), B6D2F1, and ten recombinant inbred (RI) strains generated from C57BL/6J and DBA/2J progenitors (BXD) as an initial attempt to examine the genetic influences underlying natural variation in barrel field size in adult mice. These two subfields are associated with the representation of the whisker pad and sinus hairs on the contralateral face. Using cytochrome oxidase labeling to visualize the barrel field, we measured the size of the combined subfields in each mouse strain. We also measured body weight and brain weight in each strain. We report that DBA/2J mice have a larger combined PMBSF/ALBSF area (6.15?±?0.10?mm2,?n?=?7) than C57BL?/6J (5.48?±?0.13?mm2,?n?=?10), C3H/HeJ (5.37?±?0.16?mm2,?n?=?10), and A/J mice (5.04?±?0.09?mm2,?n?=?15), despite the fact that DBA/2J mice have smaller average brain and body sizes. This finding may reflect dissociation between systems that control brain size with those that regulate barrel field area. In addition, BXD strains (average n?=?4) and parental strains showed considerable and continuous variation in PMBSF/ALBSF area, suggesting that this trait is polygenic. Furthermore, brain, body, and cortex weights have heritable differences between inbred strains and among BXD strains. PMBSF/ALBSF pattern appears similar among inbred and BXD strains, suggesting that somatosensory patterning reflects a common plan of organization. This data is an important first step in the quantitative genetic analysis of the parcellation of neocortex into diverse cytoarchitectonic zones that vary widely within and between species, and in identifying the genetic factors underlying barrel field size using quantitative trait locus (QTL) analyses.  相似文献   

3.
Behavioral analyses of genetically modified and inbred strains of mice have revealed neural systems and molecules that are involved in memory formation. Many of these studies have examined memories that form in contextual fear conditioning, in which an organism learns that a particular context signals the occurrence of a footshock. During fear extinction, nonreinforced exposure to the context results in the loss of the conditioned fear response. The study of extinction has been instrumental for behavioral and molecular theories of memory. However, many of the transgenic, knockout, and inbred strains of mice that have been widely studied in memory have behavioral deficits in contextual fear conditioning, which makes the study of extinction in these mice particularly challenging. Here we explore several strategies for studying extinction in C57BL/6 and DBA/2 mice, two strains known to differ in contextual fear conditioning. First, we attempt to equate performance prior to extinction through several extensive conditioning protocols. Second, we examine extinction in subsets of mice matched for initial levels of context conditioning. Third, we examine within-strain effects of variables known to affect extinction. Differences between the strains persisted across extensive conditioning and extinction protocols, but both strains were sensitive to session duration and context manipulations during extinction. We describe the implications of our results for behavioral and neurobiological approaches to extinction, and we examine the general challenges in studying extinction in subjects that differ in learning or performance prior to extinction.  相似文献   

4.

Background

Systemic neovascularization of the lung during chronic ischemia has been observed in all mammals studied. However, the proteins that orchestrate the complex interaction of new vessel growth and tunneling through lung tissue matrix have not been described. Although previous work has demonstrated the CXC chemokines are essential growth factors in the process of angiogenesis in mice and rats, key matrix proteins have not been identified.

Methods

Since the degradation of chemokines has been shown to be dependent on metalloproteinases (MMP), we first surveyed gene expression patterns (real time RT-PCR) of several lung matrix proteins in DBA/J (D2) mice and C57Bl/6 (B6) mice, strains known to have divergent parenchymal responses in other lung disease models. We studied changes in the time course of MMP-12 activity in D2 and B6 mice. Functional angiogenesis was determined 14 days after the onset of complete left lung ischemia induced by left pulmonary artery ligation (LPAL), using fluorescent microspheres.

Results

Our results confirmed higher levels of MMP-12 gene expression in D2 mice relative to B6, which corresponded to a phenotype of minimal systemic angiogenesis in D2 mice and more robust angiogenesis in B6 mice (p < 0.01). MMP-12 activity decreased over the course of 14 days in B6 mice whereas it increased in D2 mice (p < 0.05). MMP-12 was associated largely with cells expressing the macrophage marker F4/80. Genetic deficiency of MMP-12 resulted in significantly enhanced neovascularization (p < 0.01 from B6).

Conclusion

Taken together, our results suggest macrophage-derived MMP-12 contributes to angiostasis in the ischemic lung.  相似文献   

5.
The myristoylated alanine-rich C kinase substrate (MARCKS) is a major protein kinase C (PKC) substrate in brain that binds the inner surface of the plasma membrane, calmodulin, and cross-links filamentous actin, all in a PKC phosphorylation-reversible manner. MARCKS has been implicated in hippocampal-dependent learning and long-term potentiation (LTP). Previous studies have shown DBA/2 mice to exhibit poor spatial/contextual learning, impaired hippocampal LTP, and hippocampal mossy fiber hypoplasia, as well as reduced hippocampal PKC activity and expression relative to C57BL/6 mice. In the present study, we assessed the expression (mRNA and protein) and subcellular distribution (membrane and cytolsol) of MARCKS in the hippocampus and frontal cortex of C57BL/6 and DBA/2 mice using quantitative western blotting. In the hippocampus, total MARCKS mRNA and protein levels in C57BL/6J mice were significantly lower ( approximately 45%) compared with DBA/2J mice, and MARCKS protein was observed predominantly in the cytosolic fraction. MARCKS expression in frontal cortex did not differ significantly between strains. To examine the dynamic regulation of MARCKS subcellular distribution, mice from each strain were subjected to 60 min restraint stress and MARCKS subcellular distribution was determined 24 h later. Restraint stress resulted in a significant reduction in membrane MARCKS expression in C57BL/6J hippocampus but not in the DBA/2J hippocampus despite similar stress-induced increases in serum corticosterone. Restraint stress did not affect cytosolic or total MARCKS levels in either strain. Similarly, restraint stress (30 min) in rats also induced a significant reduction in membrane MARCKS, but not total or cytosolic MARCKS, in the hippocampus but not in frontal cortex. In rats, chronic lithium treatment prior to stress exposure reduced hippocampal MARCKS expression but did not affect the stress-induced reduction in membrane MARCKS. Collectively these data demonstrate higher resting levels of MARCKS in the hippocampus of DBA/2J mice compared to C57BL/6J mice, and that acute stress leads to a long-term reduction in membrane MARCKS expression in C57BL/6J mice and rats but not in DBA/2J mice. These strain differences in hippocampal MARCKS expression and subcellular translocation following stress may contribute to the differences in behaviors requiring hippocampal plasticity observed between these strains.  相似文献   

6.
Engulfment and cell motility (ELMO) proteins bind to Dock180, a guanine nucleotide exchange factor (GEF) of the Rac family, and regulate GEF activity. The resultant ELMO/Dock180/Rac module regulates cytoskeletal reorganization responsible for the engulfment of apoptotic cells, cell migration, and neurite extension. The expression and function of Elmo family proteins in the nervous system, however, are not yet fully understood. Here, we characterize the comparative gene expression profiles of three Elmo family members (Elmo1, Elmo2, and Elmo3) in the brain of C57BL/6J mice, a widely used inbred strain, together with reeler mutant mice to understand gene expression in normal laminated brain areas compared with abnormal areas. Although all three Elmo genes showed widespread mRNA expression over various mouse tissues tested, Elmo1 and Elmo2 were the major types expressed in the brain, and three Elmo genes were up-regulated between the first postnatal week (infant stage) and the third postnatal week (juvenile, weaning stage). In addition, the mRNAs of Elmo genes showed distinct distribution patterns in various brain areas and cell-types; such as neurons including inhibitory interneurons as well as some non-neuronal cells. In the cerebral cortex, the three Elmo genes were widely expressed over many cortical regions, but the predominant areas of Elmo1 and Elmo2 expression tended to be distributed unevenly in the deep (a lower part of the VI) and superficial (II/III) layers, respectively, which also changed depending on the cortical areas and postnatal stages. In the dentate gyrus of the hippocampus, Elmo2 was expressed in dentate granule cells more in the mature stage rather than the immature-differentiating stage. In the thalamus, Elmo1 but not the other members was highly expressed in many nuclei. In the medial habenula, Elmo2 and Elmo3 were expressed at intermediate levels. In the cerebellar cortex, Elmo1 and Elmo2 were expressed in differentiating-mature granule cells and mature granule cells, respectively. In the Purkinje cell layer, Elmo1 and Elmo2 were expressed in Purkinje cells and Bergmann glia, respectively. Disturbed cellular distributions and laminar structures caused by the reeler mutation did not severely change expression in these cell types despite the disturbed cellular distributions and laminar structures, including those of the cerebrum, hippocampus, and cerebellum. Taken together, these results suggested that these three Elmo family members share their functional roles in various brain regions during prenatal-postnatal development.  相似文献   

7.
Zhang J  Zhi HY  Ding F  Luo AP  Liu ZH 《Cell research》2005,15(2):105-110
Epidermal-type transglutaminase 3 (TGM3) is involved in the cross-linking of structural proteins to form the cornified envelope in the epidermis. In the present study, we detected the expression of TGM3 in the mouse embryo using RT-PCR.TGM3 mRNA is weakly presented from E11.5 to E14.5 and increases significantly from E15.5 to birth. Then we determined the spatial and temporal expression pattern of TGM3 in the skin and other organs by in situ hybridization. We found a deprivation of TGM3 in skin at E11.5, while a rich supply in periderm cells and a weak expression in basal cells from E12.5 to E14.5. From the period of E15.5 to E16.5, after keratinization in the epidermis, TGM3 was expressed in the granular and cornified layers. The electron microscopic observation of the C57BL/6J mouse limb bud skin development provided several morphological evidences for the epidermal differentiation. The above findings suggest that the expression of TGM3 plays a important role in the epidermis differentiation in embryogenesis.  相似文献   

8.
Physiological dependence and associated withdrawal episodes are thought to constitute a motivational force perpetuating continued alcohol use/abuse. Although no animal model duplicates alcoholism, models for specific factors, like the withdrawal syndrome, are useful to identify potential determinants of liability in humans. We previously detected quantitative trait loci (QTLs) with large effects on predisposition to physical dependence and associated withdrawal following chronic or acute alcohol exposure to a large region of chromosome 1 in mice ( Alcdp1 and Alcw1 , respectively). Here, we provide the first confirmation of Alcw1 in a congenic strain, and, using interval-specific congenic strains, narrow its position to a minimal 1.1   Mb (maximal 1.7   Mb) interval syntenic with human chromosome 1q23.2-23.3. We also report the development of a small donor segment congenic that confirms capture of a gene(s) affecting physical dependence after chronic alcohol exposure within this small interval. This congenic will be invaluable for determining whether this interval harbors a gene(s) involved in additional alcohol responses for which QTLs have been detected on distal chromosome 1, including alcohol consumption, alcohol-conditioned aversion and -induced ataxia. The possibility that this QTL plays an important role in such diverse responses to alcohol makes it an important target. Moreover, human studies have identified markers on chromosome 1q associated with alcoholism, although this association is still suggestive and mapped to a large region. Thus, the fine mapping of this QTL and analyses of the genes within the QTL interval can inform developing models for genetic determinants of alcohol dependence in humans.  相似文献   

9.
Two experiments examined the effect of 5 days of passive exposure to ethanol (or water) on later self-infusion of ethanol or water via surgically implanted intragastric (IG) catheters in mouse genotypes previously shown to drink high (C57BL/6J, HAP2) or low (DBA/2J, LAP2) amounts of ethanol in home-cage continuous-access two-bottle choice procedures. Intragastric ethanol self-infusion was affected by both genotype and a history of passive ethanol exposure, with greater intakes in the high-drinking genotypes and in groups that received passive exposure to ethanol. Passive ethanol exposure also increased preference for the flavor that signaled ethanol infusion (S+), eliminating genetic differences in this measure. The increases in ethanol intake and S+ preference induced by ethanol exposure might have been mediated jointly by development of tolerance to aversive post-absorptive ethanol effects and negative reinforcement because of alleviation of withdrawal. Bout analyses indicated that ethanol exposure increased ethanol self-infusion by increasing the total number of daily bouts rather than by increasing bout size. These analyses also showed that DBA/2J mice infused larger ethanol bouts and a greater percentage of their total intakes in large bouts than C57BL/6J mice. Overall, these studies suggest that the IG self-infusion procedure is a potentially useful new tool for studying genetic and environmental influences on excessive ethanol intake and preference in mice.  相似文献   

10.
11.
Mouse strains have been divided into 'tasters' and 'non-tasters' based on their relatively high and low preference, respectively, for low concentrations of sucrose and saccharin. These phenotypic differences appear to be due to a polymorphism in the gene at the Sac locus encoding for the T1R3 taste receptor selectively affecting the functionality of the T1R2+3 heterodimer. To psychophysically examine whether these phenotypes are due to sensory sensitivity as opposed to hedonic responsiveness, we measured taste signal detection of sucrose, glucose, and glycine by Sac taster (C57BL/6J and SWR/J) and non-taster (129P3/J and DBA/2J) strains in an operant conditioning paradigm using a gustometer. The taster mice had lower detection thresholds for sucrose and glucose compared with the non-taster mice. The detection thresholds corresponded well with reported responsiveness to low concentrations of these sugars in two-bottle intake tests suggesting that the Sac taster phenotype has a sensory basis and is not simply a matter of strain differences in the hedonic evaluation of weak intensities of the stimuli. Taster status did not entirely account for the strain differences in detection thresholds for glycine, a 'sweet' tasting amino acid. Collapsed across strains, detection thresholds for sucrose and glucose were highly correlated with each other (r = 0.81), but only modestly correlated with those for glycine (r < or = 0.43). This suggests that stimulus processing of glycine in the perithreshold intensity domain can be dissociated from that of sucrose and glucose. The mechanism underlying this difference may be related to the ability of glycine to bind with the T1R1+3 heterodimer.  相似文献   

12.
Abstract. Brains of rodents are primarily dependent on ketone bodies as a source of hydrogen for NADH and of acetyl-CoA during the perinatal period characterized by suckling. A mouse dam begins to wean her pups at about 14 days of age (DOA), the same age at which the brain reaches near-adult size and begins to shift to dependence on carbohydrate-derived sources of acetyl-CoA for normal function. Also at this time, the ear canals open, and mice of some strains become susceptible to audiogenic seizures (AGS). There may be a genetically determined derangement in the orderly transition from one source of brain energy to the other in AGS-prone mice, with a concomitant brief (days) reduction in the in situ energy reserve during the transition. In mice with a decreased energy reserve, a large energy expenditure within a short period of time (s), such as that induced by a substantial acoustic stimulus to newly opened acoustic pathways, might briefly lead to CNS disorganization before body energy repletion processes may occur, resulting in the onset of an AGS. Since glucose, glycogen, ATP, and phosphocreatine provide the bulk of the brain energy reserve, a developmental study was performed to measure the concentrations of these metabolites in brain tissues of DBA/2J mice (genetically/developmentally susceptible to AGS: onset at 12–14 DOA, peak at 18–21 DOA, rapid decline until 30 DOA, essentially lost by 42 DOA) and in C57BL/6J mice (not developmentally susceptible to AGS). Samples of frontal, temporal, cerebellar, and diencephalic regions were taken from mice 0–44 DOA and assayed. With the exception of higher glycogen levels in both DBA and C57 mice in cerebellar and diencephalic samples 0–16 DOA, no regional differences were found. A decrease in glycogen in all regions was observed in DBA mice 16–30 DOA, which was the inverse of susceptibility to AGS in these mice. This dip was not found in C57 mice. ATP levels were elevated in DBA mice 14–18 DOA, and glucose levels were decreased in DBA mice 24–40 DOA. These data lend support to the hypothesis that lowered brain energy reserves, or lowered access to brain reserves, underlies susceptibility to AGS.  相似文献   

13.
The expression patterns of Tac2 and NK3 mRNA and of pep2, the neurokinin B (NKB) precursor protein, were compared in rats and mice. Pep2 immunoreactivity was observed in fibers, terminals, and perikarya in the brains of both species, but the number of NKB-immunoreactive cells was generally smaller in mice than in the corresponding nuclei in rats. Congruent distribution patterns of Tac2 mRNA and NKB were found in many nuclei of the thalamus and hypothalamus (habenula, anterodorsal nucleus, preoptic area, arcuate nucleus, paraventricular nucleus). However, mice expressed Tac2 mRNA neither in the hippocampus nor in the nucleus of the lateral olfactory tract, in contrast to rats. Accordingly, mice showed no NKB in the projection areas of these nuclei, such as the olfactory tubercle, whereas a clear NKB signal was present in rat tissues. Surprisingly, we found nearly identical NK3 mRNA expression patterns in both species, despite the species differences in NKB expression. Thus, although the expression patterns of Tac2 and NKB are similar in rats and mice, noteworthy differences exist. Our results have important implications for the interpretation of behavioral results concerning the NKB/NK3 system in these species. This study was supported by a grant from the Deutsche Forschungsgemeinschaft (FOR425/TPII)  相似文献   

14.
We established a preadipocyte cell line from mature adipocytes obtained from subcutaneous fat tissue of green fluorescent protein (GFP) transgenic mice. The floating top layer, containing mature adipocytes, was isolated from subcutaneous fat tissue by collagenase digestion and filtration. Fluorescence-activated cell sorting and microscopic analysis revealed that the floating cell fraction comprised a highly homogeneous adipocyte population with no adipose stromal-vascular cells. Isolated mature adipocytes dedifferentiated into fibroblast-like cells and actively proliferated in ceiling culture. In vitro studies showed that the cells could redifferentiate into mature adipocytes in an identical way to 3T3-L1 preadipocytes. No changes in the differentiation pattern were observed during the propagation of our cells. They were successfully maintained and differentiated for at least 22 passages. We named these cells dedifferentiated fat (DFAT-GFP) cells. When DFAT-GFP cells were implanted subcutaneously into C57BL/6N mice, they developed highly vascularized fat pads that morphologically resembled normal subcutaneous adipose tissue and consisted of GFP-positive cells; however, implanted 3T3-L1 cells did not have such an effect on the mice. We conclude that DFAT-GFP cells provide a model that should enable us to study the mechanisms of adipocyte differentiation and adipose tissue formation in vivo and in vitro. This work was supported by grants from the Japan Ministry of Education, Science, Sports, and Culture (no. 19580348) and from MEXT. HAITEKU (2007–2011).  相似文献   

15.
Genetic studies of nicotine addiction in mice have utilizedthe oral self-administration model. However, it is unclear ifstrain differences in nicotine consumption are influenced byvariation in bitter taste sensitivity. We measured both nicotineconsumption and nicotine brief-access licking behavior in severalcommonly used inbred strains of mice that were previously shownto differ in nicotine consumption. A/J (A), C57BL/6J (B6), andDBA/2J (D2) mice were given a 2-bottle choice test with a singleconcentration of nicotine (75 µg/ml; nicotine vs. water).Mice of these strains were also tested with a range of nicotineconcentrations (5–400 µg/ml) using a brief-accesstest, which measures orosensory response and minimizes postingestiveeffects. Although B6 mice consumed more 75-µg/ml nicotinethan A or D2 mice in the 2-bottle test, these strains did notdiffer in level of aversion to nicotine when tested with thebrief-access procedure. Strain differences in orosensory responseto nicotine were not found; yet, differences emerged duringthe 2-bottle tests. This study provides evidence that variationin intake level of nicotine is likely not due to differencesin taste or trigeminal sensitivity but likely due to postingestivefactors.  相似文献   

16.
Growing evidence suggests that adolescent mice display differential sensitivity to the acute locomotor activating effects of cocaine as compared to adults, but the direction of the difference varies across studies and the reasons are not clear. Few studies have directly examined genetic contributions to age differences in locomotor stimulation from cocaine. The goal of this study was to determine the extent to which reduced stimulation in C57BL/6J adolescents as compared to adults generalizes to other strains. Therefore, we examined male and female mice from four genetically divergent inbred stains (BALB/cByJ, C57BL/6J, DBA/2J and FVB/NJ) at two ages, postnatal day 30 and postnatal day 65. Mice received either saline or cocaine (15 or 30 mg/kg), and then immediately were placed back into their home cages. Locomotor activity was recorded continuously in the home cage by video tracking. Adolescents displayed reduced stimulation as compared to adults for C57BL/6J, BALB/cByJ and female FVB/NJ mice. No age differences were observed for DBA/2J or male FVB/NJ. No main effects of sex were observed. Strain differences in pharmacokinetics, neural development or physiology could contribute to the observed differences between ages across strains. Future comparative studies could discover biological differences between strains that explain age differences in cocaine sensitivity.  相似文献   

17.
18.
19.
Effect of metformin on adipose tissue resistin expression in db/db mice   总被引:17,自引:0,他引:17  
Resistin, a novel adipose-derived protein, has been proposed to cause insulin-resistant states in obesity. To evaluate whether an insulin-sensitizing drug, metformin, regulates adipose tissue resistin expression, murine models of obesity and diabetes, db/db mice, were treated with metformin (metformin group), insulin (insulin group), and vehicle (control group) for 4 weeks, followed by analyzing resistin protein expression in their adipose tissues. Unexpectedly, resistin protein expression was increased by 66% in the metformin group relative to the control group, while it did not differ between the insulin and control groups. Hyperinsulinemia was improved in the metformin group, while the insulin group exhibited severe hyperinsulinemia, similar to the control group. Furthermore, in comparison between obese mice (db/db mice) and age-matched lean controls, resistin protein expression was reduced by 58% in the obese mice with severe hyperinsulinemia. These data collectively suggest that resistin expression may be suppressed by hyperinsulinemia and that metformin may upregulate resistin expression via the improvement of hyperinsulinemia in obesity.  相似文献   

20.
Hereditary hemochromatosis is an iron overload disorder most commonly caused by a defect in the HFE gene. While the genetic defect is highly prevalent, the majority of individuals do not develop clinically significant iron overload, suggesting the importance of genetic modifiers. Murine hfe knockout models have demonstrated that strain background has a strong effect on the severity of iron loading. We noted that hepatic iron loading in hfe/− mice occurs primarily over the first postnatal weeks (loading phase) followed by a timeframe of relatively static iron concentrations (plateau phase). We thus evaluated the effects of background strain and of age on hepatic gene expression in Hfe knockout mice (hfe/−). Hepatic gene expression profiles were examined using cDNA microarrays in 4- and 8-week-old hfe/− and wild-type mice on two different genetic backgrounds, C57BL/6J (C57) and AKR/J (AKR). Genes differentially regulated in all hfe/− mice groups, compared with wild-type mice, including those involved in cell survival, stress and damage responses and lipid metabolism. AKR strain-specific changes in lipid metabolism genes and C57 strain-specific changes in cell adhesion and extracellular matrix protein genes were detected in hfe/− mice. Mouse strain and age are each significantly associated with hepatic gene expression profiles in hfe/mice. These affects may underlie or reflect differences in iron loading in these mice.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-014-0443-1) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号