首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Animal‐pollinated flowers are complex structures that may require a precise configuration of floral organs for proper function. As such, they represent an excellent system with which we can examine the role of phenotypic integration and modularity in morphological evolution. We use complementary quantitative genetic and comparative phenotypic approaches to examine correlations among floral characters in Nicotiana alata, N. forgetiana and their artificial fourth‐generation hybrids. Flowers of both species share basic patterns of genetic and phenotypic correlations characterized by at least two integrated character suites that are relatively independent of each other and are not disrupted by four generations of recombination in hybrids. We conclude that these integrated character suites represent phenotypic modules that are the product of a modular genetic architecture. Intrafloral modularity may have been critical for rapid specialization of these species to different pollinators.  相似文献   

2.
Pollinators may generate selective pressures that affect covariation patterns of multiple traits as well as the mean values of single floral morphological traits. Berg predicted that flowers pollinated by animals whose morphology closely matches the flower's shape will be phenotypically more integrated (tighter correlation of flower traits) than will flowers pollinated by animals not closely fitting the floral morphology. We tested this hypothesis by comparing, in the Strait of Gibraltar region (south Spain, northern Morocco), populations of Narcissus papyraceus that have geographical differences in pollinator faunas. Long-tongued, nectar-feeding moths dominate the pollinator faunas of those populations close to the Strait of Gibraltar, whereas short-tongued, pollen-feeding syrphid flies dominate in peripheral populations farther from the Strait. Populations pollinated by moths and flies differed in the mean values of several floral traits, consistent with the evolution of regional pollination ecotypes. Populations pollinated by moths showed stronger intercorrelation (floral integration) than populations pollinated by hoverflies. Moth-pollinated populations also showed less variation in flower traits than vegetative traits, and this difference was stronger than in fly-pollinated populations. Thus, the pattern of differences in the phenotypic architecture of the Narcissus flowers is consistent with the hypothesis that populations have responded to different selective pressures generated by different pollinators. These data also supported most of the specific predictions of Berg's hypotheses about integration and modularity.  相似文献   

3.
Itagaki  Tomoyuki  Misaki  Ando  Sakai  Satoki 《Plant Ecology》2020,221(5):347-359

Pollinator-mediated selection might lead to among-trait differences in the degree and pattern of floral integration and intra-flower variation. To examine the patterns of intra-flower variation in floral traits, including nectar volume, we performed a field study using the zygomorphic flowers of Aconitum japonicum ssp. subcuneatum. We investigated (1) correlations between the sizes of the left and right sepals and petals, (2) variation in floral traits among plants, within plants and within flowers, (3) effects of sexual phases on floral integration variation in floral and nectar traits, and (4) the effect of size and intra-flower variation in traits of the left and right sepals and petals on pollen removal by pollinators. Lateral sepal area, but not lower sepal area, was highly correlated between the left and right sepals. Floral traits were more integrated during the male phase than during the female phase. Nectar standing crop in male-phase flowers correlated with helmet height and lateral and lower sepal area, but in female-phase flowers it only correlated with spur length. While intra-flower variance in lateral sepal area accounted for approximately 10% of the overall variance in these traits, the variance in lower sepal area accounted for 70% of the overall variance. Lateral sepal area had a negative effect on the number of pollen grains remaining after pollinator visits. Low variance in lateral sepals within flowers and measurements of pollen removal suggest that lateral sepals play a more important role in pollen export than the other traits. Left and right sepals may be the targets of selection for symmetry in zygomorphic flowers.

  相似文献   

4.
C E Edwards  C Weinig 《Heredity》2011,106(4):661-677
Within organisms, groups of traits with different functions are frequently modular, such that variation among modules is independent and variation within modules is tightly integrated, or correlated. Here, we investigated patterns of trait integration and modularity in Brassica rapa in response to three simulated seasonal temperature/photoperiod conditions. The goals of this research were to use trait correlations to understand patterns of trait integration and modularity within and among floral, vegetative and phenological traits of B. rapa in each of three treatments, to examine the QTL architecture underlying patterns of trait integration and modularity, and to quantify how variation in temperature and photoperiod affects the correlation structure and QTL architecture of traits. All floral organs of B. rapa were strongly correlated, and contrary to expectations, floral and vegetative traits were also correlated. Extensive QTL co-localization suggests that covariation of these traits is likely due to pleiotropy, although physically linked loci that independently affect individual traits cannot be ruled out. Across treatments, the structure of genotypic and QTL correlations was generally conserved. Any observed variation in genetic architecture arose from genotype × environment interactions (GEIs) and attendant QTL × E in response to temperature but not photoperiod.  相似文献   

5.
Although most studies on integration and modularity have focused on variation among individuals within populations or species, this is not the only level of variation for which integration and modularity exist. Multiple levels of biological variation originate from distinct sources: genetic variation, phenotypic plasticity resulting from environmental heterogeneity, fluctuating asymmetry from random developmental variation and, at the interpopulation or interspecific levels, evolutionary change. The processes that produce variation at all these levels can impart integration or modularity on the covariance structure among morphological traits. In turn, studies of the patterns of integration and modularity can inform about the underlying processes. In particular, the methods of geometric morphometrics offer many advantages for such studies because they can characterize the patterns of morphological variation in great detail and maintain the anatomical context of the structures under study. This paper reviews biological concepts and analytical methods for characterizing patterns of variation and for comparing across levels. Because research comparing patterns across level has only just begun, there are relatively few results, generalizations are difficult and many biological and statistical questions remain unanswered. Nevertheless, it is clear that research using this approach can take advantage of an abundance of new possibilities that are so far largely unexplored.  相似文献   

6.
Natural selection should favor the integration of floral traits that enhance pollen export and import in plant populations that rely upon pollinators. If this is true, then phenotypic correlations between floral traits should weaken in self-fertilizing groups that do not require pollinator visitation to produce seed. We tested this hypothesis in Leavenworthia, a plant genus in which there have been multiple independent losses of the sporophytic self-incompatibility system found throughout the Brassicaceae. In particular, we conducted phylogenetically independent contrasts of floral trait correlations between two pairs of self-incompatible (SI) and self-compatible (SC) sister taxa. In support of the hypothesis that pollinator-mediated selection integrates floral traits, we found that both SC Leavenworthia taxa have weaker overall floral correlations in comparison to sister taxa that rely upon pollinators. The two independently derived SC Leavenworthia flowers have significantly weaker stamen-petal or pistil-petal correlations, respectively, whereas the stamen-pistil correlation remains constant. These patterns suggest that relaxation of pollinator-mediated selection weakens the integration of traits associated with pollen export and import. The retention of high stamen-pistil correlations in the SC taxa of Leavenworthia further implies that the integration of these traits is either constrained or maintained by selection favoring the successful transfer of pollen within flowers to secure self-pollination.  相似文献   

7.
Summary Morphological variation within organisms is integrated and often modular in nature. That is to say, the size and shape of traits tend to vary in a coordinated and structured manner across sets of organs or parts of an organism. The genetic basis of this morphological integration is largely unknown. Here, we report on quantitative trait loci (QTL) analysis of leaf and floral organ size in Arabidopsis thaliana. We evaluate patterns of genetic correlations among traits and perform whole-genome scans using QTL mapping methods. We detected significant genetic variation for the size and shape of each floral and leaf trait in our study. Moreover, we found large positive genetic correlations among sets of either flower or leaf traits, but low and generally nonsignificant genetic correlations between flower and leaf traits. These results support the hypothesis of independent floral and vegetative modules. We consider co-localization of QTL for different traits as support for a pleiotropic basis of morphological integration and modularity. A total of eight QTL affecting flower and three QTL affecting leaf traits were identified. Most QTL affected either floral or leaf traits, providing a general explanation for high correlations within and low correlations between modules. Only two genomic locations affected both flower and leaf growth. These results are discussed in the context of the evolution of modules, pleiotropy, and the putative homologous relationship between leaves and flowers.  相似文献   

8.
Natural selection should reduce phenotypic variation and increase integration of floral traits involved in placement of pollen grains on stigmas. In this study, we examine the role of pollinators and breeding system on the evolution of floral traits by comparing the patterns of floral phenotypic variances and covariances in 20 Ipomoea species that differ in their level of pollination specialization and pollinator dependence incorporating phylogenetic relatedness. Plants with specialized pollination (i.e., those pollinated by one functional group or by few morphospecies) displayed less phenotypic variation and greater floral integration than generalist plants. Self‐compatible species also displayed greater floral integration than self‐incompatible species. Floral traits involved in pollen placement and pick up showed less variation and greater integration than floral traits involved in pollinator attraction. Analytical models indicate that both breeding system and the number of morphospecies had significant effects on floral integration patterns although only differences in the former were significant after accounting for phylogeny. These results suggest that specialist/self‐compatible plants experience more consistent selection on floral traits than generalist/self‐incompatible plants. Furthermore, pollinators and breeding system promote integration of floral traits involved in pollen placement and pick up rather than integration of the whole flower.  相似文献   

9.
The mating system of flowering plant populations evolves through selection on genetically based phenotypic variation in floral traits. The physical separation of anthers and stigmas within flowers (herkogamy) is expected to be an important target of selection to limit self-fertilization. We investigated the pattern of phenotypic and genetic variation in herkogamy and its effect of self-fertilization in a broad sample of natural populations of Aquilegia canadensis, a species that is highly selfing despite strong inbreeding depression. Within natural populations, plants exhibit substantial phenotypic variation in herkogamy caused primarily by variation in pistil length rather than stamen length. Compared to other floral traits, herkogamy is much more variable and a greater proportion of variation is distributed among rather than within individuals. We tested for a genetic component of this marked phenotypic variation by growing naturally pollinated seed families from five populations in a common greenhouse environment. For three populations, we detected a significant variation in herkogamy among families, and a positive regression between parental herkogamy measured in the field and progeny herkogamy in the greenhouse, suggesting that there is often genetic variation in herkogamy within natural populations. We estimated levels of self-fertilization for groups of flowers that differed in herkogamy and show that, as expected, herkogamy was associated with reduced selfing in 13 of 19 populations. In six of these populations, we performed floral emasculations to show that this decrease in selfing is due to decreased autogamy (within-flower selfing), the mode of selfing that herkogamy should most directly influence. Taken together, these results suggest that increased herkogamy should be selected to reduce the production of low-quality selfed seed. The combination of high selfing and substantial genetic variation for herkogamy in A. canadensis is enigmatic, and reconciling this observation will require a more integrated analysis of how herkogamy influences not only self-fertilization, but also patterns of outcross pollen import and export.  相似文献   

10.
Plastic responses to pollination and/or pollen removal may shift a flower's realized longevity closer to an optimal longevity that maximizes reproductive output per unit resource input. In particular, conditional responses to pollen removal and pollen deposition are expected in flowers of protandrous species in which the lengths of the male and female phases may be adjusted independently. We investigated plasticity in floral longevity in Campanula americana, a protandrous, insect-pollinated herb. In greenhouse studies, we found that the longevity of the morphological male phase was shortened by pollen removal and that the longevity of the morphological female phase was shortened by pollen deposition. In a natural population, male and female sexual functions saturated within a few hours of morphological gender phase onset. In contrast to theory, morphological gender phases did not terminate immediately upon saturation of sexual function. These findings are discussed in the context of current floral longevity theory.  相似文献   

11.
To predict the response of complex morphological structures to selection it is necessary to know how the covariation among its different parts is organized. Two key features of covariation are modularity and integration. The Drosophila wing is currently considered a fully integrated structure. Here, we study the patterns of integration of the Drosophila wing and test the hypothesis of the wing being divided into two modules along the proximo‐distal axis, as suggested by developmental, biomechanical, and evolutionary evidence. To achieve these goals we perform a multilevel analysis of covariation combining the techniques of geometric morphometrics and quantitative genetics. Our results indicate that the Drosophila wing is indeed organized into two main modules, the wing base and the wing blade. The patterns of integration and modularity were highly concordant at the phenotypic, genetic, environmental, and developmental levels. Besides, we found that modularity at the developmental level was considerably higher than modularity at other levels, suggesting that in the Drosophila wing direct developmental interactions are major contributors to total phenotypic shape variation. We propose that the precise time at which covariance‐generating developmental processes occur and/or the magnitude of variation that they produce favor proximo‐distal, rather than anterior‐posterior, modularity in the Drosophila wing.  相似文献   

12.

Background and Aims

From Darwin''s time onward, biologists have thought about adaptation as evolution toward optimal trait values, but they have not usually assessed the relative importance of the distinct causes of deviations from optima. This problem is investigated here by measuring adaptive inaccuracy (phenotypic deviation from the optimum), using flower pollination as an adaptive system.

Methods

Adaptive accuracy is shown to have at least three distinct components, two of which are optimality (deviation of the mean from the optimum) and precision (trait variance). We then describe adaptive accuracy of both individuals and populations. Individual inaccuracy comprises the deviation of the genotypic target (the mean phenotype of a genotype grown in a range of environments) from the optimum and the phenotypic variation around that genotypic target (phenotypic imprecision). Population inaccuracy has three basic components: deviation of the population mean from the optimum, variance in the genotypic targets and phenotypic imprecision. In addition, a fourth component is proposed, namely within-population variation in the optimum. These components are directly estimable, have additive relationships, and allow exploration of the causes of adaptive inaccuracy of both individuals and populations. Adaptive accuracy of a sample of flowers is estimated, relating floral phenotypes controlling pollen deposition on pollinators to adaptive optima defined as the site most likely to get pollen onto stigmas (male inaccuracy). Female inaccuracy is defined as the deviation of the position of stigma contact from the expected location of pollen on pollinators.

Key Results

A surprising amount of variation in estimated accuracy within and among similar species is found. Some of this variation is generated by developmental changes in positions of stigmas or anthers during anthesis (the floral receptive period), which can cause dramatic change in accuracy estimates. There seem to be trends for higher precision and accuracy in flowers with higher levels of integration and dichogamy (temporal separation of sexual functions), and in those that have pollinators that are immobile (or immobilized) during pollen transfer. Large deviations from putative adaptive optima were observed, and these may be related to the effects of conflicting selective pressures on flowers, such as selection against self-pollination promoting herkogamy (spatial separation of pollen and stigmas).

Conclusions

Adaptive accuracy is a useful concept for understanding the adaptive significance of phenotypic means and variances of floral morphology within and among populations and species. Estimating and comparing the various components of adaptive accuracy can be particularly helpful for identifying the causes of inaccuracy, such as conflicting selective pressures, low environmental canalization and developmental instability.Key words: Adaptive accuracy, Collinsia, Dalechampia, fitness, floral precision, Linum, optimality, pollination, Stylidium  相似文献   

13.
The adaptive significance and mechanism of patterns in floral sex allocation and female success within inflorescences has attracted attention recently, whereas few studies have examined genetic variation of intra-inflorescence pattern. The purpose of this study is to investigate patterns of reproduction within racemes in protandrous Aconitum gymnandrum Maxim., and illuminate potential mechanisms and genetic variation of such patterns. Data from pot experiment on 40 maternal families were collected in field. Anther number, pollen:ovule ratio and seed germination rate increased from bottom to top flowers within racemes, but other traits, such as gynoecium mass, carpel number, sepal galea height and seed production decreased significantly with flowering sequence. Variation in floral sex allocation within racemes in A. gymnandrum fitted entirely the prediction of protandry, which was not a result of architectural effect. Such selected pattern may result from a variety of factors influencing the mating environment, such as pollinator directionality, display size and flower longevity. Decline of female success within racemes in A. gymnandrum also resulted from male-biased allocation selected by variation in the mating environment, not resource competition or pollen limitation. Moreover, there was genetic variation for most reproductive traits and the position effect, as evinced by significant variation among families.  相似文献   

14.
Sex expression (the proportions of staminate and hermaphrodite flowers produced) in andromonoecious Solarium hirtum is phenotypically plastic, and there is genetic variation for sex expression plasticity. Changes in sex expression phenotype are inherently the result of altered development. However, the underlying developmental components of sex expression plasticity and of differences in plasticity among genotypes are unknown. This study takes an explicitly genetic and developmental approach to the study of phenotypic plasticity and examines changes in sex expression of ten clonally replicated genotypes at three levels of organization: among inflorescences, within inflorescences, and at the level of developing floral meristems. Changes in sex expression of individuals and differences among individuals are the result of a predictable interplay of resource, architectural, and floral level response within the hierarchical construction of the shoot system. Phenotypic plasticity of whole plant sex expression is ultimately due to sexual lability of individual developing flowers: floral sex is not determined until a primordium size of 9–10 mm. Until that time, sex expression remains labile and developing floral primordia can respond to changes in plant resource status. This flower level developmental lability, however, is expressed within the constraints set by the architecture and ontogenetic history of the organism. Only those floral primordia produced in distal portions of each inflorescence are labile, capable of developing into either a staminate or hermaphrodite flower, whereas those primordia in basal positions invariably develop as hermaphrodite flowers. The genotypes differ with respect to the architectural components of phenotypic plasticity and it is this architectural variation that results in differences in plasticity among genotypes. The phenomenon, in which the developmental fate of a primordium depends upon where and when it is produced within the architecture of an organism and what events have preceded it during ontogeny, can be termed “ontogenetic contingency.”  相似文献   

15.
Phenotypes may evolve to become integrated in response to functional demands. Once evolved, integrated phenotypes, often modular, can also influence the trajectory of subsequent responses to selection. Clearly, connecting modularity and functionally adaptive evolution has been challenging. The teleost skull and jaw structures are useful for understanding this connection because of the key roles that these structures play in feeding in novel environments with different prey resources. In the present study, we examined such a structure in the threespine stickleback: the opercular four‐bar lever that functions in jaw opening. Comparing oceanic and two fresh‐water populations, we find marked phenotypic divergence in the skull opercular region, and the major axes of morphological and functional variation of the lever are found to be highly correlated. All three populations share the same global skull integration structure, and a conserved, strongly‐supported modular organization is evident in the region encompassing the lever. Importantly, a boundary between two modules that subdivides the lever apparatus corresponds to the region of most prominent morphological evolution. The matched modular phenotypic and functional architecture of head and jaw structures of stickleback therefore may be important for facilitating their rapid adaptive transitions between highly divergent habitats. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 375–390.  相似文献   

16.
The role of developmental and genetic integration for evolution is contentious. One hypothesis states that integration acts as a constraint on evolution, whereas an alternative is that developmental and genetic systems evolve to match the functional modularity of organisms. This study examined a morphological structure, the cricket wing, where developmental and functional modules are discordant, making it possible to distinguish the two alternatives. Wing shape was characterized with geometric morphometrics, quantitative genetic information was extracted using a full‐sibling breeding design, and patterns of developmental integration were inferred from fluctuating asymmetry of wing shape. The patterns of genetic, phenotypic, and developmental integration were clearly similar, but not identical. Heritabilities for different shape variables varied widely, but no shape variables were devoid of genetic variation. Simulated selection for specific shape changes produced predicted responses with marked deflections due to the genetic covariance structure. Three hypotheses of modularity according to the wing structures involved in sound production were inconsistent with the genetic, phenotypic, or developmental covariance structure. Instead, there appears to be strong integration throughout the wing. The hypothesis that genetic and developmental integration evolve to match functional modularity can therefore be rejected for this example.  相似文献   

17.
The degree to which fine‐scaled variation in floral symmetry is associated with variation in plant fitness remains unresolved, as does the question of whether floral symmetry is in itself a target of pollinator‐mediated selection. Geranium robertianum (Geraniaceae) is a broadly distributed species whose five‐petaled flowers vary widely with respect to their degree of rotational asymmetry. In this study, we used a naturally occurring population of plants to investigate whether floral rotational asymmetry and leaf bilateral symmetry were phenotypically correlated with a series of fitness‐related traits, and also used an experimental array with model flowers to investigate the preference of insect visitors for varying degrees of floral size and symmetry. We found that leaf asymmetry was not associated with any of the phenotypic traits measured, and that the degree of floral rotational asymmetry was strongly associated with decreased flower size and decreased pollen production. Our experimental arrays showed that insect visitors did not discriminate among model flowers on the basis of size or symmetry alone; however, insect visitors preferentially visited smaller, symmetric model flowers over larger, severely asymmetric model flowers. Taken together, our results suggest that floral and leaf symmetry in G. robertianum are not likely strong indicators of phenotypic quality, and that floral symmetry is unlikely to be a target of pollinator‐mediated selection. However, the relationship between floral asymmetry and pollen production may provide a role for fecundity selection on symmetry in this species. These data importantly add to the growing literature on the adaptive nature of floral symmetry in the wild.  相似文献   

18.
Genitalia are multitasking structures whose development is mediated by numerous regulatory pathways. This multifactorial nature provides an avenue for multiple sources of selection. As a result, genitalia tend to evolve as modular systems comprising semi-independent subsets of structures, yet the processes that give rise to those patterns are still poorly understood. Here, we ask what are the relative roles of development and function in shaping modular patterns of genitalia within populations and across species of stink-bugs. We found that male genitalia are less integrated, more modular, and primarily shaped by functional demands. In contrast, females show higher integration, lower modularity, and a predominant role of developmental processes. Further, interactions among parts of each sex are more determinant to modularity than those between the sexes, and patterns of modularity are equivalent between and within species. Our results strongly indicate that genitalia have been subjected to sex-specific selection, although male and female genitalia are homologous and functionally associated. Moreover, modular patterns are seemingly constant in the evolutionary history of stink-bugs, suggesting a scenario of multivariate stabilizing selection within each sex. Our study demonstrates that interactions among genital parts of the same sex may be more fundamental to genital evolution than previously thought.  相似文献   

19.
徐旭剑  孙杉  操国兴 《广西植物》2017,37(3):335-341
两性花植物花序内的性分配常存在差异,资源竞争、结构效应、交配环境(雌雄异熟、传粉者定向访花行为等)或授粉不均匀等几种假说可以解释这种现象。为验证上述假说,该研究以云南草寇两种表型(雄先熟型和雌先熟型)为材料,分析了其花序内不同部位(基部、中部和顶部)的每花花粉数、胚珠数、花粉/胚珠比、结实率和结籽率,花序内传粉者的定向访花行为,以及人工辅助授粉和去花处理对结实率和结籽率的影响。结果表明:两种表型花序内每花花粉数不随部位而变化,每花胚珠数、结实率和结籽率由基部到顶部依次降低,每花花粉/胚珠比由基部到顶部依次增加,表明顶部花存在偏雄的性分配。人工辅助授粉后,结实率、结籽率仍由基部到顶部依次降低,表明授粉不均匀假说不能解释云南草寇花序内不同部位结实率、结籽率的差异。去除基部和中部花后,顶部花人工辅助授粉条件下的结实率、结籽率与基部花人工辅助授粉条件下的结实率、结籽率无差异,表明云南草寇花序内不同部位结实率、结籽率的差异主要由资源竞争引起。雌先熟表型每花花粉数、花粉/胚珠比高于雄先熟表型,表明两种表型存在性分配差异。传粉者主要先访问云南草寇基部的花,然后向顶部移动。云南草寇花序内顶部偏雄的性分配可能是由资源竞争和传粉者定向访花造成的。  相似文献   

20.
Sexual expression in andromonoecious species—those in which a single individual can bear both staminate and hermaphroditic flowers—may vary among reproductive events in the same plant, among individuals and across populations. This variation influences, in turn, the individual contribution of hermaphroditic plants via male and female fitness functions (i.e., Lloydʼs phenotypic gender). However, temporal variation in sexual expression in andromonoecious species and its relationship with seasonal changes in climatic conditions remain poorly understood. Here we analyze floral attributes, visitors and variation in sexual expression in three populations of Solanum lycocarpum A. St. -Hil. Seasonality in the production of floral types, the mating system and floral visitors were also investigated. Hermaphroditic flowers produced more pollen grains, but the pollen of staminate flowers had higher viability. Only hermaphroditic flowers produced fruits, and ovules in staminate flowers were sterile. Solanum lycocarpum is mainly pollinated by large bees with the ability to vibrate flowers. Phenotypic gender varied throughout the year, and the seasonal production of staminate flowers is associated with the local climate. We suggest that the higher and seasonally variable relative abundance of staminate flowers compared to the low and uniform production of hermaphroditic flowers may be explained by (a) the very high energetic costs incurred in producing large fruits, which in turn make hermaphroditic flower production very costly, and (b) the potentially lower energy expenditure of the smaller staminate flowers with reduced pistils and non-viable ovules that allow them to rapidly respond to climate variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号