首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Vasculogenesis, or recruitment of progenitors able to differentiate into endothelial-like cells, may provide an important contribution to neovessel formation in tumors. However, the factors involved in the vasculogenic process and in particular the role of the epithelial-mesenchymal transition of tumor cells have not yet been investigated. We found a CD14+/KDR+ angiogenic monocyte population in undifferentiated ovarian tumors, significantly increased in the corresponding tumor metastasis. In vitro, monocyte differentiation into CD14+/KDR+ cells was induced by conditioned media from the primary ovarian tumor cells expressing a mesenchymal phenotype. In contrast, the ovarian tumor cell line SKOV3 expressing an epithelial phenotype was unable to stimulate the differentiation of monocytes into CD14+/KDR+ cells. When an epithelial-mesenchymal transition was induced in SKOV3, they acquired this differentiative ability. Moreover, after mesenchymal transition pleiotrophin expression by SKOV3 was increased and conversely its blockade significantly reduced monocyte differentiation. The obtained CD14+/KDR+ cell population showed the expression of endothelial markers, increased the formation of capillary-like structures by endothelial cells and promoted the migration of ovarian tumor cells in vitro. In conclusion, we showed that the epithelial-mesenchymal transition of ovarian tumor cells induced differentiation of monocytes into the pro-angiogenic CD14+/KDR+ population and thus it may provide a tumor microenvironment that favours vasculogenesis and metastatization of the ovarian cancer.  相似文献   

3.
Induced pluripotent stem (iPS) cells are generated from adult somatic cells by transduction of defined factors. Given their unlimited proliferation and differentiation potential, iPS cells represent promising sources for cell therapy and tools for research and drug discovery. However, systems for the directional differentiation of iPS cells toward paraxial mesodermal lineages have not been reported. In the present study, we established a protocol for the differentiation of mouse iPS cells into paraxial mesodermal lineages in serum-free culture. The protocol was dependent on Activin signaling in addition to BMP and Wnt signaling which were previously shown to be effective for mouse ES cell differentiation. Independently of the cell origin, the number of transgenes, or the type of vectors used to generate iPS cells, the use of serum-free monolayer culture stimulated with a combination of BMP4, Activin A, and LiCl enabled preferential promotion of mouse iPS cells to a PDGFR-α+/Flk-1 population, which represents a paraxial mesodermal lineage. The mouse iPS cell-derived paraxial mesodermal cells exhibited differentiation potential into osteogenic, chondrogenic, and myogenic cells both in vitro and in vivo and contributed to muscle regeneration. Moreover, purification of the PDGFR-α+/KDR population after differentiation allowed enrichment of human iPS cell populations with paraxial mesodermal characteristics. The resultant PDGFR-α+/KDR population derived from human iPS cells specifically exhibited osteogenic, chondrogenic, and myogenic differentiation potential in vitro, implying generation of paraxial mesodermal progenitors similar to mouse iPS cell-derived progenitors. These findings highlight the potential of protocols based on the serum-free, stepwise induction and purification of paraxial mesodermal cell lineages for use in stem cell therapies to treat diseased bone, cartilage, and muscle.  相似文献   

4.
The oscillatory expression of Notch signaling in neural progenitors suggests that both repressors and activators of neural fate specification are expressed in the same progenitors. Since Notch1 regulates photoreceptor differentiation and contributes (together with Notch3) to ganglion cell fate specification, we hypothesized that genes encoding photoreceptor and ganglion cell fate activators would be highly expressed in Notch1 receptor-bearing (Notch1+) progenitors, directing these cells to differentiate into photoreceptors or into ganglion cells when Notch1 activity is diminished. To identify these genes, we used microarray analysis to study expression profiles of whole retinas and isolated from them Notch1+ cells at embryonic day 14 (E14) and postnatal day 0 (P0). To isolate Notch1+ cells, we utilized immunomagnetic cell separation. We also used Notch3 knockout (Notch3KO) animals to evaluate the contribution of Notch3 signaling in ganglion cell differentiation. Hierarchical clustering of 6,301 differentially expressed genes showed that Notch1+ cells grouped near the same developmental stage retina cluster. At E14, we found higher expression of repressors (Notch1, Hes5) and activators (Dll3, Atoh7, Otx2) of neuronal differentiation in Notch1+ cells compared to whole retinal cell populations. At P0, Notch1, Hes5, and Dll1 expression was significantly higher in Notch1+ cells than in whole retinas. Otx2 expression was more than thirty times higher than Atoh7 expression in Notch1+ cells at P0. We also observed that retinas of wild type animals had only 14% (P < 0.05) more ganglion cells compared to Notch3KO mice. Since this number is relatively small and Notch1 has been shown to contribute to ganglion cell fate specification, we suggested that Notch1 signaling may play a more significant role in RGC development than the Notch3 signaling cascade. Finally, our findings suggest that Notch1+ progenitors—since they heavily express both pro-ganglion cell (Atoh7) and pro-photoreceptor cell (Otx2) activators—can differentiate into either ganglion cells or photoreceptors.  相似文献   

5.
Induced pluripotent stem (iPS) cells are generated by nuclear reprogramming of mature cells to a pluripotent state, and show biological properties of embryonic stem (ES) cells. The observation that human (h)ES cells generate hemoangiogenic progeny, defined by their high-level expression of KDR and low-level expression of PDGFRα (KDR+PDGFRαlo) via WNT and BMP signaling during 5-8 days of differentiation in a serum-free environment led us to address how hiPS cells give rise to hemoangiogenic progeny. In the presence of WNT3a, four hiPS cell lines derived from human skin fibroblasts commonly generated KDR+ and/or PDGFRα+ progeny by day 8 of differentiation. Endogenous BMP signaling was required for the WNT3a-directed upregulation of hemogenic cell development and the hemoangiogenic activity was confined in all cases to the KDR+PDGFRαlo fraction. Thus, iPS cells derived from human skin fibroblasts resemble hES cells in the generation of hematopoietic and endothelial cells in vitro.  相似文献   

6.
Notch signaling inhibits differentiation of endocrine cells in the pancreas and intestine. In a number of cases, the observed inhibition occurred with Notch activation in multipotential cells, prior to the initiation of endocrine differentiation. It has not been established how direct activation of Notch in endocrine precursor cells affects their subsequent cell fate. Using conditional activation of Notch in cells expressing Neurogenin3 or NeuroD1, we examined the effects of Notch in both organs, on cell fate of early endocrine precursors and maturing endocrine-restricted cells, respectively. Notch did not preclude the differentiation of a limited number of endocrine cells in either organ when activated in Ngn3+ precursor cells. In addition, in the pancreas most Ngn3+ cells adopted a duct but not acinar cell fate; whereas in intestinal Ngn3+ cells, Notch favored enterocyte and goblet cell fates, while selecting against endocrine and Paneth cell differentiation. A small fraction of NeuroD1+ cells in the pancreas retain plasticity to respond to Notch, giving rise to intraislet ductules as well as cells with no detectable pancreatic lineage markers that appear to have limited ultrastructural features of both endocrine and duct cells. These results suggest that Notch directly regulates cell fate decisions in multipotential early endocrine precursor cells. Some maturing endocrine-restricted NeuroD1+ cells in the pancreas switch to the duct lineage in response to Notch, indicating previously unappreciated plasticity at such a late stage of endocrine differentiation.  相似文献   

7.

Purpose

Adrenomedullin (ADM) has been shown to take part in physiological and pathological angiogenesis. The purpose of this study was to investigate whether ADM signaling is involved in choroidal neovascularization (CNV) using a mouse model.

Methods and Results

CNV was induced by laser photocoagulation in 8-week-old C57BL/6 mice. ADM mRNA expression significantly increased following treatment, peaking 4 days thereafter. The expression of ADM receptor (ADM-R) components (CRLR, RAMP2 and RAMP 3) was higher in CD31+CD45 endothelial cells (ECs) than CD31CD45 non-ECs. Inflammatory stimulation upregulated the expression of ADM not only in cell lines but also in cells in primary cultures of the choroid/retinal pigment epithelium complex. Supernatants from TNFα-treated macrophage cell lines potentiated the proliferation of ECs and this was partially suppressed by an ADM antagonist, ADM (22–52). Intravitreous injection of ADM (22–52) or ADM neutralizing monoclonal antibody (mAb) after laser treatment significantly reduced the size of CNV compared with vehicle-treated controls (p<0.01).

Conclusions

ADM signaling is involved in laser-induced CNV formation, because both an ADM antagonist and ADM mAb significantly inhibited it. Suppression of ADM signaling might be a valuable alternative treatment for CNV associated with age-related macular degeneration.  相似文献   

8.
9.
10.

Background

Critical limb ischemia (CLI) is characterized by lower extremity artery obstruction and a largely unexplained impaired ischemic neovascularization response. Bone marrow (BM) derived endothelial progenitor cells (EPC) contribute to neovascularization. We hypothesize that reduced levels and function of circulating progenitor cells and alterations in the BM contribute to impaired neovascularization in CLI.

Methods

Levels of primitive (CD34+ and CD133+) progenitors and CD34+KDR+ EPC were analyzed using flow cytometry in blood and BM from 101 CLI patients in the JUVENTAS-trial (NCT00371371) and healthy controls. Blood levels of markers for endothelial injury (sE-selectin, sICAM-1, sVCAM-1, and thrombomodulin), and progenitor cell mobilizing and inflammatory factors were assessed by conventional and multiplex ELISA. BM levels and activity of the EPC mobilizing protease MMP-9 were assessed by ELISA and zymography. Circulating angiogenic cells (CAC) were cultured and their paracrine function was assessed.

Results

Endothelial injury markers were higher in CLI (P<0.01). CLI patients had higher levels of VEGF, SDF-1α, SCF, G-CSF (P<0.05) and of IL-6, IL-8 and IP-10 (P<0.05). Circulating EPC and BM CD34+ cells (P<0.05), lymphocytic expression of CXCR4 and CD26 in BM (P<0.05), and BM levels and activity of MMP-9 (P<0.01) were lower in CLI. Multivariate regression analysis showed an inverse association between IL-6 and BM CD34+ cell levels (P = 0.007). CAC from CLI patients had reduced paracrine function (P<0.0001).

Conclusion

CLI patients have reduced levels of circulating EPC, despite profound endothelial injury and an EPC mobilizing response. Moreover, CLI patients have lower BM CD34+-cell levels, which were inversely associated with the inflammatory marker IL-6, and lower BM MMP-9 levels and activity. The results of this study suggest that inflammation-induced BM exhaustion and a disturbed progenitor cell mobilization response due to reduced levels and activity of MMP-9 in the BM and alterations in the SDF-1α/CXCR4 interaction contribute to the attenuated neovascularization in CLI patients.  相似文献   

11.
12.
13.
Delta-like 4 (Dll4) is a ligand of the Notch pathway family which has been widely studied in the context of tumor angiogenesis, its blockade shown to result in non-productive angiogenesis and halted tumor growth. As Dll4 inhibitors enter the clinic, there is an emerging need to understand their side effects, namely the systemic consequences of Dll4:Notch blockade in tissues other than tumors. The present study focused on the effects of systemic anti-Dll4 targeting in the bone marrow (BM) microenvironment. Here we show that Dll4 blockade with monoclonal antibodies perturbs the BM vascular niche of sub-lethally irradiated mice, resulting in increased CD31+, VE-Cadherin+ and c-kit+ vessel density, and also increased megakaryocytes, whereas CD105+, VEGFR3+, SMA+ and lectin+ vessel density remained unaltered. We investigated also the expression of angiocrine genes upon Dll4 treatment in vivo, and demonstrate that IGFbp2, IGFbp3, Angpt2, Dll4, DHH and VEGF-A are upregulated, while FGF1 and CSF2 are reduced. In vitro treatment of endothelial cells with anti-Dll4 reduced Akt phosphorylation while maintaining similar levels of Erk 1/2 phosphorylation. Besides its effects in the BM vascular niche, anti-Dll4 treatment perturbed hematopoiesis, as evidenced by increased myeloid (CD11b+), decreased B (B220+) and T (CD3+) lymphoid BM content of treated mice, with a corresponding increase in myeloid circulating cells. Moreover, anti-Dll4 treatment also increased the number of CFU-M and -G colonies in methylcellulose assays, independently of Notch1. Finally, anti-Dll4 treatment of donor BM improved the hematopoietic recovery of lethally irradiated recipients in a transplant setting. Together, our data reveals the hematopoietic (BM) effects of systemic anti-Dll4 treatment result from qualitative vascular changes and also direct hematopoietic cell modulation, which may be favorable in a transplant setting.  相似文献   

14.
During vessel sprouting, a migratory endothelial tip cell guides the sprout, while proliferating stalk cells elongate the branch. Tip and stalk cell phenotypes are not genetically predetermined fates, but are dynamically interchangeable to ensure that the fittest endothelial cell (EC) leads the vessel sprout. ECs increase glycolysis when forming new blood vessels. Genetic deficiency of the glycolytic activator PFKFB3 in ECs reduces vascular sprouting by impairing migration of tip cells and proliferation of stalk cells. PFKFB3-driven glycolysis promotes the tip cell phenotype during vessel sprouting, since PFKFB3 overexpression overrules the pro-stalk activity of Notch signaling. Furthermore, PFKFB3-deficient ECs cannot compete with wild-type neighbors to form new blood vessels in chimeric mosaic mice. In addition, pharmacological PFKFB3 blockade reduces pathological angiogenesis with modest systemic effects, likely because it decreases glycolysis only partially and transiently.  相似文献   

15.
Notch signalling is critical for haemopoietic stem cell (HSC) self-renewal and survival. The role of Notch signalling has been reported recently in chronic myeloid leukaemia (CML) – a stem cell disease characterized by BCR-ABL tyrosine kinase activation. Therefore, we studied the relationship between BCR-ABL and Notch signalling and assessed the expression patterns of Notch and its downstream target Hes1 in CD34+ stem and progenitor cells from chronic-phase CML patients and bone marrow (BM) from normal subjects (NBM). We found significant upregulation (p<0.05) of Notch1, Notch2 and Hes1 on the most primitive CD34+Thy+ subset of CML CD34+ cells suggesting that active Notch signalling in CML primitive progenitors. In addition, Notch1 was also expressed in distinct lymphoid and myeloid progenitors within the CD34+ population of primary CML cells. To further delineate the possible role and interactions of Notch with BCR-ABL in CD34+ primary cells from chronic-phase CML, we used P-crkl detection as a surrogate assay of BCR-ABL tyrosine kinase activity. Our data revealed that Imatinib (IM) induced BCR-ABL inhibition results in significant (p<0.05) upregulation of Notch activity, assessed by Hes1 expression. Similarly, inhibition of Notch leads to hyperactivation of BCR-ABL. This antagonistic relationship between Notch and BCR-ABL signalling was confirmed in K562 and ALL-SIL cell lines. In K562, we further validated this antagonistic relationship by inhibiting histone deacetylase (HDAC) - an effector pathway of Hes1, using valproic acid (VPA) - a HDAC inhibitor. Finally, we also confirmed the potential antagonism between Notch and BCR/ABL in In Vivo, using publically available GSE-database, by analysing gene expression profile of paired samples from chronic-phase CML patients pre- and post-Imatinib therapy. Thus, we have demonstrated an antagonistic relationship between Notch and BCR-ABL in CML. A combined inhibition of Notch and BCR-ABL may therefore provide superior clinical response over tyrosine-kinase inhibitor monotherapy by targeting both quiescent leukaemic stem cells and differentiated leukaemic cells and hence must be explored.  相似文献   

16.
Endometrium is a highly regenerative adult tissue that undergoes repeated degeneration and regeneration following menarche. Therefore, it is believed that endometrium contains stem and/or progenitor cells in order to compensate for the regeneration of tissue components. We report here that stem-like cells having vasculogenic potential are present in the uterus. Enzymatically extracted cells from murine uteri were characterized and fractionated into four subpopulations by flowcytometry; CD34+/45 (Ut-34), CD34/45 (Ut-DN) and the remaining CD45+ cell fractions (CD34+/45+ and CD34/45+ cells). The Ut-34 and Ut-DN fractions were mostly negative for putative endothelial cell (EC) markers, such as CD31, Flk-1, c-kit and VE-cadherin, although the Ut-DN fraction contained 2.8% CD31+ cells. Ut-DN cells were further divided into CD31+ and CD31 fractions. Three cell populations were obtained from green fluorescence protein (GFP) transgenic mice and were transplanted into injured wild-type mouse skeletal muscle. At 4 weeks after cell transplantation, donor-derived vascular smooth muscle and ECs were observed in the injured recipient muscle. A similar trend was observed in the Ut-34 group, but differentiation into vascular smooth muscle was predominant. In contrast, the Ut-DN/31+ cell-transplanted group showed preferential differentiation into vascular ECs, thus suggesting that they were relatively committed preexisting ECs. These characteristics were also seen in vitro, in clonal cell cultures. Interestingly, donor derived Ut-DN/31+, Ut-DN/31 and Ut-34 cells could not be identified after bone marrow (BM) transplantation, thus confirming that they are not derived from BM. It therefore appeared that tissue-specific vasculogenic cells are present in the murine uterus and that they exhibit vascular formation, even in different tissue microenvironments.  相似文献   

17.
The limited availability of human vascular endothelial cells (ECs) hampers research into EC function whilst the lack of precisely defined culture conditions for this cell type presents problems for addressing basic questions surrounding EC physiology. We aimed to generate endothelial progenitors from human pluripotent stem cells to facilitate the study of human EC physiology, using a defined serum-free protocol. Human embryonic stem cells (hESC-ECs) differentiated under serum-free conditions generated CD34+KDR+ endothelial progenitor cells after 6 days that could be further expanded in the presence of vascular endothelial growth factor (VEGF). The resultant EC population expressed CD31 and TIE2/TEK, took up acetylated low-density lipoprotein (LDL) and up-regulated expression of ICAM-1, PAI-1 and ET-1 following treatment with TNFα. Immunofluorescence studies indicated that a key mediator of vascular tone, endothelial nitric oxide synthase (eNOS), was localised to a perinuclear compartment of hESC-ECs, in contrast with the pan-cellular distribution of this enzyme within human umbilical vein ECs (HUVECs). Further investigation revealed that that the serum-associated lipids, lysophosphatidic acid (LPA) and platelet activating factor (PAF), were the key molecules that affected eNOS localisation in hESC-ECs cultures. These studies illustrate the feasibility of EC generation from hESCs and the utility of these cells for investigating environmental cues that impact on EC phenotype. We have demonstrated a hitherto unrecognized role for LPA and PAF in the regulation of eNOS subcellular localization.  相似文献   

18.

Purpose

By using hypoxia-inducible factor-1 alpha conditional knockout (HIF-1α CKO) mice and a dry eye (DE) mouse model, we aimed to determine the role played by delta-like ligand 4 (Dll4)/Notch signaling and HIF-1α in the lymphangiogenesis of lacrimal glands (LGs).

Methods

C57BL/6 mice were housed in a controlled-environment chamber for DE induction. During DE induction, the expression level of Dll4/Notch signaling and lymphangiogenesis in LGs was measured by quantitative RT-PCR, immunoblot, and immunofluorescence staining. Next, lymphangiogenesis was measured after Dll4/Notch signal inhibition by anti-Dll4 antibody or γ-secretase inhibitor. Using HIF-1α CKO mice, the expression of Dll4/Notch signaling and lymphangiogenesis in LGs of DE-induced HIF-1α CKO mice were assessed. Additionally, the infiltration of CD45+ cells in LGs was assessed by immunohistochemical (IHC) staining and flow cytometry for each condition.

Results

DE significantly upregulated Dll4/Notch and lymphangiogenesis in LGs. Inhibition of Dll4/Notch significantly suppressed lymphangiogenesis in LGs. Compared to wild-type (WT) mice, DE induced HIF-1α CKO mice showed markedly low levels of Dll4/Notch and lymphangiogenesis. Inhibition of lymphangiogenesis by Dll4/Notch suppression resulted in increased CD45+ cell infiltration in LGs. Likewise, CD45+ cells infiltrated more in the LGs of HIF-1α CKO DE mice than in non-DE HIF-1α CKO mice.

Conclusions

Dll4/Notch signaling and HIF-1α are closely related to lymphangiogenesis in DE-induced LGs. Lymphangiogenesis stimulated by Dll4/Notch and HIF-1α may play a role in protecting LGs from DE-induced inflammation by aiding the clearance of immune cells from LGs.  相似文献   

19.
20.
Idiopathic CD4 lymphocytopenia (ICL) is a rare immune deficiency characterized by a protracted CD4+ T cell loss of unknown etiology and by the occurrence of opportunistic infections similar to those seen in AIDS. We investigated whether a defect in responses to cytokines that control CD4+ T cell homeostasis could play a role in ICL. Immunophenotype and signaling responses to interleukin-7 (IL-7), IL-2, and thymic stromal lymphopoietin (TSLP) were analyzed by flow cytometry in CD4+ T cells from 15 ICL patients and 15 healthy blood donors. The induction of phospho-STAT5 after IL-7 stimulation was decreased in memory CD4+ T cells of some ICL patients, which correlated with a decreased expression of the IL-7Rα receptor chain (R = 0.74, p<0.005) and with lower CD4+ T cell counts (R = 0.69, p<0.005). IL-2 responses were also impaired, both in the Treg and conventional memory subsets. Decreased IL-2 responses correlated with decreased IL-7 responses (R = 0.75, p<0.005), pointing to combined defects that may significantly perturb CD4+ T cell homeostasis in a subset of ICL patients. Unexpectedly, responses to the IL-7-related cytokine TSLP were increased in ICL patients, while they remained barely detectable in healthy controls. TSLP responses correlated inversely with IL-7 responses (R = −0.41; p<0.05), suggesting a cross-regulation between the two cytokine systems. In conclusion, IL-7 and IL-2 signaling are impaired in ICL, which may account for the loss of CD4+ T cell homeostasis. Increased TSLP responses point to a compensatory homeostatic mechanism that may mitigate defects in γc cytokine responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号