首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The effect of plant integrity and of aboveground-belowground defense signaling on plant resistance against pathogens and herbivores is emerging as a subject of scientific research. There is increasing evidence that plant defense responses to pathogen infection differ between whole intact plants and detached leaves. Studies have revealed the importance of aboveground-belowground defense signaling for plant defenses against herbivores, while our studies have uncovered that the roots as well as the plant integrity are important for the resistance of the potato cultivar Sarpo Mira against the hemibiotrophic oomycete pathogen Phytophthora infestans. Furthermore, in the Sarpo Mira–P. infestans interactions, the plant’s meristems, the stalks or both, seem to be associated with the development of the hypersensitive response and both the plant’s roots and shoots contain antimicrobial compounds when the aerial parts of the plants are infected. Here, we present a short overview of the evidence indicating the importance of plant integrity on plant defense responses.  相似文献   

2.
Polyamine oxidase (PAO) catalyzes the oxidative catabolism of spermidine and spermine, generating hydrogen peroxide. In wild-type tobacco (Nicotiana tabacum ‘Xanthi’) plants, infection by the compatible pathogen Pseudomonas syringae pv tabaci resulted in increased PAO gene and corresponding PAO enzyme activities; polyamine homeostasis was maintained by induction of the arginine decarboxylase pathway and spermine was excreted into the apoplast, where it was oxidized by the enhanced apoplastic PAO, resulting in higher hydrogen peroxide accumulation. Moreover, plants overexpressing PAO showed preinduced disease tolerance against the biotrophic bacterium P. syringae pv tabaci and the hemibiotrophic oomycete Phytophthora parasitica var nicotianae but not against the Cucumber mosaic virus. Furthermore, in transgenic PAO-overexpressing plants, systemic acquired resistance marker genes as well as a pronounced increase in the cell wall-based defense were found before inoculation. These results reveal that PAO is a nodal point in a specific apoplast-localized plant-pathogen interaction, which also signals parallel defense responses, thus preventing pathogen colonization. This strategy presents a novel approach for producing transgenic plants resistant to a broad spectrum of plant pathogens.  相似文献   

3.
Upon infection with necrotizing pathogens many plants develop an enhanced resistance to further pathogen attack also in the uninoculated organs. This type of enhanced resistance is referred to as systemic acquired resistance (SAR). In the SAR state, plants are primed (sensitized) to more quickly and more effectively activate defense responses the second time they encounter pathogen attack. Since SAR depends on the ability to access past experience, acquired disease resistance is a paradigm for the existence of a form of “plant memory”. Although the phenomenon has been known since the beginning of the 20th century, major progress in the understanding of SAR was made over the past sixteen years. This review covers the current knowledge of molecular, biochemical and physiological mechanisms that are associated with SAR.Key Words: Arabidopsis, benzothiadiazole, defense response potentiation, 2,6-dichloroisonicotinic acid, elicitor, MAP kinase, parsley cell culture, priming, salicylic acid, sensitization  相似文献   

4.
Systemic acquired resistance (SAR) develops in response to local microbial leaf inoculation and renders the whole plant more resistant to subsequent pathogen infection. Accumulation of salicylic acid (SA) in noninfected plant parts is required for SAR, and methyl salicylate (MeSA) and jasmonate (JA) are proposed to have critical roles during SAR long-distance signaling from inoculated to distant leaves. Here, we address the significance of MeSA and JA during SAR development in Arabidopsis thaliana. MeSA production increases in leaves inoculated with the SAR-inducing bacterial pathogen Pseudomonas syringae; however, most MeSA is emitted into the atmosphere, and only small amounts are retained. We show that in several Arabidopsis defense mutants, the abilities to produce MeSA and to establish SAR do not coincide. T-DNA insertion lines defective in expression of a pathogen-responsive SA methyltransferase gene are completely devoid of induced MeSA production but increase systemic SA levels and develop SAR upon local P. syringae inoculation. Therefore, MeSA is dispensable for SAR in Arabidopsis, and SA accumulation in distant leaves appears to occur by de novo synthesis via isochorismate synthase. We show that MeSA production induced by P. syringae depends on the JA pathway but that JA biosynthesis or downstream signaling is not required for SAR. In compatible interactions, MeSA production depends on the P. syringae virulence factor coronatine, suggesting that the phytopathogen uses coronatine-mediated volatilization of MeSA from leaves to attenuate the SA-based defense pathway.  相似文献   

5.
Spores of the heterotrichous moss Pylaisiella selwynii Kindb. were sown in a defined inorganic liquid culture medium and incubated at 27 C with a 16-hr photoperiod. They germinated at 7–10 days, and formed a few caulonemal buds at 27–30 days which developed into gametophores by 40 days. Bud formation and gametophore development followed a pattern common to many mosses. Addition of a virulent strain of Agrobacterium tumefaciens (B6) to the moss cultures increased bud formation and hastened the time of their appearance by 5–6 days. With 109 or more bacteria per ml of moss culture medium the percentage of plants with gametophores at day 35 after the spores were sown was 96 % or greater, as opposed to 0–24 % in the controls. The mean number of gametophores per responding plant was also increased from one per plant in controls to 4–6 per plant in inoculated cultures. Addition of the bacterium at day 17–18 of culture was as effective as early additions of the bacterium, suggesting that the moss must become ready to bud before the bacterium can influence its development. The promotion of gametophore formation was directly related to the number of bacteria added and depended upon the presence of viable bacteria. The supernatant from bacterial cultures did not promote gametophore formation. The changes induced by A. tumefaciens were similar to those reported for cytokinins.  相似文献   

6.
Plant hormones play key roles in defence against pathogen attack. Recent work has begun to extend this role to encompass not just the traditional disease/stress hormones, such as ethylene, but also growth‐promoting hormones. Strigolactones (SLs) are the most recently defined group of plant hormones with important roles in plant–microbe interactions, as well as aspects of plant growth and development, although the knowledge of their role in plant–pathogen interactions is extremely limited. The oomycete Pythium irregulare is a poorly controlled pathogen of many crops. Previous work has indicated an important role for ethylene in defence against this oomycete. We examined the role of ethylene and SLs in response to this pathogen in pea (Pisum sativum L.) at the molecular and whole‐plant levels using a set of well‐characterized hormone mutants, including an ethylene‐insensitive ein2 mutant and SL‐deficient and insensitive mutants. We identified a key role for ethylene signalling in specific cell types that reduces pathogen invasion, extending the work carried out in other species. However, we found no evidence that SL biosynthesis or response influences the interaction of pea with P. irregulare or that synthetic SL influences the growth or hyphal branching of the oomycete in vitro. Future work should seek to extend our understanding of the role of SLs in other plant interactions, including with other fungal, bacterial and viral pathogens, nematodes and insect pests.  相似文献   

7.
The Arabidopsis thaliana PHYTOALEXIN-DEFICIENT4 (PAD4) protein, which has homology to lipases, is required for phloem-based resistance against the green peach aphid (GPA; Myzus persicae Sülzer). PAD4 modulates antibiotic and antixenotic defenses against GPA. PAD4 in conjunction with its interacting partner ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) also functions in basal resistance to bacterial and oomycete pathogens by promoting salicylic acid (SA)-dependent and SA-independent defenses. By contrast, neither EDS1 nor SA is required for PAD4-controlled defense against GPA. Distinct molecular activities of PAD4 are involved in different aspects of Arabidopsis defense against GPA and pathogens. Histochemical analysis of plants containing a PAD4p:GUS chimera, which expresses the GUS reporter from the PAD4 promoter, indicated strong PAD4 promoter activity at the site of penetration of the vasculature by the insect stylet. GUS activity was also observed in non-vascular tissues of GPA-infested leaves, thus raising the possibility that a combination of distinct PAD4 activities in vascular and non-vascular tissues contribute to Arabidopsis defense against GPA.  相似文献   

8.
The isolation and identification of peptides from the moss Physcomitrella patens (Hedw.) B.S.G., which has been widely used in recent years as a model for studying plant biology, has been described. It was shown for the first time that protoplasts, the protonemata, and gametophores of Ph. patens contain a variety of peptides. From gametophores, 58 peptides, which are the fragments of 14 proteins, and from the protonemata, 49 peptides, the fragments of 15 proteins, were isolated and identified. It was found that the protonemata and gametophores of Ph. patens, which are the successive stages of the development of this plant, significantly differ from each other in both the peptide composition and the spectrum of precursor proteins of the identified peptides. The isolation of protoplasts during the enzymatic destruction of the protonema cell wall is accompanied by massive degradation of intracellular proteins, many of which are the proteins of the protosynthetic system, which is a characteristic response of higher plants to environmental stress factors. In all, 323 peptides, which are the fragments of 79 proteins, were isolated and identified from moss protoplasts.  相似文献   

9.
Members of the MILDEW RESISTANCE LOCUS O (MLO) gene family confer susceptibility to powdery mildews in different plant species, and their existence therefore seems to be disadvantageous for the plant. We recognized that expression of the Arabidopsis MLO2 gene is induced after inoculation with the bacterial pathogen Pseudomonas syringae, promoted by salicylic acid (SA) signaling, and systemically enhanced in the foliage of plants exhibiting systemic acquired resistance (SAR). Importantly, distinct mlo2 mutant lines were unable to systemically increase resistance to bacterial infection after inoculation with P. syringae, indicating that the function of MLO2 is necessary for biologically induced SAR in Arabidopsis. Our data also suggest that the close homolog MLO6 has a supportive but less critical role in SAR. In contrast to SAR, basal resistance to bacterial infection was not affected in mlo2. Remarkably, SAR‐defective mlo2 mutants were still competent in systemically increasing the levels of the SAR‐activating metabolites pipecolic acid (Pip) and SA after inoculation, and to enhance SAR‐related gene expression in distal plant parts. Furthermore, although MLO2 was not required for SA‐ or Pip‐inducible defense gene expression, it was essential for the proper induction of disease resistance by both SAR signals. We conclude that MLO2 acts as a critical downstream component in the execution of SAR to bacterial infection, being required for the translation of elevated defense responses into disease resistance. Moreover, our data suggest a function for MLO2 in the activation of plant defense priming during challenge by P. syringae.  相似文献   

10.
Systemic acquired resistance (SAR) is a plant immune response induced by local necrotizing pathogen infections. Expression of SAR in Arabidopsis (Arabidopsis thaliana) plants correlates with accumulation of salicylic acid (SA) and up-regulation of Pathogenesis-Related (PR) genes. SA is an essential and sufficient signal for SAR. In a genetic screen to search for negative regulators of PR gene expression and SAR, we found a new mutant that is hypersensitive to SA and exhibits enhanced induction of PR genes and resistance against the virulent oomycete Hyaloperonospora arabidopsidis Noco2. The enhanced pathogen resistance in the mutant is Nonexpressor of PR genes1 independent. The mutant gene was identified by map-based cloning, and it encodes a protein with high homology to Replication Factor C Subunit3 (RFC3) of yeast and other eukaryotes; thus, the mutant was named rfc3-1. rfc3-1 mutant plants are smaller than wild-type plants and have narrower leaves and petals. On the epidermis of true leaves, there are fewer cells in rfc3-1 compared with the wild type. Cell production rate is reduced in rfc3-1 mutant roots, indicating that the mutated RFC3 slows down cell proliferation. As Replication Factor C is involved in replication-coupled chromatin assembly, our data suggest that chromatin assembly and remodeling may play important roles in the negative control of PR gene expression and SAR.  相似文献   

11.
The wild tomato species Solanum chilense is divided into geographically and genetically distinct populations that show signs of defense gene selection and differential phenotypes when challenged with several phytopathogens, including the oomycete causal agent of late blight Phytophthora infestans. To better understand the phenotypic diversity of this disease resistance in S. chilense and to assess the effect of plant genotype versus pathogen isolate, respectively, we evaluated infection frequency in a systematic approach and with large sample sizes. We studied 85 genetically distinct individuals representing nine geographically separated populations of S. chilense. This showed that differences in quantitative resistance can be observed between but also within populations at the level of individual plants. Our data also did not reveal complete immunity in any of the genotypes. We further evaluated the resistance of a subset of the plants against P. infestans isolates with diverse virulence properties. This confirmed that the relative differences in resistance phenotypes between individuals were mainly determined by the plant genotype under consideration with modest effects of pathogen isolate used in the study. Thus, our report suggests that the observed quantitative resistance against P. infestans in natural populations of a wild tomato species S. chilense is the result of basal defense responses that depend on the host genotype and are pathogen isolate‐unspecific.  相似文献   

12.
Priming plants by non-pathogenic bacteria allows the host to save energy and to reduce time needed for development of defense reaction during a pathogen attack. However, information on the role of endophytes in plant defense is limited. Here, the ability of endophytic bacteria to promote growth and resistance of potato plants towards infection by the necrotroph Pectobacterium atrosepticum was studied. A Pseudomonas sp. strain was selected due to antagonism towards bacterial pathogens and a Methylobacterium sp. strain because of efficient plant colonization. The aim of this study was to find if there is any correlation between plant growth promotion and induction of resistance by endophytes of potato, as well as to study the putative mechanisms of endophytes interacting with the plant during resistance induction. Both tested strains promoted growth of potato shoots but only the Pseudomonas sp. increased potato resistance towards the soft rot disease. Induction of disease resistance by the Methylobacterium sp. was inversely proportional to the size of bacterial population used for inoculation. The plant antioxidant system was moderately activated during the induction of resistance by the biocontrol strains. qPCR data on expression of marker genes of induced systemic resistance and acquired systemic resistance in endophyte-infected Arabidopsis plants showed activation of both salicylic acid and jasmonate/ethylene-dependent pathways after challenge inoculation with the pathogen. We suggest that some endophytes have the potential to activate both basal and inducible plant defense systems, whereas the growth promotion by biocontrol strains may not correlate with induction of disease resistance.  相似文献   

13.
On the north regions of Portugal and Spain, the Castanea sativa Mill. culture is extremely important. The biggest productivity and yield break occurs due to the ink disease, the causal agent being the oomycete Phytophthora cinnamomi. This oomycete is also responsible for the decline of many other plant species in Europe and worldwide. P. cinnamomi and Phytophthora cambivora are considered, by the generality of the authors, as the C. sativa ink disease causal agents. Most Phytophthora species secrete large amounts of elicitins, a group of unique highly conserved proteins that are able to induce hypersensitive response (HR) and enhances plant defense responses in a systemic acquired resistance (SAR) manner against infection by different pathogens. Some other proteins involved in mechanisms of infection by P. cinnamomi were identified by our group: endo-1,3-beta-glucanase (complete cds); exo-glucanase (partial cds) responsible by adhesion, penetration, and colonization of host tissues; glucanase inhibitor protein (GIP) (complete cds) responsible by the suppression of host defense responses; necrosis-inducing Phytophthora protein 1 (NPP1) (partial cds); and transglutaminase (partial cds) which inducts defense responses and disease-like symptoms. In this mini-review, we present some scientifically advanced solutions that can contribute to the resolution of ink disease.  相似文献   

14.
During 2013, a new root rot and leaf blight was detected on potted Pittosporum tenuifolium cv. ‘Silver Queen’ plants in a nursery located in the Catania province (eastern Sicily, Italy). On the basis of morphological and cultural features as well as internal transcribed spacer sequence data, the causal agent was identified as Pythium irregulare. Koch's postulates were fulfilled by pathogenicity tests carried out on potted P. tenuifolium cv. ‘Silver Queen’ plants. To our knowledge, this is the first detection of P. irregulare root rot and foliar blight disease on P. tenuifolium in Europe, and it is the first detection using molecular methods for this oomycete pathogen in Italy.  相似文献   

15.
Plant innate immunity to pathogenic microorganisms is activated in response to recognition of extracellular or intracellular pathogen molecules by transmembrane receptors or resistance proteins, respectively. The defense signaling pathways share components with those involved in plant responses to UV radiation, which can induce expression of plant genes important for pathogen resistance. Such intriguing links suggest that UV treatment might activate resistance to pathogens in normally susceptible host plants. Here, we demonstrate that pre-inoculative UV (254 nm) irradiation of Arabidopsis (Arabidopsis thaliana) susceptible to infection by the biotrophic oomycete Hyaloperonospora parasitica, the causative agent of downy mildew, induces dose- and time-dependent resistance to the pathogen detectable up to 7 d after UV exposure. Limiting repair of UV photoproducts by postirradiation incubation in the dark, or mutational inactivation of cyclobutane pyrimidine dimer photolyase, (6-4) photoproduct photolyase, or nucleotide excision repair increased the magnitude of UV-induced pathogen resistance. In the absence of treatment with 254-nm UV, plant nucleotide excision repair mutants also defective for cyclobutane pyrimidine dimer or (6-4) photoproduct photolyase displayed resistance to H. parasitica, partially attributable to short wavelength UV-B (280–320 nm) radiation emitted by incubator lights. These results indicate UV irradiation can initiate the development of resistance to H. parasitica in plants normally susceptible to the pathogen and point to a key role for UV-induced DNA damage. They also suggest UV treatment can circumvent the requirement for recognition of H. parasitica molecules by Arabidopsis proteins to activate an immune response.  相似文献   

16.
Systemic acquired resistance (SAR) is a mechanism that plants utilize to connect a local pathogen infection to global defense responses. N-hydroxy-pipecolic acid (NHP) and a glycosylated derivative are produced during SAR, yet their individual roles in this process are currently unclear. Here, we report that Arabidopsis thaliana UGT76B1 generated glycosylated NHP (NHP-Glc) in vitro and when transiently expressed alongside Arabidopsis NHP biosynthetic genes in two Solanaceous plants. During infection, Arabidopsis ugt76b1 mutants did not accumulate NHP-Glc and accumulated less glycosylated salicylic acid (SA-Glc) than wild-type plants. The metabolic changes in ugt76b1 plants were accompanied by enhanced defense to the bacterial pathogen Pseudomonas syringae, suggesting that glycosylation of the SAR molecules NHP and salicylic acid by UGT76B1 plays an important role in modulating defense responses. Transient expression of Arabidopsis UGT76B1 with the Arabidopsis NHP biosynthesis genes ALD1 and FMO1 in tomato (Solanum lycopersicum) increased NHP-Glc production and reduced NHP accumulation in local tissue and abolished the systemic resistance seen when expressing NHP-biosynthetic genes alone. These findings reveal that the glycosylation of NHP by UGT76B1 alters defense priming in systemic tissue and provide further evidence for the role of the NHP aglycone as the active metabolite in SAR signaling.

The Arabidopsis UDP-glycosyltransferase UGT76B1 glycosylates the systemic acquired resistance-signaling metabolite NHP and can inactivate systemic defense responses when expressed in tomato.  相似文献   

17.
Gametophore induction in moss by Agrobacterium tumefaciens was inhibited by addition of lipopolysaccharide (LPS) from A. tumefaciens. The LPS did not affect bacterial viability or appear to bind to bacterial cells. LPS from nonbinding Agrobacterium radiobacter was not effective in reducing gametophore formation. A. tumefaciens LPS, if added 24 hours after addition of viable bacterial cells, had no effect in reducing gametophore formation. The polysaccharide portion of the LPS was identified as the binding component necessary for attachment of agrobacteria for induction of gametophores in moss and tumors in higher plants.  相似文献   

18.
In the absence of specialized mobile immune cells, plants utilize their localized programmed cell death and Systemic Acquired Resistance to defend themselves against pathogen attack. The contribution of a specific Arabidopsis gene to the overall plant immune response can be specifically and quantitatively assessed by assaying the pathogen growth within the infected tissue. For over three decades, the hemibiotrophic bacterium Pseudomonas syringae pv. maculicola ES4326 (Psm ES4326) has been widely applied as the model pathogen to investigate the molecular mechanisms underlying the Arabidopsis immune response. To deliver pathogens into the leaf tissue, multiple inoculation methods have been established, e.g., syringe infiltration, dip inoculation, spray, vacuum infiltration, and flood inoculation. The following protocol describes an optimized syringe infiltration method to deliver virulent Psm ES4326 into leaves of adult soil-grown Arabidopsis plants and accurately screen for enhanced disease susceptibility (EDS) towards this pathogen. In addition, this protocol can be supplemented with multiple pre-treatments to further dissect specific immune defects within different layers of plant defense, including Salicylic Acid (SA)-Triggered Immunity (STI) and MAMP-Triggered Immunity (MTI).  相似文献   

19.
Plants under attack by caterpillars emit volatile compounds that attract the herbivore’s natural enemies. In maize, the caterpillar-induced production of volatiles involves the phytohormone jasmonic acid (JA). In contrast, pathogen attack usually up-regulates the salicylic acid (SA)-pathway and results in systemic acquired resistance (SAR) against plant diseases. Activation of the SA-pathway has often been found to repress JA-dependent direct defenses, but little is known about the effects of SAR induction on indirect defenses such as volatile emission and parasitoid attraction. We examined if induction of SAR in maize, by chemical elicitation with the SA-mimic benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH), attenuates the emission of volatiles induced by Spodoptera littoralis or exogenously applied JA. In addition, we determined how these treatments affected the attractiveness of the plants to the parasitoid Microplitis rufiventris in a six-arm-olfactometer. BTH treatment alone resulted in significant systemic resistance of maize seedlings against the pathogen Setosphaeria turcica, but had no detectable effect on volatile emissions. Induction of SAR significantly reduced the emission rates of two compounds (indole and (E)-β-caryophyllene) in JA-treated plants, whereas no such negative cross-talk was found in caterpillar-damaged plants. Surprisingly, however, BTH treatment prior to caterpillar-feeding made the plants far more attractive to the parasitoid than plants that were only damaged by the herbivore. Control experiments showed that this response was due to plant-mediated effects rather than attractiveness of BTH itself. We conclude that in the studied system, plant protection by SAR activation is compatible with and can even enhance indirect defense against herbivores.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号