首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mucosal surfaces serve as protective barriers against pathogenic organisms. Innate immune responses are activated upon sensing pathogen leading to the infiltration of tissues with migrating inflammatory cells, primarily neutrophils. This process has the potential to be destructive to tissues if excessive or held in an unresolved state.  Cocultured in vitro models can be utilized to study the unique molecular mechanisms involved in pathogen induced neutrophil trans-epithelial migration. This type of model provides versatility in experimental design with opportunity for controlled manipulation of the pathogen, epithelial barrier, or neutrophil. Pathogenic infection of the apical surface of polarized epithelial monolayers grown on permeable transwell filters instigates physiologically relevant basolateral to apical trans-epithelial migration of neutrophils applied to the basolateral surface. The in vitro model described herein demonstrates the multiple steps necessary for demonstrating neutrophil migration across a polarized lung epithelial monolayer that has been infected with pathogenic P. aeruginosa (PAO1). Seeding and culturing of permeable transwells with human derived lung epithelial cells is described, along with isolation of neutrophils from whole human blood and culturing of PAO1 and nonpathogenic K12 E. coli (MC1000).  The emigrational process and quantitative analysis of successfully migrated neutrophils that have been mobilized in response to pathogenic infection is shown with representative data, including positive and negative controls. This in vitro model system can be manipulated and applied to other mucosal surfaces. Inflammatory responses that involve excessive neutrophil infiltration can be destructive to host tissues and can occur in the absence of pathogenic infections. A better understanding of the molecular mechanisms that promote neutrophil trans-epithelial migration through experimental manipulation of the in vitro coculture assay system described herein has significant potential to identify novel therapeutic targets for a range of mucosal infectious as well as inflammatory diseases.  相似文献   

2.
Platelets are well known for their roles in hemostasis and thrombosis, and are increasingly recognized for their abilities to interact with white blood cells during inflammatory diseases, via secreted soluble factors as well as cell–cell contact. This interaction has been investigated in animal models and patient samples and has shown to be implicated in patient outcomes in several diseases. Platelet-leukocyte co-cultures are widely used to study platelet-leukocyte interactions ex vivo. However, there is a paucity with regard to the systematic characterization of cell activation and functional behaviors of platelets and leukocytes in these co-cultures. Hence we aimed to characterize a model of platelet-leukocyte co-culture ex vivo. Human peripheral blood mononuclear cell (PBMC) and platelets were isolated and co-cultured for 5 days at 37 °C in the presence or absence of anti-CD3/CD28 antibodies or PHA. We evaluated PF-4 secretion and p-selectin expression in platelets as markers of platelet activation. Lymphocyte activation was assessed by cell proliferation and cell population phenotyping, in addition to platelet-lymphocyte aggregation. Platelet secretion and p-selectin expression is maintained throughout the co-culture, indicating that platelets were viable and reactive over the 5 days. Similarly PBMCs were viable and maintained proliferative capacity. Finally, dynamic heterotypic conjugation between platelets and T lymphocytes was also observed throughout co-culture (with a peak at days 3 and 4) upon T lymphocyte activation. In conclusion, this in vitro model can successfully mimic the in vivo interaction between platelets and T lymphocytes, and can be used to confirm and/or support in vivo results.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12079-022-00676-0.  相似文献   

3.
Runs of homozygosity (ROHs) are recognized signature of recessive inheritance. Contributions of ROHs to the genetic architecture of coronary artery disease and regulation of gene expression in cells relevant to atherosclerosis are not known. Our combined analysis of 24,320 individuals from 11 populations of white European ethnicity showed an association between coronary artery disease and both the count and the size of ROHs. Individuals with coronary artery disease had approximately 0.63 (95% CI: 0.4–0.8) excess of ROHs when compared to coronary-artery-disease-free control subjects (p = 1.49 × 10−9). The average total length of ROHs was approximately 1,046.92 (95% CI: 634.4–1,459.5) kb greater in individuals with coronary artery disease than control subjects (p = 6.61 × 10−7). None of the identified individual ROHs was associated with coronary artery disease after correction for multiple testing. However, in aggregate burden analysis, ROHs favoring increased risk of coronary artery disease were much more common than those showing the opposite direction of association with coronary artery disease (p = 2.69 × 10−33). Individual ROHs showed significant associations with monocyte and macrophage expression of genes in their close proximity—subjects with several individual ROHs showed significant differences in the expression of 44 mRNAs in monocytes and 17 mRNAs in macrophages when compared to subjects without those ROHs. This study provides evidence for an excess of homozygosity in coronary artery disease in outbred populations and suggest the potential biological relevance of ROHs in cells of importance to the pathogenesis of atherosclerosis.  相似文献   

4.
Myeloperoxidase (MPO), an abundant heme-containing enzyme present in neutrophils, monocytes, and macrophages, is produced in high levels during inflammation, and associated with poor reproductive outcomes. MPO is known to generate hypochlorous acid (HOCl), a damaging reactive oxygen species (ROS) utilizing hydrogen peroxide (H2O2) and chloride (Cl-). Here we investigate the effect of activated immune cells and MPO on oocyte quality. Mouse metaphase II oocytes were divided into the following groups: 1) Incubation with a catalytic amount of MPO (40 nM) for different incubation periods in the presence of 100 mM Cl- with and without H2O2 and with and without melatonin (100 μM), at 37°C (n = 648/648 total number of oocytes in each group for oocytes with and without cumulus cells); 2) Co-cultured with activated mouse peritoneal macrophage and neutrophils cells (1.0 x 106 cells/ml) in the absence and presence of melatonin (200 μM), an MPO inhibitor/ROS scavenger, for different incubation periods in HTF media, at 37°C (n = 200/200); 3) Untreated oocytes incubated for 4 hrs as controls (n = 73/64). Oocytes were then fixed, stained and scored based on the microtubule morphology and chromosomal alignment. All treatments were found to negatively affect oocyte quality in a time dependent fashion as compared to controls. In all cases the presence of cumulus cells offered no protection; however significant protection was offered by melatonin. Similar results were obtained with oocytes treated with neutrophils. This work provides a direct link between MPO and decreased oocyte quality. Therefore, strategies to decrease MPO mediated inflammation may influence reproductive outcomes.  相似文献   

5.
It has been hypothesized that, in aggregate, rare variants in coding regions of genes explain a substantial fraction of the heritability of common diseases. We sequenced the exomes of 1,000 Danish cases with common forms of type 2 diabetes (including body mass index > 27.5 kg/m2 and hypertension) and 1,000 healthy controls to an average depth of 56×. Our simulations suggest that our study had the statistical power to detect at least one causal gene (a gene containing causal mutations) if the heritability of these common diseases was explained by rare variants in the coding regions of a limited number of genes. We applied a series of gene-based tests to detect such susceptibility genes. However, no gene showed a significant association with disease risk after we corrected for the number of genes analyzed. Thus, we could reject a model for the genetic architecture of type 2 diabetes where rare nonsynonymous variants clustered in a modest number of genes (fewer than 20) are responsible for the majority of disease risk.  相似文献   

6.
Incubation of human polymorphonuclear leukocytes with arachidonic acid resulted in a stimulation of the oxidative metabolism of the cells. Upon stimulation with 80 microM arachidonic acid, neutrophils (5 X 10(6) cells/ml) produced superoxide (53 +/- 8 nmol/5 X 10(6) cells per 15 min), generated chemiluminescence (1211 100 +/- 157 000 cpm) and consumed oxygen (20 +/- 1 nmol/10(6) cells per 5 min). The stimulation of the cell metabolism could be reduced 40-60% by prior incubation of the cells with 10 microM indomethacin. Incubating polymorphonuclear leukocytes with arachidonic acid also resulted in a diminished chemotaxis towards an attractant, a decreased uptake of opsonized staphylococci and aggregation of the cells. This may be due to inhibitory products of arachidonic acid metabolism and toxic oxygen species produced during stimulated oxidative metabolism. The effects of arachidonic acid are specific for neutrophils, as mononuclear phagocytes only produced 17 +/- 8 nmol superoxide/5 X 10(6) cells per 15 min and generated 27 000 +/- 15 000 cpm chemiluminescence when stimulated with 80 microM arachidonic acid. When monocytes and neutrophils were stimulated with particles such as opsonized staphylococci, the amount of superoxide produced, oxygen consumed and chemiluminescence generated were similar. The phagocytic activity of the monocytes was also not affected by prior incubation with arachidonic acid. We conclude that in contrast to monocytes, neutrophil metabolism can be stimulated with arachidonic acid and this stimulation resulted in a decreased phagocytic activity of these cells.  相似文献   

7.
To investigate the effect and action mechanism of resveratrol on the vascular endothelial cell by high glucose treatment. Primarily cultured human umbilical vein endothelial cells (HUVECs) were pretreated by resveratrol (0.2 μmol/L) and holding for 6 h, and then cultured in Dulbecco Modified Eagle Medium (DMEM) within 0.45 mmol/L of palmimte acid and 32.8 mmol/L of glucose, which is holding for 12 h. The cells were collected to analyze the expression of E-selected element. Supernatant of cultured cells, induced by 100 nmol/L insulin for 30 min, was used to analyze the nitric oxide content. Compared with normal control cells, the secretion of nitric oxide is stimulated by insulin decrease, however, the expression of E-selected element increased in HUVEC. Resveratrol treatment increased the secretion of nitric oxide stimulated by insulin and decreased the expression of E-selected element and partly counteracts the impairment of high glucose and palmitate acid on the function of endothelial cells. Resveratrol can improve and protect the function of high glucose and fatty acid cultured endothelial cell, and therefore may be a promising medicine in the prevention or therapy of diabetic macrovascular diseases.  相似文献   

8.

Introduction

Peripheral blood monocytes are no longer regarded as a homogeneous cell population, but can be differentiated both phenotypically and functionally into various subpopulations. In rheumatoid arthritis, the subpopulation of CD14bright/CD16+ monocyte is expanded and prone towards generation of Th17 cells. CD56+ monocytes represent a different subpopulation, which is also expanded in conditions associated with autoimmunity like inflammatory bowel diseases. The aim of the study was the quantification and functional characterization of the CD56+ monocyte subset in rheumatoid arthritis (RA).

Methods

Frequencies of peripheral blood monocyte subpopulations were analyzed by flow cytometry in 86 healthy controls and 75 RA patients. In 16 patients, anti-tumor necrosis factor (TNF) therapy was initiated, and the CD56+ monocyte frequency was monitored longitudinally. Lipopolysaccharide (LPS)-induced cytokine production of CD56+ and CD56– monocytes was determined by intracellular staining or cytokine secretion assays.

Results

In healthy individuals, 8.6% ± 0.6 of the monocytes co-expressed CD56, with the majority of CD56+ monocytes being CD14bright (7.9% ± 0.5), while only a minor population was CD14dim (0.7% ± 0.1). We found a strong positive correlation between an individual’s age and the frequency of CD56+ monocytes. Upon stimulation with LPS, CD56+ monocytes became more frequently positive for TNF, IL-10 and IL-23 than CD56– monocytes. In addition, CD56+ monocytes spontaneously produced more reactive oxygen intermediates than CD56- monocytes. In RA patients, the frequency of CD56+ monocytes was significantly higher than in healthy controls (12.2% ± 0.9 vs. 7.9% ± 0.5, p = 0.0002), and this difference most pronounced in RA patients below 40 years of age (11.1% ± 1.6 vs. 4.1% ± 0.4, P < 0.0001). Treatment of the patients with an anti-TNF blocking agent significantly reduced CD56+ monocyte frequencies (baseline 12.4% vs. 24 weeks treatment 8.0%, P = 0.0429), and the magnitude of this decrease was found to correlate with the change in disease activity under the therapy.

Conclusion

The CD14bright/CD56+ monocyte subset is expanded in aging individuals as well as in patients with RA. The pro-inflammatory production of cytokines and reactive oxygen species as well as the elimination of those cells in patients with a good response towards TNF inhibiting agents indicates a possible contribution of those monocytes in the inflammatory response in RA.  相似文献   

9.
Research in proteomics has exploded in recent years with advances in mass spectrometry capabilities that have led to the characterization of numerous proteomes, including those from viruses, bacteria, and yeast.  In comparison, analysis of the human proteome lags behind, partially due to the sheer number of proteins which must be studied, but also the complexity of networks and interactions these present. To specifically address the challenges of understanding the human proteome, we have developed HaloTag technology for protein isolation, particularly strong for isolation of multiprotein complexes and allowing more efficient capture of weak or transient interactions and/or proteins in low abundance.  HaloTag is a genetically encoded protein fusion tag, designed for covalent, specific, and rapid immobilization or labelling of proteins with various ligands. Leveraging these properties, numerous applications for mammalian cells were developed to characterize protein function and here we present methodologies including: protein pull-downs used for discovery of novel interactions or functional assays, and cellular localization. We find significant advantages in the speed, specificity, and covalent capture of fusion proteins to surfaces for proteomic analysis as compared to other traditional non-covalent approaches. We demonstrate these and the broad utility of the technology using two important epigenetic proteins as examples, the human bromodomain protein BRD4, and histone deacetylase HDAC1.  These examples demonstrate the power of this technology in enabling  the discovery of novel interactions and characterizing cellular localization in eukaryotes, which will together further understanding of human functional proteomics.                相似文献   

10.
Advanced glycation end-products (AGEs) stimulate reactive oxygen species (ROS) generation and represent a risk factor for atherosclerosis, while their formation seems to be prevented by zinc. Metallothioneins (MT), zinc-binding proteins exert an antioxidant function by regulating intracellular zinc availability and protecting cells from ROS damages. +1245 A/G MT1A polymorphism was implicated in type 2 diabetes and in cardiovascular disease development as well as in the modulation of antioxidant response. The purpose of this study was to investigate the influence of +1245 A/G MT1A polymorphism on AGEs and ROS production and to verify the effect of zinc supplementation on plasma AGEs, zinc status parameters and antioxidant enzyme activity in relation to this SNP. One hundred and ten healthy subjects (72 ± 6 years) from the ZincAge study were supplied with zinc aspartate (10 mg/day for 7 weeks) and screened for +1245 MT1A polymorphism. +1245 MT1A G+ (Arginine) genotype showed higher plasma AGEs and ROS production in peripheral blood mononuclear cells (PBMCs) than G− (Lysine) one at the baseline. No significant changes after zinc supplementation were observed for AGEs, ROS and MT levels as well as for enzyme antioxidant activity in relation to the genotype. Among zinc status parameters, major increases were observed for the intracellular labile zinc (iZnL) and the NO-induced release of zinc in PBMCs, in G+ genotype as compared to G− one. In summary, +1245 G+ carriers showed increased plasma AGEs and ROS production in PBMCs at baseline and a higher improvement in iZnL after zinc intervention with respect to G− individuals.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-014-0426-2) contains supplementary material, which is available to authorized users.  相似文献   

11.

Background

Recent studies have reported an association between both higher and lower levels of hemoglobin A1c (HbA1c) and higher mortality of diabetes patients. Like diabetes, carotid atherosclerosis is a well known lifestyle-related disease. However, no studies have yet reported an association between HbA1c levels and carotid atherosclerosis.

Methods

We conducted a cross-sectional study of 1,150 Japanese elderly men aged ≥60 years who were undergoing general health checkups. Carotid atherosclerosis was defined as a carotid intima-media thickness (CIMT) ≥1.1 mm. Since body mass index (BMI) is regarded as a cardiovascular risk factor that exerts a strong influence on both HbA1c levels and carotid atherosclerosis, we performed a stratified analysis of this risk based on BMI.

Results

Using the intermediate HbA1c quintile as a reference group, the groups in the lowest HbA1c quintiles showed a significantly higher risk of carotid atherosclerosis in patients with low BMI (≤23 kg/m2) vs. no increased risk in those with high BMI (>23 kg/m2). The association of HbA1c with carotid atherosclerosis became slightly stronger when these analyses were limited to subjects who were not taking glucose-lowering medications or medications for hyperlipidemia and cardiovascular disease. After adjusting for classical cardiovascular risk factors, adjusted odds ratios (ORs) for carotid atherosclerosis were 1.36 (0.84 to 2.20) for total subjects, 2.29 (1.12 to 4.66) for low-BMI groups, and 0.68 (0.33 to 1.41) for high-BMI groups.

Conclusions

Lower HbA1c level is a significant risk factor for carotid atherosclerosis in rural community-dwelling elderly Japanese men with low, but not high BMI, particularly in those not taking glucose-lowering medication.  相似文献   

12.
PADGEM (platelet activation-dependent granule-external membrane protein) is a leukocyte receptor of activated platelets that mediates cellular adhesion of platelets to neutrophils and monocytes. To identify the natural ligand on neutrophils and monocytes that interacts with PADGEM, we have evaluated anti-leukocyte antibodies for their ability to block leukocyte-PADGEM binding. Only anti-CD15 antibodies were able to inhibit the binding of neutrophils, monocytes, HL60 cells, and U937 cells to platelets. Anti-CD15 antibodies inhibited the binding of U937 cells to PADGEM-expressing COS cells and to purified PADGEM incorporated into phospholipid vesicles. The CD15 antigen, lacto-N-fucopentaose III (Gal beta 1----4[Fuc alpha 1----3]NAcGlc beta 1----3Gal-beta 1----4Glc), inhibited the interaction of neutrophils or HL60 cells with platelets, whereas lacto-N-fucopentaose I did not; lacto-N-fucopentaose II demonstrated minimal inhibition. Lacto-N-fucopentaose III, and to a lesser extent lacto-N-fucopentaose II, but not lacto-N-fucopentaose I, inhibited the interaction of HL60 cells with COS cells transfected with PADGEM cDNA. CD15, lacto-N-fucopentaose III or Lex, is a component of the PADGEM ligand on neutrophils and monocytes.  相似文献   

13.
Invasive fungal infections by Candida albicans (Ca) are a frequent cause of lethal sepsis in intensive care unit patients. While a contribution of type I interferons (IFNs-I) in fungal sepsis remains unknown, these immunostimulatory cytokines mediate the lethal effects of endotoxemia and bacterial sepsis. Using a mouse model lacking a functional IFN-I receptor (Ifnar1−/−), we demonstrate a remarkable protection against invasive Ca infections. We discover a mechanism whereby IFN-I signaling controls the recruitment of inflammatory myeloid cells, including Ly6Chi monocytes and neutrophils, to infected kidneys by driving expression of the chemokines CCL2 and KC. Within kidneys, monocytes differentiate into inflammatory DCs but fail to functionally mature in Ifnar1−/− mice, as demonstrated by the impaired upregulation of the key activation markers PDCA1 and iNOS. The increased activity of inflammatory monocytes and neutrophils results in hyper-inflammation and lethal kidney pathology. Pharmacological diminution of monocytes and neutrophils by treating mice with pioglitazone, a synthetic agonist of the nuclear receptor peroxisome proliferator-activated receptor-γ (PPAR-γ), strongly reduces renal immunopathology during Ca infection and improves mouse survival. Taken together, our data connect for the first time the sepsis-promoting functions of IFNs-I to the CCL2-mediated recruitment and the activation of inflammatory monocytes/DCs with high host-destructing potency. Moreover, our data demonstrate a therapeutic relevance of PPAR-γ agonists for microbial infectious diseases where inflammatory myeloid cells may contribute to fatal tissue damage.  相似文献   

14.
Catechol (benzenediol) is present in plant-derived products, such as vegetables, fruits, coffee, tea, wine, areca nut and cigarette smoke. Because platelet dysfunction is a risk factor of cardiovascular diseases, including stroke, atherosclerosis and myocardial infarction, the purpose of this study was to evaluate the anti-platelet and anti-inflammatory effect of catechol and its mechanisms. The effects of catechol on cyclooxygenase (COX) activity, arachidonic acid (AA)-induced aggregation, thromboxane B2 (TXB2) production, lactate dehydrogenase (LDH) release, reactive oxygen species (ROS) production and extracellular signal-regulated kinase (ERK)/p38 phosphorylation were determined in rabbit platelets. In addition, its effect on IL-1β-induced prostaglandin E2 (PGE2) production by fibroblasts was determined. The ex vivo effect of catechol on platelet aggregation was also measured. Catechol (5-25 µM) suppressed AA-induced platelet aggregation and inhibited TXB2 production at concentrations of 0.5–5 µM; however, it showed little cytotoxicity and did not alter U46619-induced platelet aggregation. Catechol (10–50 µM) suppressed COX-1 activity by 29–44% and COX-2 activity by 29–50%. It also inhibited IL-1β-induced PGE2 production, but not COX-2 expression of fibroblasts. Moreover, catechol (1–10 µM) attenuated AA-induced ROS production in platelets and phorbol myristate acetate (PMA)-induced ROS production in human polymorphonuclear leukocytes. Exposure of platelets to catechol decreased AA-induced ERK and p38 phosphorylation. Finally, intravenous administration of catechol (2.5–5 µmole/mouse) attenuated ex vivo AA-induced platelet aggregation. These results suggest that catechol exhibited anti-platelet and anti-inflammatory effects, which were mediated by inhibition of COX, ROS and TXA2 production as well as ERK/p38 phosphorylation. The anti-platelet effect of catechol was confirmed by ex vivo analysis. Exposure to catechol may affect platelet function and thus cardiovascular health.  相似文献   

15.

Background

Aggregates formed between leukocytes and platelets in the circulation lead to release of tissue factor (TF)–bearing microparticles contributing to a prothrombotic state. As enterohemorrhagic Escherichia coli (EHEC) may cause hemolytic uremic syndrome (HUS), in which microthrombi cause tissue damage, this study investigated whether the interaction between blood cells and EHEC virulence factors Shiga toxin (Stx) and lipopolysaccharide (LPS) led to release of TF.

Methodology/Principal Findings

The interaction between Stx or LPS and blood cells induced platelet-leukocyte aggregate formation and tissue factor (TF) release, as detected by flow cytometry in whole blood. O157LPS was more potent than other LPS serotypes. Aggregates formed mainly between monocytes and platelets and less so between neutrophils and platelets. Stimulated blood cells in complex expressed activation markers, and microparticles were released. Microparticles originated mainly from platelets and monocytes and expressed TF. TF–expressing microparticles, and functional TF in plasma, increased when blood cells were simultaneously exposed to the EHEC virulence factors and high shear stress. Stx and LPS in combination had a more pronounced effect on platelet-monocyte aggregate formation, and TF expression on these aggregates, than each virulence factor alone. Whole blood and plasma from HUS patients (n = 4) were analyzed. All patients had an increase in leukocyte-platelet aggregates, mainly between monocytes and platelets, on which TF was expressed during the acute phase of disease. Patients also exhibited an increase in microparticles, mainly originating from platelets and monocytes, bearing surface-bound TF, and functional TF was detected in their plasma. Blood cell aggregates, microparticles, and TF decreased upon recovery.

Conclusions/Significance

By triggering TF release in the circulation, Stx and LPS can induce a prothrombotic state contributing to the pathogenesis of HUS.  相似文献   

16.
Primary human hepatocytes (PHH) are considered to be the gold standard for in vitro testing of xenobiotic metabolism and hepatotoxicity. However, PHH cultivation in 2D mono-cultures leads to dedifferentiation and a loss of function. It is well known that hepatic non-parenchymal cells (NPC), such as Kupffer cells (KC), liver endothelial cells (LEC), and hepatic stellate cells (HSC), play a central role in the maintenance of PHH functions. The aims of the present study were to establish a protocol for the simultaneous isolation of human PHH and NPC from the same tissue specimen and to test their suitability for in vitro co-culture. Human PHH and NPC were isolated from tissue obtained by partial liver resection by a two-step EDTA/collagenase perfusion technique. The obtained cell fractions were purified by Percoll density gradient centrifugation. KC, LEC, and HSC contained in the NPC fraction were separated using specific adherence properties and magnetic activated cell sorting (MACS®). Identified NPC revealed a yield of 1.9 × 106 KC, 2.7 × 105 LEC and 4.7 × 105 HSC per gram liver tissue, showing viabilities >90%. Characterization of these NPC showed that all populations went through an activation process, which influenced the cell fate. The activation of KC strongly depended on the tissue quality and donor anamnesis. KC became activated in culture in association with a loss of viability within 4–5 days. LEC lost specific features during culture, while HSC went through a transformation process into myofibroblasts. The testing of different culture conditions for HSC demonstrated that they can attenuate, but not prevent dedifferentiation in vitro. In conclusion, the method described allows the isolation and separation of PHH and NPC in high quality and quantity from the same donor.  相似文献   

17.
Mitochondrial biogenesis and energy metabolism are essential for regulating the inflammatory state of monocytes. This state is partially controlled by peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), a coactivator that regulates mitochondrial biogenesis and energy metabolism. Disruption of these processes can also contribute to the initiation of chronic inflammatory diseases, such as pulmonary fibrosis, atherosclerosis, and rheumatoid arthritis. Methyltransferase-like 3 (METTL3)-dependent N6-methyladenosine (m6A) methylation has recently been shown to regulate a variety of inflammatory processes. However, the role of m6A mRNA methylation in affecting mitochondrial metabolism in monocytes under inflammation is unclear, nor is there an established relationship between m6A methylation and PGC-1α. In this study, we identified a novel mechanism by which METTL3 acts during oxidized low-density lipoprotein (oxLDL)-induced monocyte inflammation, where METTL3 and YTH N6-methyladenosine RNA binding protein 2 (YTHDF2) cooperatively modify PGC-1α mRNA, mediating its degradation, decreasing PGC-1α protein levels, and thereby enhancing the inflammatory response. METTL3 coordinated with YTHDF2 to suppress the expression of PGC-1α, as well as that of cytochrome c (CYCS) and NADH:ubiquinone oxidoreductase subunit C2 (NDUFC2) and reduced ATP production and oxygen consumption rate (OCR). This subsequently increased the accumulation of cellular and mitochondrial reactive oxygen species (ROS) and the levels of proinflammatory cytokines in inflammatory monocytes. These data may provide new insights into the role of METTL3-dependent m6A modification of PGC-1α mRNA in the monocyte inflammation response. These data also contribute to a more comprehensive understanding of the pathogenesis of monocyte-macrophage inflammation-associated diseases, such as pulmonary fibrosis, atherosclerosis, and rheumatoid arthritis.  相似文献   

18.
There is growing interest in studying the genetic contributions to longevity, but limited relevant genes have been identified. In this study, we performed a genetic association study of longevity in a total of 15,651 Chinese individuals. Novel longevity loci, BMPER (rs17169634; p = 7.91 × 10−15) and TMEM43/XPC (rs1043943; p = 3.59 × 10−8), were identified in a case–control analysis of 11,045 individuals. BRAF (rs1267601; p = 8.33 × 10−15) and BMPER (rs17169634; p = 1.45 × 10−10) were significantly associated with life expectancy in 12,664 individuals who had survival status records. Additional sex‐stratified analyses identified sex‐specific longevity genes. Notably, sex‐differential associations were identified in two linkage disequilibrium blocks in the TOMM40/APOE region, indicating potential differences during meiosis between males and females. Moreover, polygenic risk scores and Mendelian randomization analyses revealed that longevity was genetically causally correlated with reduced risks of multiple diseases, such as type 2 diabetes, cardiovascular diseases, and arthritis. Finally, we incorporated genetic markers, disease status, and lifestyles to classify longevity or not‐longevity groups and predict life span. Our predictive models showed good performance (AUC = 0.86 for longevity classification and explained 19.8% variance of life span) and presented a greater predictive efficiency in females than in males. Taken together, our findings not only shed light on the genetic contributions to longevity but also elucidate correlations between diseases and longevity.  相似文献   

19.

Background

Previous studies have reported an inverse association between height and risk of cardiovascular disease. However, evidence is limited for the association between risk of atherosclerosis and height. Further, although the association between atherosclerosis and body mass index (BMI) is reportedly positive, there have been no reports of studies on associations between height and atherosclerosis in relation to BMI.

Methods

We conducted a cross-sectional study of Japanese men aged 30 to 89 years undergoing general health check-ups.

Results

Of the 1,337 men, 312 were diagnosed with carotid atherosclerosis (carotid intima-media thickness (CIMT) ≥ 1.1 mm), but no significant association was found between height and carotid atherosclerosis for the entire study group. Stratification by BMI status of those analytical findings disclosed a significant inverse association between height and carotid atherosclerosis among overweight (BMI ≥ 25 kg/m2) but not among non-overweight (BMI < 25 kg/m2) men. The classical cardiovascular risk factors-adjusted odds ratio (OR) and 95% confidence interval (CI) of carotid atherosclerosis for an increment of one SD (standard deviation) in height (6.70 cm) were 0.71 (0.54 to 0.94) for overweight (BMI ≥ 25 kg/m2) and 1.05 (0.87 to 1.27) for non-overweight (BMI < 25 kg/m2) men.

Conclusion

Independent from classical cardiovascular risk factors, height was found to be inversely associated with carotid atherosclerosis for overweight but not for non-overweight men.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号