首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
内质网应激与自噬及其交互作用影响内皮细胞凋亡   总被引:1,自引:0,他引:1  
内质网应激是普遍存在于真核细胞中的应激-防御机制。在内环境稳态遭到破坏的情况下,未折叠蛋白质反应的3条信号通路,分别通过增强蛋白质折叠能力、减少蛋白质生成和促进内质网相关蛋白质降解等途径缓解细胞内压力。同时,也通过多种分子信号机制调控细胞凋亡。自噬是一种生理性的降解机制。通过形成自噬泡并与溶酶体结合摄取并水解胞内受损细胞器和蛋白质等,清除代谢废物,维持细胞正常功能。自噬缺陷或过度激活均可导致细胞凋亡或非程序性死亡。自噬的程度和细胞内压力水平有关。内质网应激通过未折叠蛋白质反应和Ca2+浓度变化及其相关分子信号调控自噬。自噬又可反馈性调节内质网应激反应,二者相互作用,在内皮细胞凋亡过程中发挥重要作用。未来内质网应激和自噬可作为药物靶点为内皮相关性疾病提供诊疗策略。  相似文献   

5.
Bud break in raspberry (Rubus idaeus L.) is often poor and uneven, with many of the subapical buds remaining in a dormant state. In order to determine the dormancy status of raspberry buds, an empirical measure of bud burst in a growth-permissive environment following exposure to chilling (4 degrees C cold storage) was developed. For cv. Glen Ample, percentage bud burst in intact canes and isolated nodes was recorded after 14 d. Isolated nodes (a measure of endodormancy) achieved 100% bud burst after approximately 1500 h chilling whereas buds on intact plants (combined endo- and paradormancy) required an additional 1000 h chilling. A microarray approach was used to follow changes in gene expression that occurred during dormancy transition. The probes for the microarrays were obtained from endodormant and paradormant raspberry bud cDNA libraries. The expression profiles of 5300 clones from these libraries were subjected to principal component analysis to determine the most significant expression patterns. Sequence analysis of these clones, in many cases, enabled their functional categorization and the development of hypotheses concerning the mechanisms of bud dormancy release. Thus a set of novel candidates for key dormancy-related genes from raspberry buds have been identified. Bud dormancy is fundamental to the study of plant developmental processes and, in addition, its regulation is of significant economic importance to fruit and horticultural industries.  相似文献   

6.
7.
内质网是蛋白质折叠和蛋白质糖基化修饰的重要场所。在内质网中存在多种调控机制来确保其中的蛋白质被正确地折叠、修饰和组装,以维持内质网稳态,这对于细胞正常的生理活动十分重要。然而,多种物理、化学因素均可使内质网稳态失衡,即在应激条件下,错误折叠和未折叠蛋白质的大量积累将导致内质网胁迫(endoplasmic reticulum stress, ERS),进而会引起未折叠蛋白质响应(unfolded protein response, UPR),极端情况下还会启动细胞程序性死亡(program cell death, PCD)。目前,植物内质网胁迫方面的研究较酵母和动物滞后,因此,从内质网质量控制系统和未折叠蛋白质响应2个方面对植物内质网胁迫现有研究进行了综述,以期为进一步理解内质网胁迫与植物逆境胁迫的关系提供参考。  相似文献   

8.
Dormancy is a condition that delays or inhibits growth in seed, vegetative buds, and floral buds. In peach, seed germination occurs when seed accumulate sufficient stratification and growing degree hours to break dormancy and begin growing. Correlations have been reported between mean seed stratification requirements and mean bud chilling requirements among Prunus families, but an individual seed’s germination date and subsequent vegetative and floral bud break date are not correlated. Prior to this study, the genetic factors involved in regulating seed dormancy and their location on the peach genomic map were unknown. Segregating F2 seed were collected from a high?×?low chill F1 peach hybrid in 2005, 2006, and 2008. Germination date and growth habit was measured after the stratification requirement of the 2005 seed was fully met. The seed collected in 2006 and 2008 received varying amounts of stratification, which enabled data on stratification requirement, heat requirement, and growth habit to be collected. Genomic DNA was extracted from seedling leaf tissue and screened with SSR markers selected from the Prunus reference map at an average resolution of 20 cM. Seed dormancy quantitative trait loci (QTLs) were detected on G1, G4, G6/8, and G7. The QTLs detected on G6/8 and G7 were discovered in the same region as QTLs associated with floral bud chilling requirement and bloom time in peach.  相似文献   

9.
Urade R 《The FEBS journal》2007,274(5):1152-1171
Secretory and transmembrane proteins are synthesized in the endoplasmic reticulum (ER) in eukaryotic cells. Nascent polypeptide chains, which are translated on the rough ER, are translocated to the ER lumen and folded into their native conformation. When protein folding is inhibited because of mutations or unbalanced ratios of subunits of hetero-oligomeric proteins, unfolded or misfolded proteins accumulate in the ER in an event called ER stress. As ER stress often disturbs normal cellular functions, signal-transduction pathways are activated in an attempt to maintain the homeostasis of the ER. These pathways are collectively referred to as the unfolded protein response (UPR). There have been great advances in our understanding of the molecular mechanisms underlying the UPR in yeast and mammals over the past two decades. In plants, a UPR analogous to those in yeast and mammals has been recognized and has recently attracted considerable attention. This review will summarize recent advances in the plant UPR and highlight the remaining questions that have yet to be addressed.  相似文献   

10.
Possible role of catalase in post-dormancy bud break in grapevines   总被引:1,自引:0,他引:1  
Changes in the activity of catalase (Cat) and in the levels of H2O2 were followed throughout dormancy in buds of grapevines (Vitis vinifera L.). In grapevines grown in the Elqui valley in Chile, a region with warm-winters, the activity of Cat increased during the recess period of buds, reaching a maximum and thereafter decreased to less than one third of its maximal activity. Three isoforms of Cat were detected in extracts of buds by native PAGE analysis, and the extracted activity was inhibited competitively by hydrogen cyanamide (HC), a potent bud-break agent. Furthermore, HC applications to field-grown grapevines in addition to the expected effect on advancing bud break, reduced the Cat activity during bud dormancy. Similar reductions were observed during dormancy in buds of grapevines grown in the Central valley in Chile, a region with temperate winters, suggesting that HC and winter chilling inhibits the activity of the main H2O2 degrading enzyme in grape buds. A transient rise in H2O2 levels preceded the release of buds from endodormancy, moreover, the peak of H2O2 and the onset of bud break occurred earlier in HC treated than in control grapevines, suggesting the participation of H2O2 as a signal molecule in the release of endodormancy in grape buds. The relationship between Cat inhibition, rise in H2O2 levels and initiation of bud break are discussed.  相似文献   

11.
He YY  He KL  Liu CL 《生理科学进展》2011,42(6):419-422
内质网应激是继死亡受体信号途径和线粒体途径之后新近发现的一条细胞凋亡通路,适度的应激可通过未折叠蛋白反应(UPR)产生细胞保护作用,但当应激过强或长时间不缓解时则会触发CHOP、ASK1/JNK及Caspases等通路诱导细胞凋亡。近年来研究发现内质网应激参与多种心血管疾病的发生发展,通过对相关通路的干预可以产生心肌细胞的保护作用,这有望成为防治心脏疾病的新靶点。  相似文献   

12.
13.
对植物蛋白磷酸酶2C(PP2C)相关基因在砂梨Pyrus pyrifolia品系休眠进程中的表达进行分析。结果表明,砂梨PP2C相关基因与李属PP2C基因高度同源。在梨花芽休眠过程中不同PP2C基因调控的作用不同, PP2C-37-1、PP2C-37-2、PP2C-51-1、PP2C-24四个基因与内休眠调控有关,而PP2C-78对于内休眠的解除则有明显作用。PP2C蛋白磷酸酶相关基因注释到植物激素信号转导途径显示,ABA受体PYR/PYL蛋白与PP2C蛋白以及SnRK2(蛋白激酶)蛋白形成ABA信号转导的复合物可以作用于转录因子ABF从而调控梨花芽的休眠。  相似文献   

14.
Stress on redox     
Bánhegyi G  Benedetti A  Csala M  Mandl J 《FEBS letters》2007,581(19):3634-3640
Redox imbalance in the endoplasmic reticulum lumen is the most frequent cause of endoplasmic reticulum stress and consequent apoptosis. The mechanism involves the impairment of oxidative protein folding, the accumulation of unfolded/misfolded proteins in the lumen and the initiation of the unfolded protein response. The participation of several redox systems (glutathione, ascorbate, FAD, tocopherol, vitamin K) has been demonstrated in the process. Recent findings have attracted attention to the possible mechanistic role of luminal pyridine nucleotides in the endoplasmic reticulum stress. The aim of this minireview is to summarize the luminal redox systems and the redox sensing mechanisms of the endoplasmic reticulum.  相似文献   

15.
王涛  陈东凤 《生物磁学》2013,(26):5168-5172
近年来,由于内质网应激/未折叠蛋白反应可影响物质代谢途径中的许多环节,故在非酒精性脂肪性肝病中起的作用越来越受到重视。现就内质网应激/未折叠蛋白反应在非酒精性脂肪性肝病中的作用和影响作一综述。  相似文献   

16.
Several neurodegenerative diseases share common neuropathology, primarily featuring the presence in the brain of abnormal protein inclusions containing specific misfolded proteins. Recent evidence indicates that alteration in organelle function is a common pathological feature of protein misfolding disorders, highlighting perturbations in the homeostasis of the endoplasmic reticulum (ER). Signs of ER stress have been detected in most experimental models of neurological disorders and more recently in brain samples from human patients with neurodegenerative disease. To cope with ER stress, cells activate an integrated signaling response termed the unfolded protein response (UPR), which aims to reestablish homeostasis in part through regulation of genes involved in protein folding, quality control and degradation pathways. Here we discuss the particular mechanisms currently proposed to be involved in the generation of protein folding stress in different neurodegenerative conditions and speculate about possible therapeutic interventions.  相似文献   

17.
The common underlying feature of most neurodegenerative diseases such as Alzheimer disease (AD), prion diseases, Parkinson disease (PD), and amyotrophic lateral sclerosis (ALS) involves accumulation of misfolded proteins leading to initiation of endoplasmic reticulum (ER) stress and stimulation of the unfolded protein response (UPR). Additionally, ER stress more recently has been implicated in the pathogenesis of HIV-associated neurocognitive disorders (HAND). Autophagy plays an essential role in the clearance of aggregated toxic proteins and degradation of the damaged organelles. There is evidence that autophagy ameliorates ER stress by eliminating accumulated misfolded proteins. Both abnormal UPR and impaired autophagy have been implicated as a causative mechanism in the development of various neurodegenerative diseases. This review highlights recent advances in the field on the role of ER stress and autophagy in AD, prion diseases, PD, ALS and HAND with the involvement of key signaling pathways in these processes and implications for future development of therapeutic strategies.  相似文献   

18.
糖尿病肾病(diabetic nephropathy,DN)是糖尿病最常见的微血管并发症,是导致终末期肾脏疾病(end-stage renal disease,ESRD)的继发性肾脏疾病的主要病因之一。多种因素如缺氧、氧化应激、病毒感染、遗传突变等,可导致内质网内稳态失衡,大量未折叠蛋白和错误折叠引起蛋白堆积,即形成内质网应激(endoplasmic reticulum stress, ERS),从而激活未折叠蛋白反应(unfolded protein response, UPR)介导的三条经典的细胞适应性应答通路以恢复内质网稳态和细胞活性。但如果刺激过强或持续存在,便会启动细胞凋亡信号通路。大量研究表明ERS与DN的发生发展相关,并参与不同类型肾细胞损伤的过程,因此ERS作为治疗DN的有效靶点具有很重要的研究前景,调控ERS可为DN的治疗提供新的理论支持。从ERS相关信号通路及其在DN中的作用和新进展领域作一综述,以期为DN的治疗研究提供参考。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号