首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conditioned taste aversions function by preventing an organism from ingesting a food previously associated with gastrointestinal malaise. Taste-aversion learning has been observed in many animals: molluscs to mammals, insects to birds. However, among mammals, neither bats nor monophagous species have been investigated adequately. Here we show that although three dietary generalists (one insectivorous and two frugivorous bats) readily acquired taste aversions, the common vampire bat, Desmodus rotundus, a monophageous feeder on vertebrate blood, did not learn to associate a novel flavour with aversive gastrointestinal events. We interpret these data as consistent with the hypothesis that taste aversions are an adaptive specialization of learning. Copyright 2003 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.   相似文献   

2.
Bitter taste reception is expected to be associated with dietary selection and to prevent animals from ingesting potentially harmful compounds. To investigate the genetic basis of bitter taste reception, we reconfirmed the bitter taste receptor (T2R) genes from cow (herbivore) and dog (carnivore) genome sequences and identified the T2R repertoire from the draft genome of the bat (insectivore) for the first time using an automatic data-mining method. We detected 28 bitter receptor genes from the bat genome, including 9 intact genes, 8 partial but putative functional genes, and 9 pseudogenes. In the phylogenetic analysis, most of the T2R genes from the three species intermingle across the tree, suggesting that some are conserved among mammals with different dietary preferences. Furthermore, one clade of bat-specific genes was detected, possibly implying that the insectivorous mammal could recognize some species-specific bitter tastants. Evolutionary analysis shows strong positive selection was imposed on this bat-specific cluster, indicating that positive selection drives the functional divergence and specialization of the bat bitter taste receptors to adapt diets to the external environment.  相似文献   

3.
Host ecological factors and external environmental factors are known to influence the structure of gut microbial communities, but few studies have examined the impacts of environmental changes on microbiotas in free‐ranging animals. Rapid land‐use change has the potential to shift gut microbial communities in wildlife through exposure to novel bacteria and/or by changing the availability or quality of local food resources. The consequences of such changes to host health and fitness remain unknown and may have important implications for pathogen spillover between humans and wildlife. To better understand the consequences of land‐use change on wildlife microbiotas, we analyzed long‐term dietary trends, gut microbiota composition, and innate immune function in common vampire bats (Desmodus rotundus) in two nearby sites in Belize that vary in landscape structure. We found that vampire bats living in a small forest fragment had more homogenous diets indicative of feeding on livestock and shifts in microbiota heterogeneity, but not overall composition, compared to those living in an intact forest reserve. We also found that irrespective of sampling site, vampire bats which consumed relatively more livestock showed shifts in some core bacteria compared with vampire bats which consumed relatively less livestock. The relative abundance of some core microbiota members was associated with innate immune function, suggesting that future research should consider the role of the host microbiota in immune defense and its relationship to zoonotic infection dynamics. We suggest that subsequent homogenization of diet and habitat loss through livestock rearing in the Neotropics may lead to disruption to the microbiota that could have downstream impacts on host immunity and cross‐species pathogen transmission.  相似文献   

4.
Many bats are extremely social. In some cases, individuals remain together for years or even decades and engage in mutually beneficial behaviours among non-related individuals. Here, we summarize ways in which unrelated bats cooperate while roosting, foraging, feeding or caring for offspring. For each situation, we ask if cooperation involves an investment, and if so, what mechanisms might ensure a return. While some cooperative outcomes are likely a by-product of selfish behaviour as they are in many other vertebrates, we explain how cooperative investments can occur in several situations and are particularly evident in food sharing among common vampire bats (Desmodus rotundus) and alloparental care by greater spear-nosed bats (Phyllostomus hastatus). Fieldwork and experiments on vampire bats indicate that sharing blood with non-kin expands the number of possible donors beyond kin and promotes reciprocal help by strengthening long-term social bonds. Similarly, more than 25 years of recapture data and field observations of greater spear-nosed bats reveal multiple cooperative investments occurring within stable groups of non-kin. These studies illustrate how bats can serve as models for understanding how cooperation is regulated in social vertebrates.  相似文献   

5.
翼手目动物(蝙蝠)的食性多样性丰富,其食物包括昆虫、鱼类、两栖动物、爬行动物、鸟类、哺乳动物、植物果实、花、花粉、花蜜、叶片和血液等。其中,大约70%的蝙蝠主要以昆虫为食,而以血液为食的吸血蝙蝠只有3种,它们是哺乳动物中唯一的仅以血液为食的动物类群。因此,吸血蝙蝠是研究动物食性演化的重要模式动物。本文综述了吸血蝙蝠在形态学、生理学、行为学、感觉系统和肠道微生物等方面的研究,指出了吸血蝙蝠食性特化的适应性特征。随着普通吸血蝠高质量基因组的公布,我们将有机会探究食性相关基因在吸血蝙蝠中的功能改变,阐明动物食性转变的分子机理。本文将为吸血蝙蝠和其它动物食性转变的研究提供有益的参考。  相似文献   

6.
Stable social bonds in group-living animals can provide greater access to food. A striking example is that female vampire bats often regurgitate blood to socially bonded kin and nonkin that failed in their nightly hunt. Food-sharing relationships form via preferred associations and social grooming within roosts. However, it remains unclear whether these cooperative relationships extend beyond the roost. To evaluate if long-term cooperative relationships in vampire bats play a role in foraging, we tested if foraging encounters measured by proximity sensors could be explained by wild roosting proximity, kinship, or rates of co-feeding, social grooming, and food sharing during 21 months in captivity. We assessed evidence for 6 hypothetical scenarios of social foraging, ranging from individual to collective hunting. We found that closely bonded female vampire bats departed their roost separately, but often reunited far outside the roost. Repeating foraging encounters were predicted by within-roost association and histories of cooperation in captivity, even when accounting for kinship. Foraging bats demonstrated both affiliative and competitive interactions with different social calls linked to each interaction type. We suggest that social foraging could have implications for social evolution if “local” within-roost cooperation and “global” outside-roost competition enhances fitness interdependence between frequent roostmates.

A combination of captive experiments and proximity sensing in the wild show that social bonds in vampire bats that are typically defined by cooperative interactions within the roost also extend beyond the roost and may provide benefits during foraging.  相似文献   

7.
Bats are a diverse radiation of mammals of enduring interest for understanding the evolution of sensory specialization. Colour vision variation among species has previously been linked to roosting preferences and echolocation form in the suborder Yinpterochiroptera, yet questions remain about the roles of diet and habitat in shaping bat visual ecology. We sequenced OPN1SW and OPN1LW opsin genes for 20 species of leaf‐nosed bats (family Phyllostomidae; suborder Yangochiroptera) with diverse roosting and dietary ecologies, along with one vespertilionid species (Myotis lavali). OPN1LW genes appear intact for all species, and predicted spectral tuning of long‐wavelength opsins varied among lineages. OPN1SW genes appear intact and under purifying selection for Myotis lavali and most phyllostomid bats, with two exceptions: (a) We found evidence of ancient OPN1SW pseudogenization in the vampire bat lineage, and loss‐of‐function mutations in all three species of extant vampire bats; (b) we additionally found a recent, independently derived OPN1SW pseudogene in Lonchophylla mordax, a cave‐roosting species. These mutations in leaf‐nosed bats are independent of the OPN1SW pseudogenization events previously reported in Yinpterochiropterans. Therefore, the evolution of monochromacy (complete colour blindness) has occurred in both suborders of bats and under various evolutionary drivers; we find independent support for the hypothesis that obligate cave roosting drives colour vision loss. We additionally suggest that haematophagous dietary specialization and corresponding selection on nonvisual senses led to loss of colour vision through evolutionary sensory trade‐off. Our results underscore the evolutionary plasticity of opsins among nocturnal mammals.  相似文献   

8.
The ‘social microbiome’ can fundamentally shape the costs and benefits of group-living, but understanding social transmission of microbes in free-living animals is challenging due to confounding effects of kinship and shared environments (e.g. highly associated individuals often share the same spaces, food and water). Here, we report evidence for convergence towards a social microbiome among introduced common vampire bats, Desmodus rotundus, a highly social species in which adults feed only on blood, and engage in both mouth-to-body allogrooming and mouth-to-mouth regurgitated food sharing. Shotgun sequencing of samples from six zoos in the USA, 15 wild-caught bats from a colony in Belize and 31 bats from three colonies in Panama showed that faecal microbiomes were more similar within colonies than between colonies. To assess microbial transmission, we created an experimentally merged group of the Panama bats from the three distant sites by housing these bats together for four months. In this merged colony, we found evidence that dyadic gut microbiome similarity increased with both clustering and oral contact, leading to microbiome convergence among introduced bats. Our findings demonstrate that social interactions shape microbiome similarity even when controlling for past social history, kinship, environment and diet.  相似文献   

9.
Common vampire bats often regurgitate food to roost-mates that fail to feed. The original explanation for this costly helping behaviour invoked both direct and indirect fitness benefits. Several authors have since suggested that food sharing is maintained solely by indirect fitness because non-kin food sharing could have resulted from kin recognition errors, indiscriminate altruism within groups, or harassment. To test these alternatives, we examined predictors of food-sharing decisions under controlled conditions of mixed relatedness and equal familiarity. Over a 2 year period, we individually fasted 20 vampire bats (Desmodus rotundus) and induced food sharing on 48 days. Surprisingly, donors initiated food sharing more often than recipients, which is inconsistent with harassment. Food received was the best predictor of food given across dyads, and 8.5 times more important than relatedness. Sixty-four per cent of sharing dyads were unrelated, approaching the 67 per cent expected if nepotism was absent. Consistent with social bonding, the food-sharing network was consistent and correlated with mutual allogrooming. Together with past work, these findings support the hypothesis that food sharing in vampire bats provides mutual direct fitness benefits, and is not explained solely by kin selection or harassment.  相似文献   

10.
Bitter taste perception is mediated by a family of G protein-coupled receptors (T2Rs) in vertebrates. Common carp (Cyprinus carpio), which has experienced an additional round of whole genome duplication during the course of evolution, has a small number of T2R genes similar to zebrafish, a closely related cyprinid fish species, and their expression pattern at the cellular level or their cognate ligands have not been elucidated yet. Here, we showed through in situ hybridization experiments, that three common carp T2R (ccT2R) genes encoding ccT2R200-1, ccT2R202-1, and ccT2R202-2, were specifically expressed in the subsets of taste receptor cells in the lips and gill rakers. ccT2R200-1 was co-expressed with genes encoding downstream signal transduction molecules, such as PLC-β2 and Gαia. Heterologous expression system revealed that each ccT2R showed narrowly, intermediately, or broadly tuned ligand specificity, as in the case of zebrafish T2Rs. However, ccT2Rs showed different ligand profiles from their orthologous zebrafish T2Rs previously reported. Finally, we identified three ccT2Rs, namely ccT2R200-1, ccT2R200-2, and ccT2R203-1, to be activated by natural bitter compounds, andrographolide and/or picrotoxinin, which elicited no response to zebrafish T2Rs, in a dose-dependent manner. These results suggest that some ccT2Rs may have evolved to function in the oral cavity as taste receptors for natural bitter compounds found in the habitats in a species-specific manner.  相似文献   

11.
Spatial assortment can be both a cause and a consequence of cooperation. Proximity promotes cooperation when individuals preferentially help nearby partners, and conversely, cooperation drives proximity when individuals move towards more cooperative partners. However, these two causal directions are difficult to distinguish with observational data. Here, we experimentally test if forcing randomly selected pairs of equally familiar female common vampire bats (Desmodus rotundus) into close spatial proximity promotes the formation of enduring cooperative relationships. Over 114 days, we sampled 682 h of interactions among 21 females captured from three distant sites to track daily allogrooming rates over time. We compared these rates before, during and after a one-week period, during which we caged random triads of previously unfamiliar and unrelated vampire bats in proximity. After the week of proximity when all bats could again freely associate, the allogrooming rates of pairs forced into proximity increased more than those of the 126 control pairs. This work is the first to experimentally demonstrate the causal effect of repeated interactions on cooperative investments in vampire bats. Future work should determine the relative importance of mere association versus interactions (e.g. reciprocal allogrooming) in shaping social preferences.  相似文献   

12.
Adult vampire bats (Desmodus rotundus) were vaccinated by intramuscular, scarification, oral, or aerosol routes (n = 8 in each group) using a vaccinia-rabies glycoprotein recombinant virus. Sera were obtained before and 30 days after vaccination. All animals were then challenged intramuscularly with a lethal dose of rabies virus. Neutralizing antirabies antibodies were measured by rapid fluorescent focus inhibition test (RFFIT). Seroconversion was observed with each of the routes employed, but some aerosol and orally vaccinated animals failed to seroconvert. The highest antibody titers were observed in animals vaccinated by intramuscular and scarification routes. All animals vaccinated by intramuscular, scarification, and oral routes survived the viral challenge, but one of eight vampire bats receiving aerosol vaccination succumbed to the challenge. Of 31 surviving vaccinated and challenged animals, nine lacked detectable antirabies antibodies by RFFIT (five orally and four aerosol immunized animals). In contrast, nine of 10 non-vaccinated control bats succumbed to viral challenge. The surviving control bat had antiviral antibodies 90 days after viral challenge. These results suggest that the recombinant vaccine is an adequate and safe immunogen for bats by all routes tested.  相似文献   

13.
The Brazilian chiropteran fauna consists of 167 species; of which, three are hematophagous: the common vampire bat (Desmodus rotundus), the white-winged vampire bat (Diaemus youngi), and the hairy-legged vampire bat (Diphylla ecaudata). The aim of this study was to describe the isolation of Rabies virus from common and hairy-legged vampire bats and to report the first comparative antigenic and genetic studies of isolates from these bats. Antigenic and genetic typing of both isolates identified them as antigenic variant 3 (AgV3), the variant frequently isolated from common vampire bats. Phylogenetic analysis showed 99.3% identity between the isolates. This is the first time since 1934 that Rabies virus has been isolated from hairy-legged vampire bats in Brazil. Our analysis provides evidence that the existence of rabies-positive isolates from hairy-legged vampire bats may be the result of an interspecific rabies transmission event from common vampire bats and suggests that roost cohabitation may occur.  相似文献   

14.
The ability to taste bitterness evolved to safeguard most animals, including humans, against potentially toxic substances, thereby leading to food rejection. Nonetheless, bitter perception is subject to individual variations due to the presence of genetic functional polymorphisms in bitter taste receptor (TAS2R) genes, such as the long-known association between genetic polymorphisms in TAS2R38 and bitter taste perception of phenylthiocarbamide. Yet, due to overlaps in specificities across receptors, such associations with a single TAS2R locus are uncommon. Therefore, to investigate more complex associations, we examined taste responses to six structurally diverse compounds (absinthin, amarogentin, cascarillin, grosheimin, quassin, and quinine) in a sample of the Caucasian population. By sequencing all bitter receptor loci, inferring long-range haplotypes, mapping their effects on phenotype variation, and characterizing functionally causal allelic variants, we deciphered at the molecular level how a subjects’ genotype for the whole-family of TAS2R genes shapes variation in bitter taste perception. Within each haplotype block implicated in phenotypic variation, we provided evidence for at least one locus harboring functional polymorphic alleles, e.g. one locus for sensitivity to amarogentin, one of the most bitter natural compounds known, and two loci for sensitivity to grosheimin, one of the bitter compounds of artichoke. Our analyses revealed also, besides simple associations, complex associations of bitterness sensitivity across TAS2R loci. Indeed, even if several putative loci harbored both high- and low-sensitivity alleles, phenotypic variation depended on linkage between these alleles. When sensitive alleles for bitter compounds were maintained in the same linkage phase, genetically driven perceptual differences were obvious, e.g. for grosheimin. On the contrary, when sensitive alleles were in opposite phase, only weak genotype-phenotype associations were seen, e.g. for absinthin, the bitter principle of the beverage absinth. These findings illustrate the extent to which genetic influences on taste are complex, yet arise from both receptor activation patterns and linkage structure among receptor genes.  相似文献   

15.
In this paper five conditions are specified which must be met before reciprocal altruism, rather than kin selection, should be invoked. Four purported mammalian examples— social grooming in coati, cluster position in roosting pallid bats, information exchange among greater spear-nosed bats, and blood regurgitation among vampire bats—are examined to determine if reciprocal altruism is necessary to plausibly explain each situation. Results from a computer simulation which apportions the relative selective advantage of vampire bat food sharing to kin selection and reciprocal altruism are then presented. The results demonstrate that the increase in individual survivorship due to reciprocal food sharing events in this species provides a greater increase in inclusive fitness than can be attributed to aiding relatives. This analysis suggests that reciprocal altruism can be selectively more important than kin selection when altruistic behaviors in a relatively large social group occur frequently and provide a major fitness benefit to the recipient even when that recipient is related to the donor.  相似文献   

16.
Rabies in bats is considered enzootic throughout the New World, but few comparative data are available for most countries in the region. As part of a larger pathogen detection program, enhanced bat rabies surveillance was conducted in Guatemala, between 2009 and 2011. A total of 672 bats of 31 species were sampled and tested for rabies. The prevalence of rabies virus (RABV) detection among all collected bats was low (0.3%). Viral antigens were detected and infectious virus was isolated from the brains of two common vampire bats (Desmodus rotundus). RABV was also isolated from oral swabs, lungs and kidneys of both bats, whereas viral RNA was detected in all of the tissues examined by hemi-nested RT-PCR except for the liver of one bat. Sequencing of the nucleoprotein gene showed that both viruses were 100% identical, whereas sequencing of the glycoprotein gene revealed one non-synonymous substitution (302T,S). The two vampire bat RABV isolates in this study were phylogenetically related to viruses associated with vampire bats in the eastern states of Mexico and El Salvador. Additionally, 7% of sera collected from 398 bats demonstrated RABV neutralizing antibody. The proportion of seropositive bats varied significantly across trophic guilds, suggestive of complex intraspecific compartmentalization of RABV perpetuation.  相似文献   

17.
Umami and sweet sensations provide animals with important dietary information for detecting and consuming nutrients, whereas bitter sensation helps animals avoid potentially toxic or harmful substances. Enormous progress has been made toward animal sweet/umami taste receptor (Tas1r) and bitter taste receptor (Tas2r). However, information about amphibians is mainly scarce. This study attempted to delineate the repertoire of Tas1r/Tas2r genes by searching for currently available genome sequences in 14 amphibian species. This study identified 16 Tas1r1, 9 Tas1r2, and 9 Tas1r3 genes to be intact and another 17 Tas1r genes to be pseudogenes or absent in the 14 amphibians. According to the functional prediction of Tas1r genes, two species have lost sweet sensation and seven species have lost both umami and sweet sensations. Anurans possessed a large number of intact Tas2rs, ranging from 39 to 178. In contrast, caecilians possessed a contractive bitter taste repertoire, ranging from 4 to 19. Phylogenetic and reconciling analysis revealed that the repertoire of amphibian Tas1rs and Tas2rs was shaped by massive gene duplications and losses. No correlation was found between feeding preferences and the evolution of Tas1rs in amphibians. However, the expansion of Tas2rs may help amphibians adapt to both aquatic and terrestrial habitats. Bitter detection may have played an important role in the evolutionary adaptation of vertebrates in the transition from water to land.  相似文献   

18.
The spillover of viruses from wildlife into agricultural animals or humans has profound socioeconomic and public health impact. Vampire bats, found throughout South America, feed directly on humans and other animals and are an important reservoir for zoonotic viruses, including rabies virus. This has resulted in considerable effort in understanding both the ecology of bat‐borne viruses and the composition and associated correlates of the structure of entire virus communities in wildlife, particularly in the context of disease control interventions. In a From the Cover article in this issue of Molecular Ecology, Bergner et al. (2019) set out to reveal virus community dynamics in vampire bats by interrogating factors that affect the structure, diversity and richness of these communities. Due to the linkage of metagenomic sequence data with community ecology, this study represents an important advance in the field of virus ecology.  相似文献   

19.
Neospora caninum is an intracellular protozoan that infects many domestic and wild animals. Domestic dogs and other canids function as definitive hosts, while other mammals serve as natural intermediate hosts. In the present study, the brain tissues of bats collected in Yunnan Province, Southern China were tested by N. caninum specific-nested PCR, targeting the Nc-5 gene and the internal transcribed spacer 1 (ITS1) region of the ribosomal DNA to determine whether bats could be infected with N. caninum. N. caninum DNA was detected in 1.8% (4/227) of bats, i.e., 1.7% (1/60) in Rousettus leschenaultia, 1.7% (1/58) in Hipposideros pomona, 2.9% (2/69) in Rhinolophus pusillus, and none (0/40) in Myotis daubentoniid. The findings of the present study are only the first indication that bats could serve as an intermediate host, and further studies are necessary to confirm whether bats are involved in the transmission of N. caninum infections.  相似文献   

20.
Cats are obligate carnivores and under most circumstances eat only animal products. Owing to the pseudogenization of one of two subunits of the sweet receptor gene, they are indifferent to sweeteners, presumably having no need to detect plant-based sugars in their diet. Following this reasoning and a recent report of a positive correlation between the proportion of dietary plants and the number of Tas2r (bitter receptor) genes in vertebrate species, we tested the hypothesis that if bitter perception exists primarily to protect animals from poisonous plant compounds, the genome of the domestic cat (Felis catus) should have lost functional bitter receptors and they should also have reduced bitter receptor function. To test functionality of cat bitter receptors, we expressed cat Tas2R receptors in cell-based assays. We found that they have at least 7 functional receptors with distinct receptive ranges, showing many similarities, along with some differences, with human bitter receptors. To provide a comparative perspective, we compared the cat repertoire of intact receptors with those of a restricted number of members of the order Carnivora, with a range of dietary habits as reported in the literature. The numbers of functional bitter receptors in the terrestrial Carnivora we examined, including omnivorous and herbivorous species, were roughly comparable to that of cats thereby providing no strong support for the hypothesis that a strict meat diet influences bitter receptor number or function. Maintenance of bitter receptor function in terrestrial obligate carnivores may be due to the presence of bitter compounds in vertebrate and invertebrate prey, to the necessary role these receptors play in non-oral perception, or to other unknown factors. We also found that the two aquatic Carnivora species examined had fewer intact bitter receptors. Further comparative studies of factors driving numbers and functions of bitter taste receptors will aid in understanding the forces shaping their repertoire.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号