首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C E Edwards  C Weinig 《Heredity》2011,106(4):661-677
Within organisms, groups of traits with different functions are frequently modular, such that variation among modules is independent and variation within modules is tightly integrated, or correlated. Here, we investigated patterns of trait integration and modularity in Brassica rapa in response to three simulated seasonal temperature/photoperiod conditions. The goals of this research were to use trait correlations to understand patterns of trait integration and modularity within and among floral, vegetative and phenological traits of B. rapa in each of three treatments, to examine the QTL architecture underlying patterns of trait integration and modularity, and to quantify how variation in temperature and photoperiod affects the correlation structure and QTL architecture of traits. All floral organs of B. rapa were strongly correlated, and contrary to expectations, floral and vegetative traits were also correlated. Extensive QTL co-localization suggests that covariation of these traits is likely due to pleiotropy, although physically linked loci that independently affect individual traits cannot be ruled out. Across treatments, the structure of genotypic and QTL correlations was generally conserved. Any observed variation in genetic architecture arose from genotype × environment interactions (GEIs) and attendant QTL × E in response to temperature but not photoperiod.  相似文献   

2.
Phenotypic integration is a pervasive characteristic of organisms. Numerous analyses have demonstrated that patterns of phenotypic integration are conserved across large clades, but that significant variation also exists. For example, heterochronic shifts related to different mammalian reproductive strategies are reflected in postcranial skeletal integration and in coordination of bone ossification. Phenotypic integration and modularity have been hypothesized to shape morphological evolution, and we extended simulations to confirm that trait integration can influence both the trajectory and magnitude of response to selection. We further demonstrate that phenotypic integration can produce both more and less disparate organisms than would be expected under random walk models by repartitioning variance in preferred directions. This effect can also be expected to favour homoplasy and convergent evolution. New empirical analyses of the carnivoran cranium show that rates of evolution, in contrast, are not strongly influenced by phenotypic integration and show little relationship to morphological disparity, suggesting that phenotypic integration may shape the direction of evolutionary change, but not necessarily the speed of it. Nonetheless, phenotypic integration is problematic for morphological clocks and should be incorporated more widely into models that seek to accurately reconstruct both trait and organismal evolution.  相似文献   

3.
Identification of phenotypic modules, semiautonomous sets of highly correlated traits, can be accomplished through exploratory (e.g., cluster analysis) or confirmatory approaches (e.g., RV coefficient analysis). Although statistically more robust, confirmatory approaches are generally unable to compare across different model structures. For example, RV coefficient analysis finds support for both two‐ and six‐module models for the therian mammalian skull. Here, we present a maximum likelihood approach that takes into account model parameterization. We compare model log‐likelihoods of trait correlation matrices using the finite‐sample corrected Akaike Information Criterion, allowing for comparison of hypotheses across different model structures. Simulations varying model complexity and within‐ and between‐module contrast demonstrate that this method correctly identifies model structure and parameters across a wide range of conditions. We further analyzed a dataset of 3‐D data, consisting of 61 landmarks from 181 macaque (Macaca fuscata) skulls, distributed among five age categories, testing 31 models, including no modularity among the landmarks and various partitions of two, three, six, and eight modules. Our results clearly support a complex six‐module model, with separate within‐ and intermodule correlations. Furthermore, this model was selected for all five age categories, demonstrating that this complex pattern of integration in the macaque skull appears early and is highly conserved throughout postnatal ontogeny. Subsampling analyses demonstrate that this method is robust to relatively low sample sizes, as is commonly encountered in rare or extinct taxa. This new approach allows for the direct comparison of models with different parameterizations, providing an important tool for the analysis of modularity across diverse systems.  相似文献   

4.
Summary Morphological variation within organisms is integrated and often modular in nature. That is to say, the size and shape of traits tend to vary in a coordinated and structured manner across sets of organs or parts of an organism. The genetic basis of this morphological integration is largely unknown. Here, we report on quantitative trait loci (QTL) analysis of leaf and floral organ size in Arabidopsis thaliana. We evaluate patterns of genetic correlations among traits and perform whole-genome scans using QTL mapping methods. We detected significant genetic variation for the size and shape of each floral and leaf trait in our study. Moreover, we found large positive genetic correlations among sets of either flower or leaf traits, but low and generally nonsignificant genetic correlations between flower and leaf traits. These results support the hypothesis of independent floral and vegetative modules. We consider co-localization of QTL for different traits as support for a pleiotropic basis of morphological integration and modularity. A total of eight QTL affecting flower and three QTL affecting leaf traits were identified. Most QTL affected either floral or leaf traits, providing a general explanation for high correlations within and low correlations between modules. Only two genomic locations affected both flower and leaf growth. These results are discussed in the context of the evolution of modules, pleiotropy, and the putative homologous relationship between leaves and flowers.  相似文献   

5.
Modular variation, whereby the relative degree of connectivity varies within a system, is thought to evolve through a process of selection that favors the integration of certain traits and the decoupling of others. In this way, modularity may facilitate the pace of evolution and determine evolvability. Alternatively, conserved patterns of modularity may act to constrain the rate and direction of evolution by preventing certain functions from evolving. A comprehensive understanding of the potential interplay between these phenomena will require knowledge of the inheritance and the genetic basis of modularity. Here we explore these ideas in the cichlid mandible by investigating patterns of modularity at the clade and species levels and through the introduction of a new approach, the individual level. Specifically, we assessed patterns of covariation in Lake Malawi cichlid species that employ alternate "biting" and "suction-feeding" modes of feeding and in a hybrid cross between these two ecotypes. Across the suction-feeding clade, patterns of modularity were largely conserved and reflected a functionally based pattern. In contrast, the biting species displayed a pattern of modularity that more closely matched developmental modules. The pattern of modularity present in our F2 population was very similar to the pattern exhibited by the biter, suggesting a role for dominant inheritance. We demonstrate that our individual-level metric of modularity (IMM) is a valid quantitative trait that has a nonlinear relationship with shape. IMMs for each model were used as quantitative characters to map quantitative trait loci (QTL) that underlie modularity. Our QTL analysis offers new insights into the genetic basis of modularity in these fishes that may eventually lead to the discovery of the genetic processes that delineate particular modules. In all, our findings suggest that modularity is both a constraining and an evolvable force in cichlid evolution, as distinct patterns occur between species and variation exists among individuals.  相似文献   

6.
Patterns of trait covariation, such as integration and modularity, are vital factors that influence the evolution of vertebrate body plans. In functional systems, decoupling of morphological modules buffers functional change in one trait by reducing correlated variation with another. However, for complex morphologies with many‐to‐one mapping of form to function (MTOM), resistance to functional change may also be achieved by constraining morphological variation within a functionally stable region of morphospace. For this research, we used geometric morphometrics to evaluate the evolution of body shape and its relationship with jaw functional morphology in two independent radiations of endemic Malagasy cichlid (Teleostei: Cichlidae). Our results suggested that the two subfamilies used different strategies to mitigate impacts of body shape variation on a metric of jaw function, maxillary kinematic transmission (MKT): (1) modularity between cranial and postcranial morphologies, and (2) integration of body and jaw evolution, with jaw morphologies varying in a manner that limits change in MKT. This research shows that, unlike modularity, MTOM allows traits to retain strong evolutionary covariation while still reducing impacts on functionality. These results suggest that MTOM, and its influence on the evolution of correlated traits, is likely much more widespread than is currently understood.  相似文献   

7.
The theory of morphological integration and modularity predicts that if functional correlations among traits are relevant to mean population fitness, the genetic basis of development will be molded by stabilizing selection to match functional patterns. Yet, how much functional interactions actually shape the fitness landscape is still an open question. We used the anuran skull as a model of a complex phenotype for which we can separate developmental and functional modularity. We hypothesized that functional modularity associated to functional demands of the adult skull would overcome developmental modularity associated to bone origin at the larval phase because metamorphosis would erase the developmental signal. We tested this hypothesis in toad species of the Rhinella granulosa complex using species phenotypic correlation pattern (P‐matrices). Given that the toad species are distributed in very distinct habitats and the skull has important functions related to climatic conditions, we also hypothesized that differences in skull trait covariance pattern are associated to differences in climatic variables among species. Functional and hormonal‐regulated modules are more conspicuous than developmental modules only when size variation is retained on species P‐matrices. Without size variation, there is a clear modularity signal of developmental units, but most species have the functional model as the best supported by empirical data without allometric size variation. Closely related toad species have more similar climatic niches and P‐matrices than distantly related species, suggesting phylogenetic niche conservatism. We infer that the modularity signal due to embryonic origin of bones, which happens early in ontogeny, is blurred by the process of growth that occurs later in ontogeny. We suggest that the species differing in the preferred modularity model have different demands on the orbital functional unit and that species contrasting in climate are subjected to divergent patterns of natural selection associated to neurocranial allometry and T3 hormone regulation.  相似文献   

8.

Background

Although variation provides the raw material for natural selection and evolution, few empirical data exist about the factors controlling morphological variation. Because developmental constraints on variation are expected to act by influencing trait correlations, studies of modularity offer promising approaches that quantify and summarize patterns of trait relationships. Modules, highly-correlated and semi-autonomous sets of traits, are observed at many levels of biological organization, from genes to colonies. The evolutionary significance of modularity is considerable, with potential effects including constraining the variation of individual traits, circumventing pleiotropy and canalization, and facilitating the transformation of functional structures. Despite these important consequences, there has been little empirical study of how modularity influences morphological evolution on a macroevolutionary scale. Here, we conduct the first morphometric analysis of modularity and disparity in two clades of placental mammals, Primates and Carnivora, and test if trait integration within modules constrains or facilitates morphological evolution.

Principal Findings

We used both randomization methods and direct comparisons of landmark variance to compare disparity in the six cranial modules identified in previous studies. The cranial base, a highly-integrated module, showed significantly low disparity in Primates and low landmark variance in both Primates and Carnivora. The vault, zygomatic-pterygoid and orbit modules, characterized by low trait integration, displayed significantly high disparity within Carnivora. 14 of 24 results from analyses of disparity show no significant relationship between module integration and morphological disparity. Of the ten significant or marginally significant results, eight support the hypothesis that integration within modules constrains morphological evolution in the placental skull. Only the molar module, a highly-integrated and functionally important module, showed significantly high disparity in Carnivora, in support of the facilitation hypothesis.

Conclusions

This analysis of within-module disparity suggested that strong integration of traits had little influence on morphological evolution over large time scales. However, where significant results were found, the primary effect of strong integration of traits was to constrain morphological variation. Thus, within Primates and Carnivora, there was some support for the hypothesis that integration of traits within cranial modules limits morphological evolution, presumably by limiting the variation of individual traits.  相似文献   

9.
Decoupling between floral and leaf traits is expected in plants with specialized pollination systems to assure a precise flower–pollinator fit, irrespective of leaf variation associated with environmental heterogeneity (functional modularity). Nonetheless, developmental interactions among floral traits also decouple flowers from leaves regardless of selection pressures (developmental modularity). We tested functional modularity in the hummingbird‐pollinated flowers of the Ameroglossum pernambucense complex while controlling for developmental modularity. Using two functional traits responsible for flower–pollinator fit [floral tube length (TL) and anther–nectary distance (AN)], one floral trait not linked to pollination [sepal length (SL), control for developmental modularity] and one leaf trait [leaf length (LL)], we found evidence of flower functional modularity. Covariation between TL and AN was ca. two‐fold higher than the covariation of either of these traits with sepal and leaf lengths, and variations in TL and AN, important for a precise flower–pollinator fit, were smaller than SL and LL variations. Furthermore, we show that previously reported among‐population variation of flowers associated with local pollinator phenotypes was independent from SL and LL variations. These results suggest that TL and AN are functionally linked to fit pollinators and sufficiently decoupled from developmentally related floral traits (SL) and vegetative traits (LL). These results support previous evidences of population differentiation due to local adaptation in the A. pernambucense complex and shed light on the role of flower–leaf decoupling for local adaptation in species distributed across biotic and abiotic heterogeneous landscapes.  相似文献   

10.
Theories of phenotypic integration have relied heavily on the concept of modularity in order to model the ways in which traits in an organism correlate and covary. Recent investigations suggest that, while some functional and developmental processes may be morphologically and ontogenetically localized, and thus modular in a developmental sense, there is a great deal of overlap among these influences on patterns of integration in the adult form. This can result in blurry boundaries between hypothesized modules constructed to test hypotheses about phenotypic integration. This investigation tests hypotheses about the contribution of pleiotropic quantitative trait loci (QTL) to phenotypic integration in the mouse mandible without using a priori categorical hypotheses about which traits constitute a module. We ask two main questions: (1) Are the effects of pleiotropic QTL localized to highly correlated traits or more spread out among traits than one might expect by chance? (2) Does the pattern of trait influence when all pleiotropic QTL are considered together deviate from what we might expect if QTL affect traits without regard for the correlations among traits? We find that a large proportion of pleiotropic QTL affect traits that are more highly correlated than we expect by chance with the remainder having effects that are distributed as if by chance. Furthermore, the overall distribution of the effects of pleiotropic QTL differs significantly from the null distribution of no association between pleiotropic effects on traits and correlations among traits. The main modular hypothesis used by earlier studies often does not predict the distribution of sets of traits sharing a common QTL. These results suggest that there is a clear tendency for pleiotropic effects of QTL to be localized but that the localization may be best thought of as occurring in a continuous space rather being clustered in discrete modules.  相似文献   

11.
Although most studies on integration and modularity have focused on variation among individuals within populations or species, this is not the only level of variation for which integration and modularity exist. Multiple levels of biological variation originate from distinct sources: genetic variation, phenotypic plasticity resulting from environmental heterogeneity, fluctuating asymmetry from random developmental variation and, at the interpopulation or interspecific levels, evolutionary change. The processes that produce variation at all these levels can impart integration or modularity on the covariance structure among morphological traits. In turn, studies of the patterns of integration and modularity can inform about the underlying processes. In particular, the methods of geometric morphometrics offer many advantages for such studies because they can characterize the patterns of morphological variation in great detail and maintain the anatomical context of the structures under study. This paper reviews biological concepts and analytical methods for characterizing patterns of variation and for comparing across levels. Because research comparing patterns across level has only just begun, there are relatively few results, generalizations are difficult and many biological and statistical questions remain unanswered. Nevertheless, it is clear that research using this approach can take advantage of an abundance of new possibilities that are so far largely unexplored.  相似文献   

12.
The mammalian skull has been studied as several separate functional components for decades, but the study of modularity is a more recent, integrative approach toward quantitative examination of independent subsets of highly correlated traits, or modules. Although most studies of modularity focus on developmental and genetic systems, phenotypic modules have been noted in many diverse morphological structures. However, few studies have provided empirical data for comparing modules across higher taxonomic levels, limiting the ability to assess the broader evolutionary significance of modularity. This study uses 18-32 three-dimensional cranial landmarks to analyze phenotypic modularity in 106 mammalian species and demonstrates that cranial modularity is generally conserved in the evolution of therian mammals (marsupials and placentals) but differs between therians and monotremes, the two extant subclasses of Mammalia. Within therians, cluster analyses identify six distinct modules, but only three modules display significant integration in all species. Monotremes display only two highly integrated modules. Specific hypotheses of functional and developmental influences on cranial bones were tested. Theoretical correlation matrices for bones were constructed on the basis of shared function, tissue origin, or mode of ossification, and all three of these models are significantly correlated with observed correlation matrices for the mammalian cranium.  相似文献   

13.
In vertebrates, changes in cranial modularity can evolve rapidly in response to selection. However, mammals have apparently maintained their pattern of cranial integration throughout their evolutionary history and across tremendous morphological and ecological diversity. Here, we use phylogenetic, geometric morphometric and comparative analyses to test the hypothesis that the modularity of the mammalian skull has been remodelled in rhinolophid bats due to the novel and critical function of the nasal cavity in echolocation. We predicted that nasal echolocation has resulted in the evolution of a third cranial module, the ‘nasal dome’, in addition to the braincase and rostrum modules, which are conserved across mammals. We also test for similarities in the evolution of skull shape in relation to habitat across rhinolophids. We find that, despite broad variation in the shape of the nasal dome, the integration of the rhinolophid skull is highly consistent with conserved patterns of modularity found in other mammals. Across their broad geographical distribution, cranial shape in rhinolophids follows two major divisions that could reflect adaptations to dietary and environmental differences in African versus South Asian distributions. Our results highlight the potential of a relatively simple modular template to generate broad morphological and functional variation in mammals.  相似文献   

14.
15.

Environmental gradients are known to drive changes in mean trait values, but changes in the trait integration strength across local communities are less well understood, particularly with regard to possible links with species richness variation. Here, we tested if climate, soil, and topography gradients drive species richness indirectly via constraints on trait integration in the Atlantic Forest of South America. We evaluated seven traits (from leaf, wood, seed, and plant size) of 1456 species occurring across 84 local communities. Generalized least square models and a path model were applied to test direct and indirect relationships. Correlations were higher between leaf traits (average r?=?0.28) and lower when other traits were included (average r?=?0.16). In line with this result, species richness was related to a multivariate index of interspecific trait integration (ITI) computed for leaf traits, but not to the ITI for all the seven traits. Abiotic gradients influenced species richness both directly and indirectly through the leaf trait integration. A total of 33% and 26% of the variation in species richness and ITI, respectively, were explained by the models, with climatic conditions showing higher contribution than topographic and edaphic factors. These results support a significant but reduced environmental selection role behind the trait-based community assembly and may suggest that other processes are involved in the constrain of trait integration at larger spatial scales. In addition, different directional trends in trait–trait relationships across local communities suggest that global trait relationships may not necessarily hold at local contexts.

  相似文献   

16.
Covariation of life history traits across species may be organised on a ‘fast-slow’ continuum. A burgeoning literature in psychology and social science argues that trait covariation should be similarly organised across individuals within human populations. Here we describe why extrapolating from inter-species to inter-individual trait covariation is not generally appropriate. The process that genetically tailors species to their environments (i.e. Darwinian evolution) is fundamentally different from processes that tailor individuals to their environments (e.g. developmental plasticity), so their outcomes in terms of trait covariation need not be parallel or even related. We discuss why correlational selection, physical linkage, pleiotropy, and non-random mating do not substantively affect this claim in the context of complex human traits. We also discuss life history trade-offs and their relation to inter-individual trait covariation. We conclude that researchers should avoid hypotheses and explanations that assume trait covariation will correspond across and within species, unless they can mount a theoretically coherent argument to support this claim in the context of their research question.  相似文献   

17.
Different factors and processes that produce phenotypic variation at the individual, population, or interspecific level can influence or alter the covariance structure among morphological traits. Therefore, studies of the patterns of integration and modularity at multiple levels—static, ontogenetic, and evolutionary, can provide invaluable data on underlying factors and processes that structured morphological variation, directed, or constrained evolutionary changes. Our dataset, consisting of cranium shape data for 14 lizard species from the family Lacertidae, with substantial samples of hatchlings and adults along with their inferred evolutionary relationships, enabled us to assess modularity and morphological integration at all three levels. Five, not mutually exclusive modularity hypotheses of lizard cranium, were tested, and the effects of allometry on intensity and the pattern of integration and modularity were estimated. We used geometric morphometrics to extract symmetric and asymmetric, as well as allometric and nonallometric, components of shape variation. At the static level, firm confirmation of cranial modularity was found for hypotheses which separate anterior and posterior functional compartments of the skull. At the ontogenetic level, two alternative hypotheses (the “anteroposterior” and “neurodermatocranial” hypotheses) of ventral cranial modularity were confirmed. At the evolutionary level, the “neurodermatocranial” hypothesis was confirmed for the ventral cranium, which is in accordance with the pattern observed at the ontogenetic level. The observed pattern of static modularity could be driven by functional demands and can be regarded as adaptive. Ontogenetic modularity and evolutionary modularity show the same developmental origin, indicating conservatism of modularity patterns driven by developmental constraints.  相似文献   

18.
Ecological communities and their response to environmental gradients are increasingly being described by various measures of trait composition. Aggregated trait averages (i.e. averages of trait values of constituent species, weighted by species proportions) are popular indices reflecting the functional characteristics of locally dominant species. Because the variation of these indices along environmental gradients can be caused by both species turnover and intraspecific trait variability, it is necessary to disentangle the role of both components to community variability. For quantitative traits, trait averages can be calculated from ‘fixed’ trait values (i.e. a single mean trait value for individual species used for all habitats where the species is found) or trait values for individual species specific to each plot, or habitat, where the species is found. Changes in fixed averages across environments reflect species turnover, while changes in specific traits reflect both species turnover and within‐species variability in traits. Here we suggest a practical method (accompanied by a set of R functions) that, by combining ‘fixed’ and ‘specific averages’, disentangles the effect of species turnover, intraspecific trait variability, and their covariation. These effects can be further decomposed into parts ascribed to individual explanatory variables (i.e. treatments or environmental gradients considered). The method is illustrated with a case study from a factorial mowing and fertilization experiment in a meadow in South Bohemia. Results show that the variability decomposition differs markedly among traits studied (height, Specific Leaf Area, Leaf N, P, C concentrations, leaf and stem dry matter content), both according to the relative importance of species turnover and intraspecific variability, and also according to their response to experimental factors. Both the effect of intraspecific trait variability and species turnover must be taken into account when assessing the functional role of community trait structure. Neglecting intraspecific trait variability across habitats often results in underestimating the response of communities to environmental changes.  相似文献   

19.
Complex organismal structures are organized into modules, suites of traits that develop, function, and vary in a coordinated fashion. By limiting or directing covariation among component traits, modules are expected to represent evolutionary building blocks and to play an important role in morphological diversification. But how stable are patterns of modularity over macroevolutionary timescales? Comparative analyses are needed to address the macroevolutionary effect of modularity, but to date few have been conducted. We describe patterns of skull diversity and modularity in Caribbean Anolis lizards. We first diagnose the primary axes of variation in skull shape and then examine whether diversification of skull shape is concentrated to changes within modules or whether changes arose across the structure as a whole. We find no support for the hypothesis that cranial modules are conserved as species diversify in overall skull shape. Instead we find that anole skull shape and modularity patterns independently converge. In anoles, skull modularity is evolutionarily labile and may reflect the functional demands of unique skull shapes. Our results suggest that constraints have played little role in limiting or directing the diversification of head shape in Anolis lizards.  相似文献   

20.
Phenotypic traits are often integrated into evolutionary modules: sets of organismal parts that evolve together. In social insect colonies, the concepts of integration and modularity apply to sets of traits both within and among functionally and phenotypically differentiated castes. On macroevolutionary timescales, patterns of integration and modularity within and across castes can be clues to the selective and ecological factors shaping their evolution and diversification. We develop a set of hypotheses describing contrasting patterns of worker integration and apply this framework in a broad (246 species) comparative analysis of major and minor worker evolution in the hyperdiverse ant genus Pheidole. Using geometric morphometrics in a phylogenetic framework, we inferred fast and tightly integrated evolution of mesosoma shape between major and minor workers, but slower and more independent evolution of head shape between the two worker castes. Thus, Pheidole workers are evolving as a mixture of intracaste and intercaste integration and rate heterogeneity. The decoupling of homologous traits across worker castes may represent an important process facilitating the rise of social complexity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号