首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The genus Caldicellulosiruptor contains the most thermophilic, plant biomass-degrading bacteria isolated to date. Previously, genome sequences from three cellulolytic members of this genus were reported (C. saccharolyticus, C. bescii, and C. obsidiansis). To further explore the physiological and biochemical basis for polysaccharide degradation within this genus, five additional genomes were sequenced: C. hydrothermalis, C. kristjanssonii, C. kronotskyensis, C. lactoaceticus, and C. owensensis. Taken together, the seven completed and one draft-phase Caldicellulosiruptor genomes suggest that, while central metabolism is highly conserved, significant differences in glycoside hydrolase inventories and numbers of carbohydrate transporters exist, a finding which likely relates to variability observed in plant biomass degradation capacity.  相似文献   

2.
The extreme thermophile Caldicellulosiruptor bescii solubilizes and metabolizes the carbohydrate content of lignocellulose, a process that ultimately ceases because of biomass recalcitrance, accumulation of fermentation products, inhibition by lignin moieties, and reduction of metabolic activity. Deconstruction of low loadings of lignocellulose (5 g/L), either natural or transgenic, whether unpretreated or subjected to hydrothermal processing, by C. bescii typically results in less than 40% carbohydrate solubilization. Mild alkali pretreatment (up to 0.09 g NaOH/g biomass) improved switchgrass carbohydrate solubilization by C. bescii to over 70% compared to less than 30% for no pretreatment, with two-thirds of the carbohydrate content in the treated switchgrass converted to acetate and lactate. C. bescii grown on high loadings of unpretreated switchgrass (50 g/L) retained in a pH-controlled bioreactor slowly purged (τ = 80 hr) with growth media without a carbon source improved carbohydrate solubilization to over 40% compared to batch culture at 29%. But more significant was the doubling of solubilized carbohydrate conversion to fermentation products, which increased from 40% in batch to over 80% in the purged system, an improvement attributed to maintaining the bioreactor culture in a metabolically active state. This strategy should be considered for optimizing solubilization and conversion of lignocellulose by C. bescii and other lignocellulolytic microorganisms.  相似文献   

3.
Phylogenetic, microbiological, and comparative genomic analyses were used to examine the diversity among members of the genus Caldicellulosiruptor, with an eye toward the capacity of these extremely thermophilic bacteria to degrade the complex carbohydrate content of plant biomass. Seven species from this genus (C. saccharolyticus, C. bescii, C. hydrothermalis, C. owensensis, C. kronotskyensis, C. lactoaceticus, and C. kristjanssonii) were compared on the basis of 16S rRNA gene phylogeny and cross-species DNA-DNA hybridization to a whole-genome C. saccharolyticus oligonucleotide microarray, revealing that C. saccharolyticus was the most divergent within this group. Growth physiology of the seven Caldicellulosiruptor species on a range of carbohydrates showed that, while all could be cultivated on acid-pretreated switchgrass, only C. saccharolyticus, C. bescii, C. kronotskyensis, and C. lactoaceticus were capable of hydrolyzing Whatman no. 1 filter paper. Two-dimensional gel electrophoresis of the secretomes from cells grown on microcrystalline cellulose revealed that the cellulolytic species also had diverse secretome fingerprints. The C. saccharolyticus secretome contained a prominent S-layer protein that appears in the cellulolytic Caldicellulosiruptor species, suggesting a possible role in cell-substrate interactions. Growth physiology also correlated with glycoside hydrolase (GH) and carbohydrate-binding module (CBM) inventories for the seven bacteria, as deduced from draft genome sequence information. These inventories indicated that the absence of a single GH and CBM family was responsible for diminished cellulolytic capacity. Overall, the genus Caldicellulosiruptor appears to contain more genomic and physiological diversity than previously reported, and this argues for continued efforts to isolate new members from high-temperature terrestrial biotopes.  相似文献   

4.
5.
6.
A gene coding for a pullulanase from the obligately anaerobic, extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus has been cloned in Escherichia coli. It consists of an open reading frame (pulA) of 2478 bp which codes for an enzyme of 95 732 Da and is flanked by two other open reading frames. A truncated version of the gene which lacks 381 bp of 5′-sequence also has pullulanase activity and it appears that the amino-terminal portion of the gene is not essential for either activity or thermostability. Amino acid sequence comparisons with other published amylases and pullulanases showed that it possesses homology to the four key regions common to these enzymes.  相似文献   

7.
Mass spectrometric analysis of Caldicellulosiruptor obsidiansis cultures grown on four different carbon sources identified 65% of the cells' predicted proteins in cell lysates and supernatants. Biological and technical replication together with sophisticated statistical analysis were used to reliably quantify protein abundances and their changes as a function of carbon source. Extracellular, multifunctional glycosidases were significantly more abundant on cellobiose than on the crystalline cellulose substrates Avicel and filter paper, indicating either disaccharide induction or constitutive protein expression. Highly abundant flagellar, chemotaxis, and pilus proteins were detected during growth on insoluble substrates, suggesting motility or specific substrate attachment. The highly abundant extracellular binding protein COB47_0549 together with the COB47_1616 ATPase might comprise the primary ABC-transport system for cellooligosaccharides, while COB47_0096 and COB47_0097 could facilitate monosaccharide uptake. Oligosaccharide degradation can occur either via extracellular hydrolysis by a GH1 β-glycosidase or by intracellular phosphorolysis using two GH94 enzymes. When C. obsidiansis was grown on switchgrass, the abundance of hemicellulases (including GH3, GH5, GH51, and GH67 enzymes) and certain sugar transporters increased significantly. Cultivation on biomass also caused a concerted increase in cytosolic enzymes for xylose and arabinose fermentation.  相似文献   

8.
9.
An extremely thermophilic (optimum growth at 88° C), anaerobic bacterium was isolated from a shallow submarine thermal spring. It appears to be an obligate heterotroph, capable of reducing sulfur to H2S. Oxygen sensitivity is apparent only at and above those temperatures where growth occurs, while the cultures retain their viability for long periods under air at 4° C. Insensitivity to chloramphenicol, vancomycin and streptomycin, and lack of muramic acid in its cell wall, indicate a possible affilitation of the new isolate to the thermoacidophilic archaebacteria. However, its neutrophilic and hetertrophic nature, as well as its DNA base composition (39.1 mol % guanine plus cytosine) set it apart from the known genera of this group.Abbreviations ASW Artifical sea water medium - Bis-tris propane 1,3-bis[tris(hydroxymethyl)-methylamino]-propane - Mes 2(N-morpholino)ethanesulfonic acid - Pipes Piperazine-N,N-bis(2-ethanesulfonic acid)  相似文献   

10.
The genus Caldicellulosiruptor contains extremely thermophilic bacteria that grow on plant polysaccharides. The genomes of Caldicellulosiruptor species reveal certain surface layer homology (SLH) domain proteins that have distinguishing features, pointing to a role in lignocellulose deconstruction. Two of these proteins in Caldicellulosiruptor saccharolyticus (Csac_0678 and Csac_2722) were examined from this perspective. In addition to three contiguous SLH domains, the Csac_0678 gene encodes a glycoside hydrolase family 5 (GH5) catalytic domain and a family 28 carbohydrate-binding module (CBM); orthologs to Csac_0678 could be identified in all genome-sequenced Caldicellulosiruptor species. Recombinant Csac_0678 was optimally active at 75°C and pH 5.0, exhibiting both endoglucanase and xylanase activities. SLH domain removal did not impact Csac_0678 GH activity, but deletion of the CBM28 domain eliminated binding to crystalline cellulose and rendered the enzyme inactive on this substrate. Csac_2722 is the largest open reading frame (ORF) in the C. saccharolyticus genome (predicted molecular mass of 286,516 kDa) and contains two putative sugar-binding domains, two Big4 domains (bacterial domains with an immunoglobulin [Ig]-like fold), and a cadherin-like (Cd) domain. Recombinant Csac_2722, lacking the SLH and Cd domains, bound to cellulose and had detectable carboxymethylcellulose (CMC) hydrolytic activity. Antibodies directed against Csac_0678 and Csac_2722 confirmed that these proteins bound to the C. saccharolyticus S-layer. Their cellular localization and functional biochemical properties indicate roles for Csac_0678 and Csac_2722 in recruitment and hydrolysis of complex polysaccharides and the deconstruction of lignocellulosic biomass. Furthermore, these results suggest that related SLH domain proteins in other Caldicellulosiruptor genomes may also be important contributors to plant biomass utilization.  相似文献   

11.
Methods for efficient growth and manipulation of relatively uncharacterized bacteria facilitate their study and are essential for genetic manipulation. We report new growth media and culture techniques for Caldicellulosiruptor bescii, the most thermophilic cellulolytic bacterium known. A low osmolarity defined growth medium (LOD) was developed that avoids problems associated with precipitates that form in previously reported media allowing the monitoring of culture density by optical density at 680 nm (OD680) and more efficient DNA transformation by electroporation. This is a defined minimal medium and does not support growth when a carbon source is omitted, making it suitable for selection of nutritional markers as well as the study of biomass utilization by C. bescii. A low osmolarity complex growth medium (LOC) was developed that dramatically improves growth and culture viability during storage, making it a better medium for routine growth and passaging of C. bescii. Both media contain significantly lower solute concentration than previously published media, allowing for flexibility in developing more specialized media types while avoiding the issues of growth inhibition and cell lysis due to osmotic stress. Plating on LOD medium solidified by agar results in ~1,000-fold greater plating efficiency than previously reported and allows the isolation of discrete colonies. These new media represent a significant advance for both genetic manipulation and the study of biomass utilization in C. bescii, and may be applied broadly across the Caldicellulosiruptor genus.  相似文献   

12.
Summary A cellulolyticm obligately anaerobic, extreme thermophile (strain NA10) was isolated from an alkaline hot spring in Nagano Prefecture, Japan. The microorganism was a non-spore-forming, flagellated rod which had a negative reaction to Gram stain, and occurred singly or in pairs. The growth temperature was between 50° C and 85° C with the optimum at 75° C, and the growth pH was between 6.0 and 9.5 with the optimum at 8.1. The anaerobe characteristically fermented cellulose, and produced acetic acid, H2, CO2 (main products) and lactic acid (minor product). The DNA had a base composition of 37.7 mol% guanine+cytosine content.  相似文献   

13.
Abstract We report here the isolation of a Renibacterium salmoninarum DNA sequence capable of transforming a non-invasive Escherichia coli strain into a microorganism able to enter the fish cell line, CHSE-214. Immunofluorescence and electron microscopy techniques were used to assess the acquired invasive phenotype by HB101 E. coli cells, upon transformation with pPMV-189. This plasmid carries a 2282-bp R. salmoninarum DNA segment. The invasive phenotype is qonserved upon deletion of approximately 1000 bp at the 3' end of the insert. The remaining segment contains an ORF region encoding a putative protein of about 30 kDa.  相似文献   

14.
O-Acetyl-L-serine sulfhydrylase (EC 4.2.99.8) was first purified from an extremely thermophilic bacterium, Thermus thermophilus HB8, in order to ascertain that it is responsible for the cysteine synthesis in this organism cultured with either sulfate or methionine given as a sole sulfur source. Polyacrylamide gel electrophoreses both with and without SDS found high purity of the enzyme preparations finally obtained, through ammonium sulfate fractionation, ion exchange chromatography, gel filtration, and hydrophobic chromatography (or affinity chromatography). The enzyme activity formed only one elution curve in each of the four different chromatographies, strongly suggesting the presence of only one enzyme species in this organism. Molecular masses of 34,000 and 68,000 were estimated for dissociated subunit and the native enzyme, respectively, suggesting a homodimeric structure. The enzyme was stable at 70 degrees C at pH 7.8 for 60 min, and more than 90% of the activity was retained after incubation of its solution at 80 degrees C with 10 mm dithiothreitol. The enzyme was also quite stable at pH 8-12 (50 degrees C, 30 min). It had an apparent Km of 4.8 mM for O-acetyl-L-serine (with 1 mM sulfide) and a Vmax of 435 micromol/min/mg of protein. The apparent Km for sulfide was approximately 50 microM (with 20 mM acetylserine), suggesting that the enzyme can react with sulfide liberated very slowly from methionine. The absorption spectrum of the holo-enzyme and inhibition of the activity by carbonyl reagents suggested the presence of pyridoxal 5'-phosphate as a cofactor. The apo-enzyme showed an apparent Km of 29 microM for the cofactor at pH 8. Monoiodoacetic acid (1 mM) almost completely inactivated the enzyme. The meaning of a very high enzyme content in the cell is discussed.  相似文献   

15.
16.
17.
In the extreme thermophile Thermus aquaticus, phosphoenolpyruvate carboxylase catalyzes carbon dioxide fixation on the C3 metabolite phosphoenolpyruvate, producing oxaloacetate. In a moderately thermophilic Bacillus species this function is fulfilled by pyruvate carboyxlase. Like several of its mesophilic counterparts, the Thermus enzyme exhibits a requirement for acetyl coenzyme A.  相似文献   

18.
A subfamily I aminotransferase gene homologue containing an open reading frame encoding 381 amino acid residues (Mr=42,271) has been identified in the process of the genome project of an extremely thermophilic bacterium, Thermus thermophilus HB8. Alignment of the predicted amino acid sequence using FASTA shows that this protein is a member of aminotransferase subfamily Igamma. The protein shows around 40% identity with both T. thermophilus aspartate aminotransferase [EC 2.6.1.1] and mammalian glutamine:phenylpyruvate aminotransferase [EC 2.6.1.64]. The recombinant protein expressed in Escherichia coli is a homodimer with a subunit molecular weight of 42,000, has one pyridoxal 5'-phosphate per subunit, and is highly active toward glutamine, methionine, aromatic amino acids, and corresponding keto acids, but has no preference for alanine and dicarboxylic amino acids. These substrate specificities are similar to those described for mammalian glutamine: phenylpyruvate aminotransferase. This is the first enzyme reported so far that has the glutamine aminotransferase activity in non-eukaryotic cells. As the presence of aromatic amino acid:2-oxoglutarate aminotransferase [EC 2.6.1.57] has not been reported in T. thermophilus, this enzyme is expected to catalyze the last transamination step of phenylalanine and tyrosine biosynthesis. It may also be involved in the methionine regeneration pathway associated with polyamine biosynthesis. The enzyme shows a strikingly high pKa value (9.3) of the coenzyme Schiff base in comparison with other subfamily I aminotransferases. The origin of this unique pKa value and the substrate specificity is discussed based on the previous crystallographic data of T. thermophilus and E. coli aspartate aminotransferases.  相似文献   

19.
A physical map of the chromosome of the extremely thermophilic eubacterium Thermus thermophilus HB8 has been constructed by using pulsed-field gel electrophoresis techniques. A total of 26 cleavage sites for the rarely cutting restriction endonucleases HpaI, MunI, and NdeI were located on the genome. On the basis of the sizes of the restriction fragments generated, the genome size was estimated to be 1.74 Mbp, which is significantly smaller than the chromosomes of Escherichia coli and other mesophiles. Partial digestion experiments revealed the order of the six HpaI bands on the chromosome. Hybridization of isolated restriction fragments to pulsed-field gel-separated restriction digestions confirmed the deduced order of the HpaI fragments and allowed ordering and alignment of the NdeI and MunI fragments. In addition, 16 genes or gene clusters cloned from several different Thermus strains were located on the T. thermophilus HB8 chromosomal map by hybridization of gene probes to pulsed-field gel-resolved restriction digestions.  相似文献   

20.
The mutM (fpg) gene, which encodes a DNA glycosylase that excises an oxidatively damaged form of guanine, was cloned from an extremely thermophilic bacterium, Thermus thermophilus HB8. Its nucleotide sequence encoded a 266 amino acid protein with a molecular mass of approximately 30 kDa. Its predicted amino acid sequence showed 42% identity with the Escherichia coli protein. The amino acid residues Cys, Asn, Gln and Met, known to be chemically unstable at high temperatures, were decreased in number in T.thermophilus MutM protein compared to those of the E.coli one, whereas the number of Pro residues, considered to increase protein stability, was increased. The T.thermophilus mutM gene complemented the mutability of the E.coli mutM mutY double mutant, suggesting that T. thermophilus MutM protein was active in E.coli. The T.thermophilus MutM protein was overproduced in E.coli and then purified to homogeneity. Size-exclusion chromatography indicated that T. thermophilus MutM protein exists as a more compact monomer than the E.coli MutM protein in solution. Circular dichroism measurements indicated that the alpha-helical content of the protein was approximately 30%. Thermus thermophilus MutM protein was stable up to 75 degrees C at neutral pH, and between pH 5 and 11 and in the presence of up to 4 M urea at 25 degrees C. Denaturation analysis of T.thermophilus MutM protein in the presence of urea suggested that the protein had at least two domains, with estimated stabilities of 8.6 and 16.2 kcal/mol-1, respectively. Thermus thermophilus MutM protein showed 8-oxoguanine DNA glycosylase activity in vitro at both low and high temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号