首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 936 毫秒
1.
Cycling on an ergometer is an effective exercise for improving fitness. However, people with back problems or previous spinal surgery are often not aware of whether cycling could be harmful for them. To date, little information exists about spinal loads during cycling. A telemeterized vertebral body replacement allows in vivo measurement of implant loads during the activities of daily living. Five patients with a severe compression fracture of a lumbar vertebral body received these implants. During one measurement session, four of the participants exercised on a bicycle ergometer at various power levels. As the power level increased, the maximum resultant force and the difference between the maximum and minimum force (force range) during each pedal revolution increased. The average maximum-force increases between the two power levels 25 and 85 W were 73, 84, 225 and 75 N for the four patients. The corresponding increases in the force range during a pedal revolution were 84, 98, 166 and 101 N. There were large variations in the measured forces between the patients and also within the same patient, especially for high power levels. In two patients, the maximum forces during high-power cycling were higher than the forces during walking measured on the same day. Therefore, the authors conclude that patients with back problems should not cycle at high power levels shortly after surgery as a precaution.  相似文献   

2.
Activities with high spinal loads should be avoided by patients with back problems. Awareness about these activities and knowledge of the associated loads are important for the proper design and pre-clinical testing of spinal implants. The loads on an instrumented vertebral body replacement have been telemetrically measured for approximately 1000 combinations of activities and parameters in 5 patients over a period up to 65 months postoperatively. A database containing, among others, extreme values for load components in more than 13,500 datasets was searched for 10 activities that cause the highest resultant force, bending moment, torsional moment, or shear force in an anatomical direction. The following activities caused high resultant forces: lifting a weight from the ground, forward elevation of straight arms with a weight in hands, moving a weight laterally in front of the body with hanging arms, changing the body position, staircase walking, tying shoes, and upper body flexion. All activities have in common that the center of mass of the upper body was moved anteriorly. Forces up to 1650 N were measured for these activities of daily life. However, there was a large intra- and inter-individual variation in the implant loads for the various activities depending on how exercises were performed. Measured shear forces were usually higher in the posterior direction than in the anterior direction. Activities with high resultant forces usually caused high values of other load components.  相似文献   

3.
There is currently no validated full-body lifting model publicly available on the OpenSim modelling platform to estimate spinal loads during lifting. In this study, the existing full-body-lumbar-spine model was adapted and validated for lifting motions to produce the lifting full-body model. Back muscle activations predicted by the model closely matched the measured erector spinae activation patterns. Model estimates of intradiscal pressures and in vivo measurements were strongly correlated. The same spine loading trends were observed for model estimates and reported vertebral body implant measurements. These results demonstrate the suitability of this model to evaluate changes in lumbar loading during lifting.  相似文献   

4.
Mechanical loading of the low back during lifting is a common cause of low back pain. In this study two-handed lifting is compared to one-handed lifting (with and without supporting the upper body with the free hand) while lifting over an obstacle. A 3-D linked segment model was combined with an EMG-assisted trunk muscle model to quantify kinematics and joint loads at the L5S1 joint. Peak total net moments (i.e., the net moment effect of all muscles and soft tissue spanning the joint) were found to be 10+/-3% lower in unsupported one-handed lifting compared to two-handed lifting, and 30+/-8% lower in supported compared to unsupported one-handed lifting. L5S1 joint forces also showed reductions, but not of the same magnitude (18+/-8% and 15+/-10%, respectively, for compression forces, and 15+/-17% and 11+/-14% respectively, for shear forces). Those reductions of low back load were mainly caused by a reduction of trunk and load moment arms relative to the L5S1 joint during peak loading, and, in the case of hand support, by a support force of about 250 N. Stretching one leg backward did not further reduce low back load estimates. Furthermore, one-handed lifting caused an 6+/-8 degrees increase in lateral flexion, a 9+/-5 degrees increase in twist and a 6+/-6 degrees decrease in flexion. Support with the free hand caused a small further increase in lumbar twisting. It is concluded that one-handed lifting, especially with hand support, reduces L5S1 loading but increases asymmetry in movements and moments about the lumbar spine.  相似文献   

5.
The spinal stability and passive-active load partitioning under dynamic squat and stoop lifts were investigated as the ligamentous stiffness in flexion was altered. Measured in vivo kinematics of subjects lifting 180 N at either squat or stoop technique was prescribed in a nonlinear transient finite element model of the spine. The Kinematics-driven approach was utilized for temporal estimation of muscle forces, internal spinal loads and system stability. The finite element model accounted for nonlinear properties of the ligamentous spine, wrapping of thoracic extensor muscles and trunk dynamic characteristics while subject to measured kinematics and gravity/external loads. Alterations in passive properties of spine substantially influenced muscle forces, spinal loads and system stability in both lifting techniques, though more so in stoop than in squat. The squat technique is advocated for resulting in smaller spinal loads. Stability of spine in the sagittal plane substantially improved with greater passive properties, trunk flexion and load. Simulation of global extensor muscles with curved rather than straight courses considerably diminished loads on spine and increased stability throughout the task.  相似文献   

6.
Cervical spinal loads are predominately influenced by activities of cervical muscles. However, the coordination between deep and superficial muscles and their influence on the spinal loads is not well understood. This study aims to document the changes of cervical spinal loads and the differential contributions of superficial and deep muscles with varying head postures. Electromyography (EMG) of cervical muscles from seventeen healthy adults were measured during maximal isometric exertions for lateral flexion (at 10°, 20° and terminal position) as well as flexion/extension (at 10°, 20°, 30°, and terminal position) neck postures. An EMG-assisted optimization approach was used to estimate the muscle forces and subsequent spinal loads. The results showed that compressive and anterior-posterior shear loads increased significantly with neck flexion. In particular, deep muscle forces increased significantly with increasing flexion. It was also determined that in all different static head postures, the deep muscle forces were greater than those of the superficial muscle forces, however, such pattern was reversed during peak efforts where greater superficial muscle forces were identified with increasing angle of inclination. In summary, the identification of significantly increased spinal loads associated with increased deep muscle activation during flexion postures, implies higher risks in predisposing the neck to occupationally related disorders. The results also explicitly supported that deep muscles play a greater role in maintaining stable head postures where superficial muscles are responsible for peak exertions and reinforcing the spinal stability at terminal head postures. This study provided quantitative data of normal cervical spinal loads and revealed motor control strategies in coordinating the superficial and deep muscles during physical tasks.  相似文献   

7.
Previous curved muscle models have typically examined their robustness only under simple, single-plane static exertions. In addition, the empirical validation of curved muscle models through an entire lumbar spine has not been fully realized. The objective of this study was to empirically validate a personalized biologically-assisted curved muscle model during complex dynamic exertions. Twelve subjects performed a variety of complex lifting tasks as a function of load weight, load origin, and load height. Both a personalized curved muscle model as well as a straight-line muscle model were used to evaluate the model’s fidelity and prediction of three-dimensional spine tissue loads under different lifting conditions. The curved muscle model showed better model performance and different spinal loading patterns through an entire lumbar spine compared to the straight-line muscle model. The curved muscle model generally showed good fidelity regardless of lifting condition. The majority of the 600 lifting tasks resulted in a coefficient of determination (R2) greater than 0.8 with an average of 0.83, and the average absolute error less than 15% between measured and predicted dynamic spinal moments. As expected, increased load and asymmetry were generally found to significantly increase spinal loads, demonstrating the ability of the model to differentiate between experimental conditions. A curved muscle model would be useful to estimate precise spine tissue loads under realistic circumstances. This precise assessment tool could aid in understanding biomechanical causal pathways for low back pain.  相似文献   

8.
Reliable computation of spinal loads and trunk stability under whole body vibrations with high acceleration contents requires accurate estimation of trunk muscle activities that are often overlooked in existing biodynamic models. A finite element model of the spine that accounts for nonlinear load- and direction-dependent properties of lumbar segments, complex geometry and musculature of the spine, and dynamic characteristics of the trunk was used in our iterative kinematics-driven approach to predict trunk biodynamics in measured vehicle's seat vibrations with shock contents of about 4g (g: gravity acceleration of 9.8m/s(2)) at frequencies of about 4 and 20Hz. Muscle forces, spinal loads and trunk stability were evaluated for two lumbar postures (erect and flexed) with and without coactivity in abdominal muscles. Estimated peak spinal loads were substantially larger under 4Hz excitation frequency as compared to 20Hz with the contribution of muscle forces exceeding that of inertial forces. Flattening of the lumbar lordosis from an erect to a flexed posture and antagonistic coactivity in abdominal muscles, both noticeably increased forces on the spine while substantially improving trunk stability. Our predictions clearly demonstrated the significant role of muscles in trunk biodynamics and associated risk of back injuries. High-magnitude accelerations in seat vibration, especially at near-resonant frequency, expose the vertebral column to large forces and high risk of injury by significantly increasing muscle activities in response to equilibrium and stability demands.  相似文献   

9.
Understanding load-sharing in the spine during in-vivo conditions is critical for better spinal implant design and testing. Previous studies of load-sharing that considered actual spinal geometry applied compressive follower load, with or without moment, to simulate muscle forces. Other studies used musculoskeletal models, which include muscle forces, but model the discs by simple beams or spherical joints and ignore the articular facet joints.This study investigated load-sharing in neutral standing and flexed postures using a detailed Finite Element (FE) model of the ligamentous lumbosacral spine, where muscle forces, gravity loads and intra-abdominal pressure, as predicted by a musculoskeletal model of the upper body, are input into the FE model. Flexion was simulated by applying vertebral rotations following spine rhythm measured in a previous in-vivo study, to the musculoskeletal model. The FE model predicted intradiscal pressure (IDP), strains in the annular fibers, contact forces in the facet joints, and forces in the ligaments. The disc forces and moments were determined using equilibrium equations, which considered the applied loads, including muscle forces and IDP, as well as forces in the ligaments and facet joints predicted by the FE model. Load-sharing was calculated as the portion of the total spinal load carried along the spine by each individual spinal structure. The results revealed that spinal loads which increased substantially from the upright to the flexed posture were mainly supported by the discs in the upright posture, whereas the ligaments’ contribution in resisting shear, compression, and moment was more significant in the flexed posture.  相似文献   

10.
An EMG-assisted, low-back, lifting model is presented which simulates spinal loading as a function of dynamic, asymmetric, lifting exertions. The purpose of this study has been to develop a model which overcomes the limitations of previous models including static or isokinetic mechanics, inaccurate predictions of muscle coactivity, static interpretation of myoelectric activity, and physiologically unrealistic or variable muscle force per unit area. The present model predicts individual muscle forces from processed EMG data, normalized as a function of trunk angle and asymmetry, and modified to account for muscle length and velocity artifacts. The normalized EMGs are combined with muscle cross-sectional area and intrinsic strength capacity as determined on a per subject basis, to represent tensile force amplitudes. Dynamic internal and external force vectors are employed to predict trunk moments, spinal compression, lateral and anterior shear forces. Data from 20 subjects performing a total of 2160 exertions showed good agreement between predicted and measured values under all trunk angle, asymmetry, velocity, and acceleration conditions. The design represents a significant step toward accurate, fully dynamic modeling of the low-back in multiple dimensions. The benefits of such a model are the insights provided into the effects of motion induced, muscle co-activity on spinal loading in multiple dimensions.  相似文献   

11.
 The purpose of this study was to provide objective information on the involvement of different abdominal and hip flexor muscles during various types of common training exercises used in rehabilitation and sport. Six healthy male subjects performed altogether 38 different static and dynamic training exercises – trunk and hip flexion sit-ups, with various combinations of leg position and support, and bi- and unilateral leg lifts. Myoelectric activity was recorded with surface electrodes from the rectus abdominis, obliquus externus, obliquus internus, rectus femoris, and sartorius muscles and with indwelling fine-wire electrodes from the iliacus muscle. The mean electromyogram amplitude, normalised to the highest observed value, was compared between static and dynamic exercises separately. The hip flexors were highly activated only in exercises involving hip flexion, either lifting the whole upper body or the legs. In contrast, the abdominal muscles showed marked activation both during trunk and hip flexion sit-ups. In hip flexion sit-ups, flexed and supported legs increased hip flexor activation, whereas such modifications did not generally alter the activation level of the abdominals. Bilateral, but not unilateral, leg lifts required activation of abdominal muscles. In trunk flexion sit-ups an increased activation of the abdominal muscles was observed with increased flexion angle, whereas the opposite was true for hip flexion sit-ups. Bilateral leg lifts resulted in higher activity levels than hip flexion sit-ups for the iliacus and sartorius muscles, while the opposite was true for rectus femoris muscles. These data could serve as a basis for improving the design and specificity of test and training exercises. Accepted: 12 August 1996  相似文献   

12.
Fear-avoidance beliefs, particularly the fear of lifting with a flexed spine, are associated with reduced spinal motion during object lifting. Low back pain patients thereby also showed potentially clinically relevant changes in the spatial distribution of back muscle activity, but it remains unknown whether such associations are also present in pain-free individuals. This cross-sectional observational study investigated the relationship between fear-avoidance beliefs and the spatial distribution of lumbar paraspinal muscle activity in pain-free individuals during a repetitive lifting task. Thirty participants completed two pain-related fear questionnaires and performed 25 repetitions of lifting a 5 kg-box from a lower to an upper shelf and back, while multi-channel electromyographic signals were recorded bilaterally from the lumbar erector spinae muscles. Changes in spatial distribution were defined as the differences in vertical position of the weighted centroids of muscle activity (centroid shift) between the first and last few repetitions. Linear regression analyses were performed to examine the relationships between centroid shift and fear-avoidance belief scores. Fear of lifting an object with a flexed spine was negatively associated with erector spinae activity centroid shift (R2 adj. = 0.1832; p = 0.045), which might be an expression of behavioral alterations to prevent the back from possible harm.  相似文献   

13.
The purpose of the present study was to clarify the acute effect of dynamic stretching exercise on muscular performance during concentric dynamic constant external resistance (DCER, formally called isotonic) muscle actions under various loads. Concentric DCER leg extension power outputs were measured in 12 healthy male students after 2 types of pretreatment. The pretreatments were: (a) dynamic stretching treatment including 2 types of dynamic stretching exercises of leg extensors and the other 2 types of dynamic stretching exercises simulating the leg extension motion (2 sets of 15 times each with 30-second rest periods between sets; total duration: about 8 minutes), and (b) nonstretching treatment by resting for 8 minutes in a sitting position. Loads during measurement of the power output were set to 5, 30, and 60% of the maximum voluntary contractile (MVC) torque with isometric leg extension in each subject. The power output after the dynamic stretching treatment was significantly (p < 0.05) greater than that after the nonstretching treatment under each load (5% MVC: 468.4 +/- 102.6 W vs. 430.1 +/- 73.0 W; 30% MVC: 520.4 +/- 108.5 W vs. 491.0 +/- 93.0 W; 60% MVC: 487.1 +/- 100.6 W vs. 450.8 +/- 83.7 W). The present study demonstrated that dynamic stretching routines, such as dynamic stretching exercise of target muscle groups and dynamic stretching exercise simulating the actual motion pattern, significantly improve power output with concentric DCER muscle actions under various loads. These results suggested that dynamic stretching routines in warm-up protocols enhance power performance because common power activities are carried out by DCER muscle actions under various loads.  相似文献   

14.
In healthy human the excitability of spinal alpha-motoneurons under application of vibrostimulation (20-60 Hz) to different leg muscles was investigated both in stationary condition and during stepping movements caused by vibration in the condition of suspended leg. In 15 subjects the amplitude of H-reflex were compared under vibration of rectus femoris (RF) and biceps femoris (BF) muscles of left leg as well during vibration of rectus femoris of contralateral, motionless leg in three spatial positions: upright, supine and on right side of body with suspended left leg. In dynamic conditions the amount of H-reflex was compared during evoked and voluntary stepping at 8 intervals of step cycle. In all body positions the vibration of each ipsilateral leg muscles caused significant suppression of H-reflex, this suppression was more prominent in the air-stepping conditions. The vibration of contralateral leg RF muscle had a weak influence on the amplitude of H-reflex. In 7 subjects the muscle vibration of ipsilateral and contralateral legs generated stepping movements. During evoked "air-stepping" H-reflex had different amplitudes in different phases of step cycle. At the same time the differences between responses under voluntary and non-voluntary stepping were revealed only in stance phase. Thus, different degree of H-reflex suppression by vibration under different body position in space depends on, it seems to be, from summary afferent inflows to spinal cord interneurons, which participate in regulation of posture and locomotion. Seemingly, the increasing of spinal cord neurons excitability occurs under involuntary air-stepping in swing phase, which is necessary for activation of locomotor automatism under unloading leg conditions.  相似文献   

15.
A novel kinematics-based approach coupled with a non-linear finite element model was used to investigate the effect of changes in the load position and posture on muscle activity, internal loads and stability margin of the human spine in upright standing postures. In addition to 397 N gravity, external loads of 195 and 380 N were considered at different lever arms and heights. Muscle forces, internal loads and stability margin substantially increased as loads displaced anteriorly away from the body. Under same load magnitude and location, adopting a kyphotic posture as compared with a lordotic one increased muscle forces, internal loads and stability margin. An increase in the height of a load held at a fixed lever arm substantially diminished system stability thus requiring additional muscle activations to maintain the same margin of stability. Results suggest the importance of the load position and lumbar posture in spinal biomechanics during various manual material handling operations.  相似文献   

16.
Conventional electromyography-driven (EMG) musculoskeletal models are calibrated during maximum voluntary contraction (MVC) tasks, but individuals with low back pain cannot perform unbiased MVCs. To address this issue, EMG-driven models can be calibrated in submaximal tasks. However, the effects of maximal (when data points include the maximum contraction) and submaximal calibration techniques on model outputs (e.g., muscle forces, spinal loads) remain yet unknown. We calibrated a subject-specific EMG-driven model, using maximal/submaximal isometric contractions, and simulated different independent tasks. Both approaches satisfactorily predicted external moments (Pearson’s correlation ∼ 0.75; relative error = 44%), and removing calibration tasks under axial torques markedly improved the model performance (Pearson’s correlation ∼ 0.92; relative error ∼ 28%). Unlike individual muscle forces, gross (aggregate) model outputs (i.e., spinal loads, stability index, and sum of abdominal/back muscle forces) estimated from maximal and submaximal calibration techniques were highly correlated (r > 0.78). Submaximal calibration method overestimated spinal loads (6% in average) and abdominal muscle forces (11% in average). Individual muscle forces estimated from maximal and submaximal approaches were substantially different; however, gross model outputs (especially internal loads and stability index) remained highly correlated with small to moderate relative differences; therefore, the submaximal calibration technique can be considered as an alternative to the conventional maximal calibration approach.  相似文献   

17.
The aim of this study was to analyze trunk muscle activity during bridge style stabilization exercises, when combined with single and double leg support strategies. Twenty-nine healthy volunteers performed bridge exercises in 3 different positions (back, front and side bridges), with and without an elevated leg, and a quadruped exercise with contralateral arm and leg raise ("bird-dog"). Surface EMG was bilaterally recorded from rectus abdominis (RA), external and internal oblique (EO, IO), and erector spinae (ES). Back, front and side bridges primarily activated the ES (approximately 17% MVC), RA (approximately 30% MVC) and muscles required to support the lateral moment (mostly obliques), respectively. Compared with conventional bridge exercises, single leg support produced higher levels of trunk activation, predominantly in the oblique muscles. The bird-dog exercise produced greatest activity in IO on the side of the elevated arm and in the contralateral ES. In conclusion, during a common bridge with double leg support, the antigravity muscles were the most active. When performed with an elevated leg, however, rotation torques increased the activation of the trunk rotators, especially IO. This information may be useful for clinicians and rehabilitation specialists in determining appropriate exercise progression for the trunk stabilizers.  相似文献   

18.
19.
Larger trunk and pelvic motions in persons with (vs. without) lower limb amputation during activities of daily living (ADLs) adversely affect the mechanical demands on the lower back. Building on evidence that such altered motions result in larger spinal loads during level-ground walking, here we characterize trunk-pelvic motions, trunk muscle forces, and resultant spinal loads among sixteen males with unilateral, transfemoral amputation (TFA) walking at a self-selected speed both up (“upslope”; 1.06 ± 0.14 m/s) and down (“downslope”; 0.98 ± 0.20 m/s) a 10-degree ramp. Tri-planar trunk and pelvic motions were obtained (and ranges-of-motion [ROM] computed) as inputs for a non-linear finite element model of the spine to estimate global and local muscle (i.e., trunk movers and stabilizers, respectively) forces, and resultant spinal loads. Sagittal- (p = 0.001), frontal- (p = 0.004), and transverse-plane (p < 0.001) trunk ROM, and peak mediolateral shear (p = 0.011) and local muscle forces (p = 0.010) were larger (respectively 45, 35, 98, 70, and 11%) in upslope vs. downslope walking. Peak anteroposterior shear (p = 0.33), compression (p = 0.28), and global muscle (p = 0.35) forces were similar between inclinations. Compared to previous reports of persons with TFA walking on level ground, 5–60% larger anteroposterior and mediolateral shear observed here (despite ∼0.25 m/s slower walking speeds) suggest greater mechanical demands on the low back in sloped walking, particularly upslope. Continued characterization of trunk motions and spinal loads during ADLs support the notion that repeated exposures to these larger-than-normal (i.e., vs. level-ground walking in TFA and uninjured cohorts) spinal loads contribute to an increased risk for low back injury following lower limb amputation.  相似文献   

20.
A novel kinematics-based approach coupled with a non-linear finite element model was used to investigate the effect of changes in the load position and posture on muscle activity, internal loads and stability margin of the human spine in upright standing postures. In addition to 397 N gravity, external loads of 195 and 380 N were considered at different lever arms and heights. Muscle forces, internal loads and stability margin substantially increased as loads displaced anteriorly away from the body. Under same load magnitude and location, adopting a kyphotic posture as compared with a lordotic one increased muscle forces, internal loads and stability margin. An increase in the height of a load held at a fixed lever arm substantially diminished system stability thus requiring additional muscle activations to maintain the same margin of stability. Results suggest the importance of the load position and lumbar posture in spinal biomechanics during various manual material handling operations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号