首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Genome sequence of the hyperthermophilic archaeon Pyrobaculum calidifontis contains an open reading frame, Pcal_0632, annotated as glyceraldehyde-3-phosphate dehydrogenase, which is partially overlapped with phosphoglycerate kinase. In the phylogenetic tree, Pcal_0632 clustered with phosphorylating glyceraldehyde-3-phosphate dehydrogenases characterized from hyperthermophilic archaea and exhibited highest identity of 54% with glyceraldehyde-3-phosphate dehydrogenase from Sulfolobus tokodaii. To examine biochemical function of the protein, Pcal_0632 gene was expressed in Escherichia coli and the gene product was purified. The recombinant enzyme catalyzed the conversion of glyceraldehyde 3-phosphate and inorganic phosphate into 1,3-bisphosphoglycerate utilizing both NAD and NADP as cofactor with a marked preference for NADP. The enzyme was highly stable against temperature and denaturants. Half-life of the enzyme was 60 min at 100 °C. It retained more than 60% of its activity even after an incubation of 72 h at room temperature in the presence of 6 M urea. High thermostability and resistance against denaturants make Pcal_0632 a novel glyceraldehyde-3-phosphate dehydrogenase.

  相似文献   

2.
The discovery of stable and active polyphosphate glucokinase (PPGK, EC 2.7.1.63) would be vital to cascade enzyme biocatalysis that does not require a costly ATP input. An open reading frame Tfu_1811 from Thermobifida fusca YX encoding a putative PPGK was cloned and the recombinant protein fused with a family 3 cellulose-binding module (CBM-PPGK) was overexpressed in Escherichia coli. Mg2+ was an indispensible activator. This enzyme exhibited the highest activity in the presence of 4 mM Mg2+ at 55°C and pH 9.0. Under its suboptimal conditions (pH 7.5), the k cat and K m values of CBM-PPGK on glucose were 96.9 and 39.7 s−1 as well as 0.77 and 0.45 mM at 37°C and 50°C respectively. The thermoinactivation of CBM-PPGK was independent of its mass concentration. Through one-step enzyme purification and immobilization on a high-capacity regenerated amorphous cellulose, immobilized CBM-PPGK had an approximately eightfold half lifetime enhancement (i.e., t 1/2 = 120 min) as compared to free enzyme at 50°C. To our limited knowledge, this enzyme was the first thermostable PPGK reported. Free PPGK and immobilized CBM-PPGK had total turnover number values of 126,000 and 961,000 mol product per mol enzyme, respectively, suggesting their great potential in glucose-6-phosphate generation based on low-cost polyphosphate.  相似文献   

3.
Analysis of the genome sequence of Pyrobaculum calidifontis revealed the presence of an open reading frame Pcal_1127 annotated as ribose-5-phosphate pyrophosphokinase. To examine the properties of Pcal_1127 the coding gene was cloned, expressed in Escherichia coli, and the purified gene product was characterized. Pcal_1127 exhibited higher activity when ATP was replaced by dATP as pyrophosphate donor. Phosphate and EDTA activated the enzyme activity and equivalent amount of activity was detected with ATP and dATP in their presence. Recombinant Pcal_1127 could utilize all the four nucleotides as pyrophosphate donors with a marked preference for ATP. Optimum temperature and pH for the enzyme activity were 55 °C and 10.5, respectively. A unique feature of Pcal_1127 was its stability against temperature as well as denaturants. Pcal_1127 exhibited more than 95 % residual activity after heating for 4 h at 90 °C and a half-life of 15 min in the boiling water. The enzyme activity was not affected by the presence of 8 M urea or 4 M guanidinium chloride. Pcal_1127 was a highly efficient enzyme with a catalytic efficiency of 5183 mM?1 s?1. These features make Pcal_1127, a novel and unique ribose-5-phosphate pyrophosphokinase.  相似文献   

4.

A novel gene (ANK58566) encoding a cold-active α-amylase was cloned from marine bacterium Bacillus sp. dsh19-1 (CCTCC AB 2015426), and the protein was expressed in Escherichia coli. The gene had a length of 1302 bp and encoded an α-amylase of 433 amino acids with an estimated molecular mass of 50.1 kDa. The recombinant α-amylase (AmyD-1) showed maximum activity at 20 °C and pH 6.0, and retained about 35.7% of activity at 4 °C. The AmyD-1 activity was stimulated by Ca2+ and Na+. However, the chelating agent, EDTA, inactivated the enzyme. Moreover, AmyD-1 displayed extreme salt tolerance, with the highest activity in the presence of 2.0 M NaCl and 60.5% of activity in 5.0 M NaCl. The Km, Vmax and kcat of AmyD-1 in 2.0 M NaCl were 2.8 mg ml−1, 21.8 mg ml−1 min−1 and 933.5 s−1, respectively, at 20 °C and pH 6.0 with soluble starch as substrate. MALDI-TOF MS (Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry) revealed that the end products of starch hydrolysis by AmyD-1 were glucose, maltose, maltotriose, maltotetraose, and malt oligosaccharides. Thus, AmyD-1 is one of the very few α-amylases that can tolerate low temperatures and high salt concentrations, which makes it to be a potential candidate for research in basic and applied microbiology.

  相似文献   

5.
《Process Biochemistry》2010,45(10):1746-1752
The genes, cDNA alpES1 and alpES1, encoding Aspergillus clavatus ES1 alkaline protease were amplified from complementary DNA (cDNA) and genomic DNA, respectively, cloned in pCR®II-TOPO plasmid and then sequenced. Sequence analysis of the cDNA alpES1 gene revealed an open reading frame (ORF) of 1212 bp encoding a pre–pro-protein of 403 amino acid residues consisting of a 21-aa signal peptide, a 100-aa pro-peptide and a 282-aa mature protein with a calculated molecular weight of 28.5 kDa. Compared to the cDNA alpES1 gene, the alpES1 gene contained three introns, which had 53, 57 and 54 bp, respectively. The cDNA alpES1 gene was then sub-cloned in pET-30b(+) and expressed in Escherichia coli BL21 (λDE3). The purified recombinant protease had a molecular weight of about 32 kDa estimated by SDS-PAGE. Kinetic parameters, Km and kcat values of the recombinant AlpES1 for casein, were 0.23 mM and 12.38 min−1, respectively. The catalytic efficiency (kcat/Km) was 53.82 min−1 mM−1.  相似文献   

6.

The 3′-deleted amylopullulanase gene from the extreme thermophile Geobacillus thermoleovorans (Gt-apuΔC) was expressed extracellularly in Pichia pastoris under both methanol-inducible AOX1 and constitutive GAP promoters. The expression of the gene (Gt-apuΔC) was higher under GAP promoter (36.2 U ml−1, α-amylase; 33.5 U ml−1, pullulanase) than that under AOX1 promoter (32.5 and 28.6 U ml−1). The heavily glycosylated Gt-apuΔC from the recombinant P. pastoris displays higher substrate specificity, thermal stability and starch saccharification efficiency than that expressed in Escherichia coli. The enzyme hydrolyses maltotriose and maltotetraose unlike that expressed in E. coli. The enzyme action on wheat bran liberates maltose and glucose without detectable amount(s) of maltooligosaccharides. The sugars released from wheat bran (glucose and maltose) could be fractionated by ultrafiltration, as confirmed by TLC and HPLC analysis. This is the first report on the production of recombinant amylopullulanase extracellularly in P. pastoris.

  相似文献   

7.
A metagenomic library consisting of 3,024 bacterial artificial chromosome clones was prepared in Escherichia coli DH10B with high-molecular-weight DNA extracted from red soil in South China. A novel cellulase gene with an open reading frame of 1,332 bp, cel5G, encoding an endo-β-1,4-glucanase was cloned using an activity-based screen. The deduced enzyme, Cel5G, belongs to the glycosyl hydrolase family 5 and shares <39% identity with endoglucanases in the GenBank database. cel5G was expressed in E. coli BL21, and the recombinant enzyme Cel5G was purified to homogeneity for enzymatic analysis. Cel5G hydrolyzed a wide range of β-1,4-, β-1,3/β-1,4-, or β-1,3/β-1,6-linked polysaccharides, amorphous cellulose, filter paper, and microcrystalline cellulose. Its highest activity was in 50 mM citrate buffer, pH 4.8, at 50°C. Cel5G is stable over a wide range of pH values (from 2.0 to 10.6) and is thermally stable under 60°C. It is highly tolerant and active in high salt concentrations and is stable in the presence of pepsin and pancreatin. The K m and V max values of Cel5G for carboxymethyl cellulose are 19.92 mg/ml and 1,941 μmol min−1 mg−1, respectively. These characteristics indicate that Cel5G has potential for industrial use.  相似文献   

8.
A gene from Withania somnifera (winter cherry), encoding a highly stable chloroplastic Cu/Zn superoxide dismutase (SOD), was cloned and expressed in Escherichia coli. The recombinant enzyme (specific activity of ~4,200 U mg−1) was purified and characterized. It retained ~90 and ~70% residual activities after 1 h at 80 and 95°C, respectively. At 95°C, thermal inactivation rate constant (K d) of the enzyme was 2.46 × 10−3 min−1 and half-life of heat inactivation was 4.68 h. The enzyme was stable against a broad pH range (2.5–11.0). It also showed a high degree of resistance to detergent, ethanol and protease digestion. This recombinant Cu/Zn SOD could therefore have useful applications.  相似文献   

9.
Gui  Mengyao  Chen  Qian  Ma  Tao  Zheng  Maosheng  Ni  Jinren 《Applied microbiology and biotechnology》2017,101(4):1717-1727

Effects of heavy metals on aerobic denitrification have been poorly understood compared with their impacts on anaerobic denitrification. This paper presented effects of four heavy metals (Cd(II), Cu(II), Ni(II), and Zn(II)) on aerobic denitrification by a novel aerobic denitrifying strain Pseudomonas stutzeri PCN-1. Results indicated that aerobic denitrifying activity decreased with increasing heavy metal concentrations due to their corresponding inhibition on the denitrifying gene expression characterized by a time lapse between the expression of the nosZ gene and that of the cnorB gene by PCN-1, which led to lower nitrate removal rate (1.67∼6.67 mg L−1 h−1), higher nitrite accumulation (47.3∼99.8 mg L−1), and higher N2O emission ratios (5∼283 mg L−1/mg L−1). Specially, promotion of the nosZ gene expression by increasing Cu(II) concentrations (0∼0.05 mg L−1) was found, and the absence of Cu resulted in massive N2O emission due to poor synthesis of N2O reductase. The inhibition effect for both aerobic denitrifying activity and denitrifying gene expression was as follows from strongest to least: Cd(II) (0.5∼2.5 mg L−1) > Cu(II) (0.5∼5 mg L−1) > Ni(II) (2∼10 mg L−1) > Zn(II) (25∼50 mg L−1). Furthermore, sensitivity of denitrifying gene to heavy metals was similar in order of nosZ > nirS ≈ cnorB > napA. This study is of significance in understanding the potential application of aerobic denitrifying bacteria in practical wastewater treatment.

  相似文献   

10.
Succinate fermentation was investigated in Escherichia coli strains overexpressing cyanobacterium Anabaena sp. 7120 ecaA gene encoding carbonic anhydrase (CA). In strain BL21 (DE3) bearing ecaA, the activity of CA was 21.8 U mg−1 protein, whereas non-detectable CA activity was observed in the control strain. Meanwhile, the activity of phosphoenolpyruvate carboxylase (PEPC) increased from 0.2 U mg−1 protein to 1.13 U mg−1 protein. The recombinant bearing ecaA reached a succinate yield of 0.39 mol mol−1 glucose at the end of the fermentation. It was 2.1-fold higher than that of control strain which was just 0.19 mol mol−1 glucose. EcaA gene was also introduced into E. coli DC1515, which was deficient in glucose phosphotransferase, lactate dehydrogenase and pyruvate:formate lyase. Succinate yield can be further increased to 1.26 mol mol−1 glucose. It could be concluded that the enhancement of the supply of HCO3 in vivo by ecaA overexpression is an effective strategy for the improvement of succinate production in E. coli.  相似文献   

11.

This study evaluated the production of cellulolytic enzymes from different agricultural residues. The crude enzyme extract produced was characterized and applied for saccharification of some agricultural residues. Maximum cellulolytic activities were obtained using soybean hulls. All enzymatic activities were highly stable at 40 °C at a pH range of 4.5–5.5. For stability at low temperatures, the enzyme extract was stored at freezing temperature and cooling for about 290 days without major loss of activity. The Km values found for total cellulase (FPase), endoglucanase (CMCase), and xylanase were 19.73 mg ml−1, 0.65 mg ml−1, and 22.64 mg ml−1, respectively, and Vmax values were 0.82 mol min−1 mg−1, 0.62 mol min−1 mg−1, and 104.17 mol min−1 mg−1 to cellulose, carboxymethyl cellulose, and xylan, respectively. In the saccharification tests, the total amount of total reducing sugars (TRS) released from 1 g of soybean hulls catalyzed by the enzymes present in the crude enzyme extract was 0.16 g g−1 dry substrate.

  相似文献   

12.
Reading disability exhibited defects in different cognitive domains, including word reading fluency, word reading accuracy, phonological awareness, rapid automatized naming and morphological awareness. To identify the genetic basis of Chinese reading disability, we conducted a genome-wide association study (GWAS) of the cognitive traits related to Chinese reading disability in 2284 unrelated Chinese children. Among the traits analyzed in the present GWAS, we detected one genome-wide significant association (p < 5 × 10−8) on word reading fluency for one SNP on 4p16.2, within EVC genes (rs6446395, p = 7.33 × 10−10). Rs6446395 also showed significant association with Chinese character reading accuracy (p = 2.95 × 10−4), phonological awareness (p = 7.11 × 10−3) and rapid automatized naming (p = 4.71 × 10−3), implying multiple effects of this variant. The eQTL data showed that rs6446395 affected EVC expression in the cerebellum. Gene-based analyses identified a gene (PRDM10) to be associated with word reading fluency at the genome-wide level. Our study discovered a new candidate susceptibility variant for reading ability and provided new insights into the genetics of developmental dyslexia in Chinese children.  相似文献   

13.
Aims: To characterize a β‐xylosidase from the thermophilic fungus Thermomyces lanuginosus and to investigate its potential in saccharification of hemicellulosic xylans. Methods and Results: A gene (designated TlXyl43) encoding β‐xylosidase was cloned from T. lanuginosus CAU44 and expressed in Escherichia coli. The gene consists of a 1017‐bp open reading frame without introns. It encodes a mature protein of 338 residues with no predicted signal peptide, belonging to glycoside hydrolase (GH) family 43. Over 60% of the recombinant β‐xylosidase (TlXyl43) was secreted into the culture medium. TlXyl43 was purified 2·6‐fold to homogeneity with an estimated mass of 51·6 kDa by SDS‐PAGE. The purified enzyme exhibited optimal activity at pH 6·5 and 55°C and was stable at 50°C. It was competitively inhibited by xylose with a Ki value of 63 mmol l?1. Conclusions: In this study, a GH family 43 β‐xylosidase gene (TlXyl43) from T. lanuginosus CAU44 was cloned and functionally expressed in E. coli, and over 60% of recombinant protein was secreted into the culture. Significance and Impact of the Study: This is the first report of the cloning and functional expression of a β‐xylosidase gene from Thermomyces species. TlXyl43 holds great potential for variety of industries.  相似文献   

14.
A psychrophilic bacterium Psychrobacter sp. C18 previously isolated from the Southern Okinawa Trough deep-sea sediments showed extracellular lipolytic activity towards tributyrin. A genomic DNA library was constructed and screened to obtain the corresponding lipase gene. The sequenced DNA fragment contains an open reading frame of 945 bp, which was denoted as the lipX gene, from which a protein sequence LipX was deduced of 315 amino acid residues with a molecular mass of 35,028 Da. This protein contained the bacterial lipase GNSMG (GxSxG, x represents any amino acid residue) and HG consensus motifs. The recombinant pET28a(+)/lipX gene was overexpressed in heterologous host Escherichia coli BL21 (DE3) cells to overproduce the lipase protein LipXHis with a 6× histidine tag at its C-terminus. Nickel affinity chromatography was used for purification of the expressed recombinant lipase. The maximum lipolytic activity of the purified recombinant lipase was obtained at temperature of 30°C and pH 8.0 with p-nitrophenyl myristate (C14) as a substrate. Thermostability assay indicated that the recombinant LipXHis is a cold-adapted lipase, which was active in 10% methanol, ethanol, acetone and 30% glycol, and inhibited partially by Zn2+, Co2+, Mn2+, Fe3+ and EDTA. Most non-ionic detergents, such as DMSO, Triton X-100, Tween 60 and Tween 80 enhanced the lipase activity but 1% SDS completely inhibited the enzyme activity. Additionally, the highest lipolytic rate of the recombinant LipXHis lipase was achieved when p-nitrophenyl myristate was used as a substrate, among all the p-nitrophenyl esters tested.  相似文献   

15.
The malic enzyme-encoding cDNA (GQ372891) from the oleaginous yeast Lipomyces starkeyi AS 2.1560 was isolated, which has an 1719-bp open reading frame flanked by a 290-bp 5′ untranslated sequence and a 92-bp 3′ untranslated sequence. The proposed gene, LsME1, encoded a protein with 572 amino acid residues. The protein presented 58% sequence identity with the malic enzymes from Yarrowia lipolytica CLIB122 and Aspergillus fumigatus Af293. The LsME1 gene was cloned into the vector pMAL-p4x to express a fusion protein (MBP-LsME1) in Escherichia coli TB1. The fusion protein was purified and then cleaved by Factor Xa to give the recombinant LsME1. This purified enzyme took either NAD+ or NADP+ as the coenzyme but preferred NAD+. The K m values for malic acid, NAD+ and NADP+ were 0.85 ± 0.05 mM, 0.34 ± 0.08 mM, and 7.4 ± 0.32 mM, respectively, at pH 7.3.  相似文献   

16.
An isolated gene from Neosartorya fischeri NRRL181 encoding a β-glucosidase (BGL) was cloned, and its nucleotide sequence was determined. DNA sequence analysis revealed an open reading frame of 1,467 bp, capable of encoding a polypeptide of 488 amino acid residues. The gene was over-expressed in Escherichia coli, and the protein was purified using nickel-nitrilotriacetic acid chromatography. The purified recombinant BGL showed a high level of catalytic activity, with V max of 886 μmol min−1 mg-protein−1 and a K m of 68 mM for p-nitrophenyl-β-d-glucopyranoside (pNPG). The optimal temperature for enzyme activity was about 40°C, and the optimal pH was about 6.0. A homology model of N. fischeri BGL1 was constructed based on the X-ray crystal structure of Phanerochaete chrysosporium BGLA. Molecular dynamics simulation studies of the enzyme with the pNPG and cellobiose shed light on the unique substrate specificity of N. fischeri BGL1 only towards pNPG.  相似文献   

17.
Trans-4-hydroxy-l -proline (Hyp) is a useful chiral building block for production of many nutritional supplements and pharmaceuticals. However, it is still challenging for industrial production of Hyp due to heavy environmental pollution and low production efficiency. To establish a green and efficient process for Hyp production, the proline 4-hydroxylase (DsP4H) from Dactylosporangium sp. RH1 was overexpressed and functionally characterized in Escherichia coli BL21(DE3). The recombinant DsP4H with l -proline as a substrate exhibited Km, kcat and kcat/Km values up to 0.80 mM, 0.52 s−1 and 0.65 s−1·mM−1 respectively. Furthermore, DsP4H showed the highest activity at 35°C and pH 6.5 towards l -proline. The highest enzyme activity of 175.6 U mg−1 was achieved by optimizing culture parameters. Under the optimal transformation conditions in a 5-l fermenter, Hyp titre, conversion rate and productivity were up to 99.9 g l−1, 99.9% and 2.77 g l−1 h−1 respectively. This strategy described here provides an efficient method for production of Hyp and thus has a great potential in industrial application.  相似文献   

18.
Genome sequence of hyperthermophilic archaeon Pyrobaculum calidifontis revealed the presence of an open reading frame, Pcal_0768, corresponding to a putative 4-α-glucanotranferase belonging to glycoside hydrolases (GH) family 77. We have produced, in Escherichia coli, and purified recombinant Pcal_0768 which exhibited high disproportionation (690 U mg?1) activity. To the best of our knowledge, this is the highest ever reported activity for any member of family GH77. Maltooligosaccharides, when used as sole substrates, were disproportionated into linear maltooligohomologues. The analysis of the reaction end products revealed no evidence for the production of cycloamyloses. Catalytic activity of the enzyme remained unchanged in the presence or the absence of ionic and nonionic detergents. γ-cyclodextrin, an inhibitor of 4-α-glucanotransferases, did not show any inhibitory effect on Pcal_0768 activity. These properties make Pcal_0768 a potential candidate for starch processing industry.  相似文献   

19.
Microbial bioprocessing based on orthologous pathways constitutes a promising approach to replace traditional greenhouse gas- and energy-intensive production processes, e.g., for adipic acid (AA). We report the construction of a Pseudomonas taiwanensis strain able to efficiently convert cyclohexane to AA. For this purpose, a recently developed 6-hydroxyhexanoic acid (6HA) synthesis pathway was amended with alcohol and aldehyde dehydrogenases, for which different expression systems were tested. Thereby, genes originating from Acidovorax sp. CHX100 and the XylS/Pm regulatory system proved most efficient for the conversion of 6HA to AA as well as the overall cascade enabling an AA formation activity of up to 48.6 ± 0.2 U gCDW−1. The optimization of biotransformation conditions enabled 96% conversion of 10 mM cyclohexane with 100% AA yield. During recombinant gene expression, the avoidance of glucose limitation was found to be crucial to enable stable AA formation. The biotransformation was then scaled from shaking flask to a 1 L bioreactor scale, at which a maximal activity of 22.6 ± 0.2 U gCDW−1 and an AA titer of 10.2 g L−1 were achieved. The principal feasibility of product isolation was shown by the purification of 3.4 g AA to a purity of 96.1%. This study presents the efficient bioconversion of cyclohexane to AA by means of a single strain and thereby sets the basis for an environmentally benign production of AA and related polymers such as nylon 6,6.  相似文献   

20.
A β-mannanase gene, designated as man5S27, was cloned from Streptomyces sp. S27 using the colony polymerase chain reaction (PCR) method and expressed in Escherichia coli BL21 (DE3). The open reading frame consisted of 1,161 bp and encoded a 386-amino-acid polypeptide (Man5S27) with calculated molecular mass of 37.2 kDa. The encoded protein comprised a putative 38-residue signal peptide, a family 5 glycoside hydrolase domain, and a family 10 carbohydrate-binding module. Purified recombinant Man5S27 had high specific activity of 2,107 U mg−1 and showed optimal activity at pH 7.0 and 65°C. The enzyme remained stable at pH 5.0–9.0 and had good thermostability at 50°C. The K m values for locust bean gum and konjac flour were 0.16 and 0.41 mg ml−1, with V max values of 3,739 and 1,653 μmol min−1 mg−1, respectively. Divalent metal ions such as Mn2+, Zn2+, Ca2+, Pb2+, and Fe2+ enhanced the enzyme activity, but Ag+ and Hg2+ strongly inhibited the activity. Man5S27 also showed resistance to various neutral proteases (retaining >95% activity after proteolytic treatment for 2 h).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号