首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphate activation of the mitochondrial permeability transition pore (MPTP) opening is well-documented and could involve the phosphate carrier (PiC) that we have proposed is the pore's cyclophilin-D binding component. However, others have reported that following CyP-D ablation Pi inhibits MPTP opening while cyclosporine-A (CsA) inhibits MPTP opening only when Pi is present. Here we demonstrate that Pi activates MPTP opening under all energised and de-energised conditions tested while CsA inhibits pore opening whether or not Pi is present. Using siRNA in HeLa cells we could reduce PiC expression by 65-80% but this inhibited neither mitochondrial calcium accumulation nor MPTP opening.  相似文献   

2.
Neurons experience high metabolic demand during such processes as synaptic vesicle recycling, membrane potential maintenance and Ca2+ exchange/extrusion. The energy needs of these events are met in large part by mitochondrial production of ATP through the process of oxidative phosphorylation. The job of ATP production by the mitochondria is performed by the F1FO ATP synthase, a multi-protein enzyme that contains a membrane-inserted portion, an extra-membranous enzymatic portion and an extensive regulatory complex. Although required for ATP production by mitochondria, recent findings have confirmed that the membrane-confined portion of the c-subunit of the ATP synthase also houses a large conductance uncoupling channel, the mitochondrial permeability transition pore (mPTP), the persistent opening of which produces osmotic dysregulation of the inner mitochondrial membrane, uncoupling of oxidative phosphorylation and cell death. Recent advances in understanding the molecular components of mPTP and its regulatory mechanisms have determined that decreased uncoupling occurs in states of enhanced mitochondrial efficiency; relative closure of mPTP therefore contributes to cellular functions as diverse as cardiac development and synaptic efficacy.  相似文献   

3.
Single-channel electrophysiological recordings from rat liver mitoplast membranes showed that the 1.3-nS mitochondrial megachannel was activated by Ca++ and inhibited by Mg++, Cyclosporin A, and ADP, probably acting at matrix-side sites. These agents are known to modulate the so-called mitochondrial permeability transition pore (Gunter, T. E., and Pfeiffer, D. R. (1990)Am. J. Physiol. 258, C755–C786) in the same manner. Furthermore, the megachannel is unselective, and the minimum pore size calculated from its conductance is in agreement with independent estimates of the minimum size of the permeabilization pore. The results support the tentative identification of the megachannel with the pore believed to be involved in the permeabilization process.Abbreviations used: PT: permeability transition; PTP: permeability transition pore; MMC: mitochondrial megachannel; IMAC: inner membrane anion channel. PA: permeability of ion A. CSP: Cyclosporin A.  相似文献   

4.
After a brief review of the early history of mitochondrial electrophysiology, the contribution of this approach to the study of the mitochondrial permeability transition (MPT) is recapitulated. It has for example provided evidence for a dimeric nature of the MPT pore, allowed the distinction between two levels of control of its activity, and underscored the relevance of redox events for the phenomenon. Single-channel recording provides a means to finally solve the riddle of the biochemical entity underlying it by comparing the characteristics of the pore with those of channels formed by candidate molecules or complexes. The possibility that this entity may be the protein import machinery of the inner mitochondrial membrane is emphasized.  相似文献   

5.
Yu Cheng 《FEBS letters》2010,584(10):2005-2012
Three types of potassium channels cooperate with the permeability transition pore (PTP) in the inner mitochondrial membranes of various tissues, mtK(ATP), mtBK, and mtKv1.3. While the latter two share similarities with their plasma membrane counterparts, mtK(ATP) exhibits considerable differences with the plasma membrane K(ATP)-channel. One important function seems to be suppression of release of proapototic substances from mitochondria through the PTP. Open potassium channels tend to keep the PTP closed thus acting as antiapoptotic. Nevertheless, in their mode of action there are considerable differences among them. This review introduces three K+-channels and the PTP, and discusses known facts about their interaction.  相似文献   

6.
Mitochondria isolated from engineered mice lacking Cyclophilin D (CypD), a component of the Permeability Transition Pore (PTP) complex, can still undergo a Ca2?+?-dependent but Cyclosporin A-insensitive permeabilization of the inner membrane. Higher Ca2?+? concentrations are required than for wild-type controls. The characteristics of the pore formed in this system were not known, and it has been proposed that they might differ substantially from those of the normal PTP. To test this hypothesis, we have characterized the PTP of isogenic wild-type and CypD? mouse liver mitochondria in patch clamp experiments, which allow biophysical characterization. The pores observed in the two cases, very similar to those of rat liver mitochondria, are indistinguishable according to a number of criteria. The only clear difference is in their sensitivity to Cyclosporin A. CypD is thus shown to be an auxiliary, modulatory component of the “standard” PTP, which forms and has essentially the same properties even in its absence. The observations suggest that Ca2?+?, CypD, and presumably other inducers and inhibitors act at the level of an activation or assembly process. Activation is separate and upstream of the gating observable on a short or medium-term time scale. Once the pore is activated, its molecular dynamics and biophysical properties may thus be predicted not to depend on the details of the induction process.  相似文献   

7.
Mitochondria isolated from engineered mice lacking Cyclophilin D (CypD), a component of the Permeability Transition Pore (PTP) complex, can still undergo a Ca2+ -dependent but Cyclosporin A-insensitive permeabilization of the inner membrane. Higher Ca2+ concentrations are required than for wild-type controls. The characteristics of the pore formed in this system were not known, and it has been proposed that they might differ substantially from those of the normal PTP. To test this hypothesis, we have characterized the PTP of isogenic wild-type and CypD- mouse liver mitochondria in patch clamp experiments, which allow biophysical characterization. The pores observed in the two cases, very similar to those of rat liver mitochondria, are indistinguishable according to a number of criteria. The only clear difference is in their sensitivity to Cyclosporin A. CypD is thus shown to be an auxiliary, modulatory component of the "standard" PTP, which forms and has essentially the same properties even in its absence. The observations suggest that Ca2+, CypD, and presumably other inducers and inhibitors act at the level of an activation or assembly process. Activation is separate and upstream of the gating observable on a short or medium-term time scale. Once the pore is activated, its molecular dynamics and biophysical properties may thus be predicted not to depend on the details of the induction process.  相似文献   

8.
《Autophagy》2013,9(7):855-862
Bnip3 is a pro-apoptotic BH3-only protein which is associated with mitochondrial dysfunction and cell death. Bnip3 is also a potent inducer of autophagy in many cells. In this study, we have investigated the mechanism by which Bnip3 induces autophagy in adult cardiac myocytes. Overexpression of Bnip3 induced extensive autophagy in adult cardiac myocytes. Fluorescent microscopy studies and ultrastructural analysis revealed selective degradation of mitochondria by autophagy in myocytes overexpressing Bnip3. Oxidative stress and increased levels of intracellular Ca2+ have been reported by others to induce autophagy, but Bnip3-induced autophagy was not abolished by antioxidant treatment or the Ca2+ chelator BAPTA-AM. We also investigated the role of the mitochondrial permeability transition pore (mPTP) in Bnip3-induced autophagy. Although the mPTP has previously been implicated in the induction of autophagy and selective removal of damaged mitochondria by autophagosomes, mitochondria sequestered by autophagosomes in Bnip3-treated cardiac myocytes had not undergone permeability transition, and treatment with the mPTP inhibitor cyclosporine A did not inhibit mitochondrial autophagy in cardiac myocytes. Moreover, cyclophilin D (cypD) is an essential component of the mPTP and Bnip3 induced autophagy to the same extent in embryonic fibroblasts isolated from wild-type and cypD-deficient mice. These results support a model where Bnip3 induces selective removal of the mitochondria in cardiac myocytes, and that Bnip3 triggers induction of autophagy independent of Ca2+, ROS generation, and mPTP opening.  相似文献   

9.
Bnip3 is a pro-apoptotic BH3-only protein which is associated with mitochondrial dysfunction and cell death. Bnip3 is also a potent inducer of autophagy in many cells. In this study, we have investigated the mechanism by which Bnip3 induces autophagy in adult cardiac myocytes. Overexpression of Bnip3 induced extensive autophagy in adult cardiac myocytes. Fluorescent microscopy studies and ultrastructural analysis revealed selective degradation of mitochondria by autophagy in myocytes overexpressing Bnip3. Oxidative stress and increased levels of intracellular Ca2+ have been reported by others to induce autophagy, but Bnip3-induced autophagy was not abolished by antioxidant treatment or the Ca2+ chelator BAPTA-AM. We also investigated the role of the mitochondrial permeability transition pore (mPTP) in Bnip3-induced autophagy. Although the mPTP has previously been implicated in the induction of autophagy and selective removal of damaged mitochondria by autophagosomes, mitochondria sequestered by autophagosomes in Bnip3-treated cardiac myocytes had not undergone permeability transition and treatment with the mPTP inhibitor cyclosporine A did not inhibit mitochondrial autophagy in cardiac myocytes. Moreover, cyclophilin D (cypD) is an essential component of the mPTP and Bnip3 induced autophagy to the same extent in embryonic fibroblasts isolated from wild-type and cypD-deficient mice. These results support a model where Bnip3 induces selective removal of the mitochondria in cardiac myocytes and that Bnip3 triggers induction of autophagy independent of Ca2+, ROS generation and mPTP opening.Key words: Bnip3, autophagy, cardiac myocytes, mitochondria, permeability transition pore, cyclophilin D  相似文献   

10.
Since emotional stress elicits brain activation, mitochondria should be a key component of stressed brain response. However, few studies have focused on mitochondria functioning in these conditions. In this work, we aimed to determine the effects of an acute restraint stress on rat brain mitochondrial functions, with a focus on permeability transition pore (PTP) functioning. Rats were divided into two groups, submitted or not to an acute 30‐min restraint stress (Stress, S‐group, vs. Control, C‐group). Brain was removed immediately after stress. Mitochondrial respiration and enzymatic activities (complex I, complex II, hexokinase) were measured. Changes in PTP opening were assessed by the Ca2+ retention capacity. Cell signaling pathways relevant to the coupling between mitochondria and cell function (adenosine monophosphate‐activated protein kinase, phosphatidylinositol 3‐kinase, glycogen synthase kinase 3 beta, MAPK, and cGMP/NO) were measured. The effect of glucocorticoids was also assessed in vitro. Stress delayed (43%) the opening of PTP and resulted in a mild inhibition of complex I respiratory chain. This inhibition was associated with significant stress‐induced changes in adenosine monophosphate‐activated protein kinase signaling pathway without changes in brain cGMP level. In contrast, glucocorticoids did not modify PTP opening. These data suggest a rapid adaptive mechanism of brain mitochondria in stressed conditions, with a special focus on PTP regulation.

  相似文献   


11.
Growing evidence suggest that, in the heart, sphingosine participates to contractile dysfunction by altering calcium transients and mitochondria function. However, mechanisms underlying sphingosine-induced cardiac mitochondria dysfunction are poorly understood. Here, we studied the effects of sphingosine on isolated cardiac mitochondria of either wild-type or Bcl-2 overexpressing transgenic mice. Sphingosine induced reductions in ADP-coupled respiration, membrane potential, mitochondrial cytochrome c content and ATP production, which were partially prevented by cyclosporine A and mitochondrial Bcl-2 overexpression. These data suggest that sphingosine promotes mitochondrial permeability transition pore opening, which may result in uncoupled respiration and participate in cardiac contractile dysfunction.  相似文献   

12.
Mitochondria play a central role in heart energy metabolism and Ca2+ homeostasis and are involved in the pathogenesis of many forms of heart disease. The body of knowledge on mitochondrial pathophysiology in living cells and organs is increasing, and so is the interest in mitochondria as potential targets for cardioprotection. This critical review will focus on the permeability transition pore (PTP) and its regulation by cyclophilin (CyP) D as effectors of endogenous protective mechanisms and as potential drug targets. The complexity of the regulatory interactions underlying control of mitochondrial function in vivo is beginning to emerge, and although apparently contradictory findings still exist we believe that the network of regulatory protein interactions involving the PTP and CyPs in physiology and pathology will increase our repertoire for therapeutic interventions in heart disease. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection.  相似文献   

13.
Inhibition of Na(+)/H(+) exchanger 1 (NHE1) reduces cardiac ischemia-reperfusion (I/R) injury and also cardiac hypertrophy and failure. Although the mechanisms underlying these NHE1-mediated effects suggest delay of mitochondrial permeability transition pore (MPTP) opening, and reduction of mitochondrial-derived superoxide production, the possibility of NHE1 blockade targeting mitochondria has been incompletely explored. A short-hairpin RNA sequence mediating specific knock down of NHE1 expression was incorporated into a lentiviral vector (shRNA-NHE1) and transduced in the rat myocardium. NHE1 expression of mitochondrial lysates revealed that shRNA-NHE1 transductions reduced mitochondrial NHE1 (mNHE1) by ~60%, supporting the expression of NHE1 in mitochondria membranes. Electron microscopy studies corroborate the presence of NHE1 in heart mitochondria. Immunostaining of rat cardiomyocytes also suggests colocalization of NHE1 with the mitochondrial marker cytochrome c oxidase. To examine the functional role of mNHE1, mitochondrial suspensions were exposed to increasing concentrations of CaCl(2) to induce MPTP opening and consequently mitochondrial swelling. shRNA-NHE1 transduction reduced CaCl(2)-induced mitochondrial swelling by 64 ± 4%. Whereas the NHE1 inhibitor HOE-642 (10 μM) decreased mitochondrial Ca(2+)-induced swelling in rats transduced with nonsilencing RNAi (37 ± 6%), no additional HOE-642 effects were detected in mitochondria from rats transduced with shRNA-NHE1. We have characterized the expression and function of NHE1 in rat heart mitochondria. Because mitochondria from rats injected with shRNA-NHE1 present a high threshold for MPTP formation, the beneficial effects of NHE1 inhibition in I/R resulting from mitochondrial targeting should be considered.  相似文献   

14.
Andrew P. Halestrap  Philippe Pasdois 《BBA》2009,1787(11):1402-1415
Like Dr. Jeckyll and Mr. Hyde, mitochondria possess two distinct persona. Under normal physiological conditions they synthesise ATP to meet the energy needs of the beating heart. Here calcium acts as a signal to balance the rate of ATP production with ATP demand. However, when the heart is overloaded with calcium, especially when this is accompanied by oxidative stress, mitochondria embrace their darker side, and induce necrotic cell death of the myocytes. This happens acutely in reperfusion injury and chronically in congestive heart failure. Here calcium overload, adenine nucleotide depletion and oxidative stress combine forces to induce the opening of a non-specific pore in the mitochondrial membrane, known as the mitochondrial permeability transition pore (mPTP). The molecular nature of the mPTP remains controversial but current evidence implicates a matrix protein, cyclophilin-D (CyP-D) and two inner membrane proteins, the adenine nucleotide translocase (ANT) and the phosphate carrier (PiC). Inhibition of mPTP opening can be achieved with inhibitors of each component, but targeting CyP-D with cyclosporin A (CsA) and its non-immunosuppressive analogues is the best described. In animal models, inhibition of mPTP opening by either CsA or genetic ablation of CyP-D provides strong protection from both reperfusion injury and congestive heart failure. This confirms the mPTP as a promising drug target in human cardiovascular disease. Indeed, the first clinical trials have shown CsA treatment improves recovery after treatment of a coronary thrombosis with angioplasty.  相似文献   

15.
Dahlem YA  Wolf G  Siemen D  Horn TF 《Cell calcium》2006,39(5):387-400
The permeability transition pore (PTP) and the ATP-dependent potassium (mtK-ATP) channel of mitochondria are known to play key roles in mitochondrially mediated apoptosis. We investigated how modulation of the permeability transition pore (PTP) and the ATP-dependent potassium (mtK-ATP) channel, either as single elements or in combination, affects the proapoptotic intracellular calcium ([Ca(2+)](i)) transients and the mitochondrial membrane potential (psi(m)). For this purpose a model was established exploring the [Ca(2+)](i) transients in N2A cells using continuous application of ATP that causes a biphasic [Ca(2+)](i) response. This response was sensitive to endoplasmatic reticulum (ER) Ca(2+) depletion and a smooth ER Ca(2+)-ATPase (SERCA) antagonist. PTP inhibition by cyclosporine A (CsA) or its non-immunosuppressive derivative NIM811 caused an amplification of the secondary [Ca(2+)](i) peak and induced a hyperpolarization of psi(m). Both the putative mtK-ATP channel inhibitor 5-hydroxydecanoate (5-HD) and the opener diazoxide ameliorated the ATP-induced secondary [Ca(2+)](i) peak. The effect of diazoxide was accompanied by a depolarization of psi(m) whereas 5-HD had no effect on psi(m). When diazoxide and CsA or NIM811 were applied together the secondary [Ca(2+)](i) rise did not return to baseline and a not significant hyperpolarization of psi(m) was observed. So, simultaneous inhibition of PTP and activation of the mtK-ATP channel prevents the increased slope of the secondary [Ca(2+)](i) peak induced by CsA (or NIM811) and also the depolarization after diazoxide application. Hence, we propose that modulation of one of these channels leads to functional changes of the other channel by means of Delta[Ca(2+)](i) and Deltapsi(m).  相似文献   

16.
The mitochondrial permeability transition pore (MPTP) plays a key role in cell death, yet its molecular identity remains uncertain. Although knock-out studies have confirmed critical roles for both cyclophilin-D (CyP-D) and the adenine nucleotide translocase (ANT), given a strong enough stimulus MPTP opening can occur in the absence of either. Here we provide evidence that the mitochondrial phosphate carrier (PiC) may also be a critical component of the MPTP. Phenylarsine oxide (PAO) was found to activate MPTP opening in the presence of carboxyatractyloside (CAT) that prevents ANT binding to immobilized PAO. Only four proteins from solubilized CAT-treated beef heart inner mitochondrial membranes bound to immobilized PAO, one of which was the PiC. GST-CyP-D pull-down and co-immunoprecipitation studies revealed CsA-sensitive binding of PiC to CyP-D; this increased following diamide treatment. Co-immunoprecipitation of the ANT with the PiC was also observed but was insensitive to CsA treatment. N-ethylmaleimide and ubiquinone analogues (UQ(0) and Ro 68-3400) inhibited phosphate transport into rat liver mitochondria with the same concentration dependence as their inhibition of MPTP opening. UQ(0) and Ro 68-3400 also induced the "m" conformation of the ANT, as does NEM, and reduced the binding of both the PiC and ANT to the PAO column. We propose a model for the MPTP in which a calcium-triggered conformational change of the PiC, facilitated by CyP-D, induces pore opening. An interaction of the PiC with the ANT may enable agents that bind to either transporter to modulate pore opening.  相似文献   

17.
Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) is a natural compound with antiproliferative properties. Recent studies suggest that these properties might be due to the ability of curcumin to induce apoptosis in tumor cells by increasing the permeability of the mitochondrial membrane. In the present study, we confirm these observations and provide a molecular mechanism for the action of curcumin in rat liver mitochondria. Curcumin induced mitochondrial swelling, the collapse of Deltapsi, and the release of cytochrome C, events associated with the opening of the permeability transition pore (PTP). Experiments were performed with chemically substituted curcumin derivatives. Some derivatives were obtained by modification of groups on the terminal aromatic rings, and others were obtained by substitution of the diketone function with the cyclohexanone function. They demonstrated that phenol and methoxy groups were essential to promote PTP opening. Curcumin and curcumin derivatives that open the PTP were able to oxidize thiol groups. In addition, PTP opening was abolished in medium devoid of O2 and decreased in the presence of catalase, ferrozine, o-phenanthroline, mannitol, or N-ethylmaleimide. These data suggest that the mechanism by which curcumin promotes PTP opening involves the reduction of Fe3+ to Fe2+, inducing hydroxyl radical (HO*) production and oxidation of thiol groups in the membrane, leading to pore opening.  相似文献   

18.
19.
Vaseva AV  Marchenko ND  Ji K  Tsirka SE  Holzmann S  Moll UM 《Cell》2012,149(7):1536-1548
Ischemia-associated oxidative damage leading to necrosis is a major cause of catastrophic tissue loss, and elucidating its signaling mechanism is therefore of paramount importance. p53 is a central stress sensor responding to multiple insults, including oxidative stress to orchestrate apoptotic and autophagic cell death. Whether p53 can also activate oxidative stress-induced necrosis is, however, unknown. Here, we uncover a role for p53 in activating necrosis. In response to oxidative stress, p53 accumulates in the mitochondrial matrix and triggers mitochondrial permeability transition pore (PTP) opening and necrosis by physical interaction with the PTP regulator cyclophilin D (CypD). Intriguingly, a robust p53-CypD complex forms during brain ischemia/reperfusion injury. In contrast, reduction of p53 levels or cyclosporine A pretreatment of mice prevents this complex and is associated with effective stroke protection. Our study identifies the mitochondrial p53-CypD axis as an important contributor to oxidative stress-induced necrosis and implicates this axis in stroke pathology.  相似文献   

20.
Although mature myocytes rely on mitochondria as the primary source of energy, the role of mitochondria in the developing heart is not well known. Here, we find that closure of the mitochondrial permeability transition pore (mPTP) drives maturation of mitochondrial structure and function and myocyte differentiation. Cardiomyocytes at embryonic day (E) 9.5, when compared to E13.5, displayed fragmented mitochondria with few cristae, a less-polarized mitochondrial membrane potential, higher reactive oxygen species (ROS) levels, and an open mPTP. Pharmacologic and genetic closing of the mPTP yielded maturation of mitochondrial structure and function, lowered ROS, and increased myocyte differentiation (measured by counting Z bands). Furthermore, myocyte differentiation was inhibited and enhanced with oxidant and antioxidant treatment, respectively, suggesting that redox-signaling pathways lie downstream of mitochondria to regulate cardiac myocyte differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号