首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Low vitamin D levels in human immunodeficiency virus type-1 (HIV) infected persons are associated with more rapid disease progression and increased risk for Mycobacterium tuberculosis infection. We have previously shown that 1α,25-dihydroxycholecalciferol (1,25D3), the active form of vitamin D, inhibits HIV replication in human macrophages through the induction of autophagy. In this study, we report that physiological concentrations of 1,25D3 induce the production of the human cathelicidin microbial peptide (CAMP) and autophagic flux in HIV and M. tuberculosis co-infected human macrophages which inhibits mycobacterial growth and the replication of HIV. Using RNA interference for Beclin-1 and the autophagy-related 5 homologue, combined with the chemical inhibitors of autophagic flux, bafilomycin A1, an inhibitor of autophagosome-lysosome fusion and subsequent acidification, and SID 26681509 an inhibitor of the lysosome hydrolase cathepsin L, we show that the 1,25D3-mediated inhibition of HIV replication and mycobacterial growth during single infection or dual infection is dependent not only upon the induction of autophagy, but also through phagosomal maturation. Moreover, through the use of RNA interference for CAMP, we demonstrate that cathelicidin is essential for the 1,25D3 induced autophagic flux and inhibition of HIV replication and mycobacterial growth. The present findings provide a biological explanation for the benefits and importance of vitamin D sufficiency in HIV and M. tuberculosis-infected persons, and provide new insights into novel approaches to prevent and treat HIV infection and related opportunistic infections.  相似文献   

4.
The numerical relationship between tumour associated macrophages (TAM) and apoptotic cells in 12 human colorectal tumours was evaluated. TAM were labelled immunohistochemically and apoptotic cells were visualized by counterstaining with haematoxylin and eosin (H&E). The stereological techniques. Cavalieri's estimator of volume and the Disector were used to estimate both tumour volume and numerical density of both cell types. The occurrence of TAM per unit volume of tissue increased with increasing tumour volume to a maximum in a tumour of 110·5 cm3, after which numbers declined. Levels of apoptosis also increased with tumour volume though more erratically than levels of TAM and declined for tumour volumes greater than 80 cm3. This is the first report of an attempt to assess the relationship between apoptotic cells and TAM in human tumours.  相似文献   

5.

Background

Intracellular pathogens have developed elaborate strategies for silent infection of preferred host cells. Chlamydia pneumoniae is a common pathogen in acute infections of the respiratory tract (e.g. pneumonia) and associated with chronic lung sequelae in adults and children. Within the lung, alveolar macrophages and polymorph nuclear neutrophils (PMN) are the first line of defense against bacteria, but also preferred host phagocytes of chlamydiae.

Methodology/Principal Findings

We could show that C. pneumoniae easily infect and hide inside neutrophil granulocytes until these cells become apoptotic and are subsequently taken up by macrophages. C. pneumoniae infection of macrophages via apoptotic PMN results in enhanced replicative activity of chlamydiae when compared to direct infection of macrophages, which results in persistence of the pathogen. Inhibition of the apoptotic recognition of C. pneumoniae infected PMN using PS- masking Annexin A5 significantly lowered the transmission of chlamydial infection to macrophages. Transfer of apoptotic C. pneumoniae infected PMN to macrophages resulted in an increased TGF-ß production, whereas direct infection of macrophages with chlamydiae was characterized by an enhanced TNF-α response.

Conclusions/Significance

Taken together, our data suggest that C. pneumoniae uses neutrophil granulocytes to be silently taken up by long-lived macrophages, which allows for efficient propagation and immune protection within the human host.  相似文献   

6.
7.

Objectives

The role of microRNAs in association with Mycobacterium tuberculosis (MTB) infection and the immunology regulated by microRNAs upon MTB infection have not been fully unravelled. We examined the microRNA profiles of THP-1 macrophages upon the MTB infection of Beijing/W and non-Beijing/W clinical strains. We also studied the microRNA profiles of the host macrophages by microarray in a small cohort with active MTB disease, latent infection (LTBI), and from healthy controls.

Results

The results revealed that 14 microRNAs differentiated infections of Beijing/W from non-Beijing/W strains (P<0.05). A unique signature of 11 microRNAs in human macrophages was identified to differentiate active MTB disease from LTBI and healthy controls. Pathway analyses of these differentially expressed miRNAs suggest that the immune-regulatory interactions involving TGF-β signalling pathway take part in the dysregulation of critical TB processes in the macrophages, resulting in active expression of both cell communication and signalling transduction systems.

Conclusion

We showed for the first time that the Beijing/W TB strains repressed a number of miRNAs expressions which may reflect their virulence characteristics in altering the host response. The unique signatures of 11 microRNAs may deserve further evaluation as candidates for biomarkers in the diagnosis of MTB and Beijing/W infections.  相似文献   

8.
9.
Bacterial flagellin triggers inflammatory responses. Phosphoinositide 3-kinase (PI3K) and mammalian target of rapamycin (mTOR) regulate the production of pro- and anti-inflammatory cytokines that are induced by extrinsic antigens, but the function of mTORC1 in flagellin-induced inflammatory response is unknown. The purpose of this study was to examine the role and the mechanism of PI3K/Akt/mTOR pathway in flagellin-induced cytokine expression in mouse macrophages. We observed that flagellin upregulated TNF-α time- and dose-dependently. Flagellin stimulated rapid (<15 min) PI3K/Akt/mTOR phosphorylation that was mediated by TLR5. Inhibition of PI3K with LY294002 and wortmannin, and of mTORC1 with rapamycin decreased flagellin-induced TNF-α and IL-6 expression and cell proliferation. The activation of NF-κB p65 and STAT3 was regulated by mTORC1 via degradation of IκBα and phosphorylation of STAT3 in response to flagellin, respectively. Thus, the PI3K/Akt/mTORC1 pathway regulates the innate immune response to bacterial flagellin. Rapamycin is potential therapy that can regulate host defense against pathogenic infections.  相似文献   

10.

Background

An important mechanism of Mycobacterium tuberculosis pathogenesis is the ability to control cell death pathways in infected macrophages: apoptotic cell death is bactericidal, whereas necrotic cell death may facilitate bacterial dissemination and transmission.

Methods

We examine M.tuberculosis control of spontaneous and chemically induced macrophage cell death using automated confocal fluorescence microscopy, image analysis, flow cytometry, plate-reader based vitality assays, and M.tuberculosis strains including H37Rv, and isogenic virulent and avirulent strains of the Beijing lineage isolate GC1237.

Results

We show that bacterial virulence influences the dynamics of caspase activation and the total level of cytotoxicity. We show that the powerful ability of M.tuberculosis to inhibit exogenously stimulated apoptosis is abrogated by loss of virulence. However, loss of virulence did not influence the balance of macrophage apoptosis and necrosis – both virulent and avirulent isogenic strains of GC1237 induced predominantly necrotic cell death compared to H37Rv which induced a higher relative level of apoptosis.

Conclusions

This reveals that macrophage necrosis and apoptosis are independently regulated during M. tuberculosis infection of macrophages. Virulence affects the level of host cell death and ability to inhibit apoptosis but other strain-specific characteristics influence the ultimate mode of host cell death and alter the balance of apoptosis and necrosis.  相似文献   

11.
12.
13.
The standard treatment of tuberculosis (TB) takes six to nine months to complete and this lengthy therapy contributes to the emergence of drug-resistant TB. TB is caused by Mycobacterium tuberculosis (Mtb) and the ability of this bacterium to switch to a dormant phenotype has been suggested to be responsible for the slow clearance during treatment. A recent study showed that the replication rate of a non-virulent mycobacterium, Mycobacterium smegmatis, did not correlate with antibiotic susceptibility. However, the question whether this observation also holds true for Mtb remains unanswered. Here, in order to mimic physiological conditions of TB infection, we established a protocol based on long-term infection of primary human macrophages, featuring Mtb replicating at different rates inside the cells. During conditions that restricted Mtb replication, the bacterial phenotype was associated with reduced acid-fastness. However, these phenotypically altered bacteria were as sensitive to isoniazid, pyrazinamide and ethambutol as intracellularly replicating Mtb. In support of the recent findings with M. smegmatis, we conclude that replication rates of Mtb do not correlate with antibiotic tolerance.  相似文献   

14.
巨噬细胞分泌的纤维细胞生长因子-7(fibroblast growth factor-7,FGF-7)具有一定的细胞修复作用及抗炎症作用。通过PCR技术、Western-blot及ELISA实验研究分析FGF-7在巨噬细胞感染结核分枝杆菌(Mycobacterium tuberculosis,M.avium)后的分子免疫机制。研究发现fgf-7基因在结核病患者外周血单个核细胞中表达增强,并且U973巨噬细胞在感染M.avium后,其fgf-7基因与FGF-7蛋白亦表达增强,同时U973巨噬细胞上清中的细胞因子TNF-α与IFN-γ分泌量显著增加。实验结果表明巨噬细胞受M.avium感染后,M.avium可增强巨噬细胞fgf-7基因及其蛋白质的表达,并促进细胞因子TNF-α与IFN-γ的分泌;提示FGF-7可能与TNF-α、IFN-γ等共同引起炎症反应从而参与对M.avium的抑制或杀伤作用,并修复损伤的巨噬细胞。  相似文献   

15.
结核病是世界范围内的重要传染性疾病之一,严重威胁人类健康。免疫细胞在抗结核免疫过程中起重要作用,各细胞亚群通过不同作用机制影响结核病的病程及转归。中性粒细胞为机体应对结核分枝杆菌感染的第一道防线,在宿主免疫应答过程中是一把双刃剑。一方面,机体感染结核分枝杆菌后,中性粒细胞于第一时间向感染部位聚集,通过多种方式对抗感染:中性粒细胞吞噬结核分枝杆菌后,通过自身凋亡而杀菌;参与形成肉芽肿,形成胞外陷阱来限制结核分枝杆菌的生长和传播;产生功能性细胞因子,调控宿主的抗结核免疫反应。另一方面,中性粒细胞还参与机体的病理损伤过程,甚至促进体内结核分枝杆菌的生长。本文综述了中性粒细胞在抗结核免疫中作用的最新研究进展。  相似文献   

16.
结核分枝杆菌(Mycobacterium tuberculosis,MTB)是一种典型的胞内致病菌,巨噬细胞是MTB在体内的主要宿主细胞。巨噬细胞具有强大的吞噬功能,在机体固有免疫和适应性免疫中均发挥着重要作用,可有效保护宿主免受结核分枝杆菌的感染。MTB在与宿主巨噬细胞的长期相互作用过程中,逐渐形成多种逃避杀灭的有效策略,得以在宿主体内存活并增殖。该文从巨噬细胞抗MTB感染及MTB逃避巨噬细胞杀灭两个方面综述国内外的研究进展。  相似文献   

17.

Background

The search for molecules against Mycobacterium tuberculosis is urgent. The mechanisms facilitating the intra-macrophage survival of Mycobacterium tuberculosis are as yet not entirely understood. However, there is evidence showing the involvement of host cell cytoskeleton in every step of establishment and persistence of mycobacterial infection.

Methodology/Principal Findings

Here we show that expression of ARPC4, a subunit of the Actin related protein 2/3 (Arp2/3) protein complex, severely affects the pathogen’s growth. TEM studies display shedding of the mycobacterial outer-coat. Furthermore, in infected macrophages, mycobacteria expressing ARPC4 were cleared off at a much faster rate, and were unable to mount a pro-inflammatory cytokine response. The translocation of ARPC4-expressing mycobacteria to the lysosome of the infected macrophage was also impaired. Additionally, the ARPC4 subunit was shown to interact with Rv1626, an essential secretory mycobacterial protein. Real-time PCR analysis showed that upon expression of ARPC4 in mycobacteria, Rv1626 expression is downregulated as much as six-fold. Rv1626 was found to also interact with mammalian cytoskeleton protein, Arp2/3, and enhance the rate of actin polymerization.

Conclusions/Significance

With crystal structures for Rv1626 and ARPC4 subunit already known, our finding lays out the effect of a novel molecule on mycobacteria, and represents a viable starting point for developing potent peptidomimetics.  相似文献   

18.
19.
20.

Background

Strains of Mycobacterium tuberculosis vary in virulence. Strains that have caused outbreaks in the United States and United Kingdom have been shown to subvert the innate immune response as a potential immune evasion mechanism. There is, however, little information available as to whether these patterns of immune subversion are features of individual strains or characteristic of broad clonal lineages of M. tuberculosis.

Methods

Strains from two major modern lineages (lineage 2 [East-Asian] and lineage 4 [Euro-American]) circulating in the Western Cape in South Africa as well as a comparator modern lineage (lineage 3 [CAS/Delhi]) were identified. We assessed two virulence associated characteristics: mycobacterial growth (in liquid broth and monocyte derived macrophages) and early pro-inflammatory cytokine induction.

Results

In liquid culture, Lineage 4 strains grew more rapidly and reached higher plateau levels than other strains (lineage 4 vs. lineage 2 p = 0.0024; lineage 4 vs. lineage 3 p = 0.0005). Lineage 3 strains were characterized by low and early plateau levels, while lineage 2 strains showed an intermediate growth phenotype. In monocyte-derived macrophages, lineage 2 strains grew faster than lineage 3 strains (p<0.01) with lineage 4 strains having an intermediate phenotype. Lineage 2 strains induced the lowest levels of pro-inflammatory TNF and IL-12p40 as compared to other lineages (lineage 2: median TNF 362 pg/ml, IL-12p40 91 pg/ml; lineage 3: median TNF 1818 pg/ml, IL-12p40 123 pg/ml; lineage 4: median TNF 1207 pg/ml, IL-12p40 205 pg/ml;). In contrast, lineage 4 strains induced high levels of IL-12p40 and intermediate level of TNF. Lineage 3 strains induced high levels of TNF and intermediate levels of IL-12p40.

Conclusions

Strains of M. tuberculosis from the three major modern strain lineages possess distinct patterns of growth and cytokine induction. Rapid growth and immune subversion may be key characteristics to the success of these strains in different human populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号