首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Summary. Phosphate transport in bacteria occurs via a phosphate specific transporter system (PSTS) that belongs to the ABC family of transporters, a multisubunit system, containing an alkaline phosphatase. DING proteins were characterized due to the N-terminal amino acid sequence DINGG GATL, which is highly conserved in animal and plant isolates, but more variable in microbes. Most prokaryotic homologues of the DING proteins often have some structural homology to phosphatases or periplasmic phosphate-binding proteins. In E. coli, the product of the inducible gene DinG, possesses ATP hydrolyzing helicase enzymic activity. An alkaline phosphorolytic enzyme of the PSTS system was purified to homogeneity from the thermophilic bacterium Thermus thermophilus. N-terminal sequence analysis of this protein revealed the same high degree of similarity to DING proteins especially to the human synovial stimulatory protein P205, the steroidogenesis-inducing protein and to the phosphate ABC transporter, periplasmic phosphate-binding protein, putative (P. fluorescens Pf-5). The enzyme had a molecular mass of 40 kDa on SDS/PAGE, exhibiting optimal phosphatase activity at pH 12.3 and 70 °C. The enzyme possessed characteristics of a DING protein, such as ATPase, ds endonuclease and 3′ phosphodiesterase (3′-exonuclease) activities and binding to linear dsDNA, displaying helicase activity on supercoiled DNA. Purification and biochemical characterization of a T. thermophilus DING protein was achieved. The biochemical properties, N-terminal sequence similarities of this protein implied that the enzyme belongs to the PSTS family and might be involved in the DNA repair mechanism of this microorganism. Authors’ address: Assist. Prof. A. A. Pantazaki, Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece  相似文献   

2.

Background  

DING proteins constitute a conserved and broadly distributed set of proteins found in bacteria, fungi, plants and animals (including humans). Characterization of DING proteins from animal and plant tissues indicated ligand-binding ability suggesting a role for DING proteins in cell signaling and biomineralization. Surprisingly, the genes encoding DING proteins in eukaryotes have not been identified in the eukaryotic genome or EST databases. Recent discovery of a DING homologue (named Psp here) in the genome of Pseudomonas fluorescens SBW25 provided a unique opportunity to investigate the physiological roles of DING proteins. P. fluorescens SBW25 is a model bacterium that can efficiently colonize plant surfaces and enhance plant health. In this report we genetically characterize Psp with a focus on conditions under which psp is expressed and the protein exported.  相似文献   

3.
Wang H  Liang Q  Cao K  Ge X 《Planta》2011,233(6):1287-1292
Protein mono-ADP-ribosylation post-translationally transfers the ADP-ribose moiety from the β-NAD+ donor to various protein acceptors. This type of modification has been widely characterized and shown to regulate protein activities in animals, yeast and prokaryotes, but has never been reported in plants. In this study, using [32P]NAD+ as the substrate, ADP-ribosylated proteins in Arabidopsis were investigated. One protein substrate of 32 kDa in adult rosette leaves was found to be radiolabeled. Heat treatment, protease sensitivity and nucleotide derivative competition assays suggested a covalent reaction of NAD+ with the 32 kDa protein. [carbonyl-14C]NAD+ could not label the 32 kDa protein, confirming that the modification was ADP-ribosylation. Poly (ADP-ribose) polymerase inhibitor failed to suppress the reaction, but chemicals that destroy mono-ADP-ribosylation on specific amino acid residues could break up the linkage, suggesting that the reaction was not a poly-ADP-ribosylation but rather a mono-ADP-ribosylation. This modification mainly existed in leaves and was enhanced by oxidative stresses. In young seedlings, two more protein substrates with the size of 45 kDa and over 130 kDa, respectively, were observed in addition to the 32 kDa protein, indicating that different proteins were modified at different developmental stages. Although the substrate proteins remain to be identified, this is the first report on the characterization of endogenously mono-ADP-ribosylated proteins in plants.  相似文献   

4.
PstS and DING proteins are members of a superfamily of secreted, high‐affinity phosphate‐binding proteins. Whereas microbial PstS have a well‐defined role in phosphate ABC transporters, the physiological function of DING proteins, named after their DINGGG N termini, still needs to be determined. PstS and DING proteins co‐exist in some Pseudomonas strains, to which they confer a highly adhesive and virulent phenotype. More than 30 DING proteins have now been purified, mostly from eukaryotes. They are often associated with infections or with dysregulation of cell proliferation. Consequently, eukaryotic DING proteins could also be involved in cell–cell communication or adherence. The ubiquitous presence in eukaryotes of proteins structurally and functionally related to bacterial virulence factors is intriguing, as is the absence of eukaryotic genes encoding DING proteins in databases. DING proteins in eukaryotes could originate from unidentified commensal or symbiotic bacteria and could contribute to essential functions. Alternatively, DING proteins could be encoded by eukaryotic genes sharing special features that prevent their cloning. Both hypotheses are discussed.  相似文献   

5.
DING proteins are highly-conserved proteins with poorly-defined cell-signalling roles in mammals. Conserved homologues are also commonplace in plants, though not as yet functionally characterized. Poor availability of the proteins, and a lack of genetic structure, hamper progress in elucidating the roles of these eukaryotic DING proteins, but highly-homologous hypothetical DING proteins have recently been identified in Pseudomonas genomes. We have cloned and expressed a DING protein from P. fluorescens SWB25 in Escherichia coli. The recombinant protein, and its natural human homologue, act as phosphate-binding proteins, as predicted by structural homologies with other bacterial proteins. The recombinant protein also displays other functional similarities with mammalian DING proteins, in that, like the human version, it acts as a mitogen for cultured human cells, and can bind cotinine, known to be a binding ligand for a rat neuronal DING protein.  相似文献   

6.

Background

DING proteins encompass an intriguing protein family first characterized by their conserved N-terminal sequences. Some of these proteins seem to have key roles in various human diseases, e.g., rheumatoid arthritis, atherosclerosis, HIV suppression. Although this protein family seems to be ubiquitous in eukaryotes, their genes are consistently lacking from genomic databases. Such a lack has considerably hampered functional studies and has fostered therefore the hypothesis that DING proteins isolated from eukaryotes were in fact prokaryotic contaminants.

Principal Findings

In the framework of our study, we have performed a comprehensive immunological detection of DING proteins in mice. We demonstrate that DING proteins are present in all tissues tested as isoforms of various molecular weights (MWs). Their intracellular localization is tissue-dependant, being exclusively nuclear in neurons, but cytoplasmic and nuclear in other tissues. We also provide evidence that germ-free mouse plasma contains as much DING protein as wild-type.

Significance

Hence, data herein provide a valuable basis for future investigations aimed at eukaryotic DING proteins, revealing that these proteins seem ubiquitous in mouse tissue. Our results strongly suggest that mouse DING proteins are endogenous. Moreover, the determination in this study of the precise cellular localization of DING proteins constitute a precious evidence to understand their molecular involvements in their related human diseases.  相似文献   

7.
Characterization of human poly(ADP-ribose) polymerase with autoantibodies   总被引:7,自引:0,他引:7  
The addition of poly(ADP-ribose) chains to nuclear proteins has been reported to affect DNA repair and DNA synthesis in mammalian cells. The enzyme that mediates this reaction, poly(ADP-ribose) polymerase, requires DNA for catalytic activity and is activated by DNA with strand breaks. Because the catalytic activity of poly(ADP-ribose) polymerase does not necessarily reflect enzyme quantity, little is known about the total cellular poly(ADP-ribose) polymerase content and the rate of its synthesis and degradation. In the present experiments, specific human autoantibodies to poly(ADP-ribose) polymerase and a sensitive immunoblotting technique were used to determine the cellular content of poly(ADP-ribose) polymerase in human lymphocytes. Resting peripheral blood lymphocytes contained 0.5 X 10(6) enzyme copies per cell. After stimulation of the cells by phytohemagglutinin, the poly(ADP-ribose) polymerase content increased before DNA synthesis. During balanced growth, the T lymphoblastoid cell line CEM contained approximately 2 X 10(6) poly(ADP-ribose) polymerase molecules per cell. This value did not vary by more than 2-fold during the cell growth cycle. Similarly, mRNA encoding poly(ADP-ribose) polymerase was detectable throughout S phase. Poly(ADP-ribose) polymerase turned over at a rate equivalent to the average of total cellular proteins. Neither the cellular content nor the turnover rate of poly(ADP-ribose) polymerase changed after the introduction of DNA strand breaks by gamma irradiation. These results show that in lymphoblasts poly(ADP-ribose) polymerase is an abundant nuclear protein that turns over relatively slowly and suggest that most of the enzyme may exist in a catalytically inactive state.  相似文献   

8.
The poly(ADP-ribose) polymerase-like thermozyme purified from Sulfolobus solfataricus was characterised with respect to some physico-chemical properties. The archaeal protein exhibited a scarce electrophoretic mobility at both pH 2.9 and pH 7.5. Determination of the isoelectric point (pI=7.0-7.2) allowed us to understand the reason for the limited migration at pH 7.5, while amino acid composition analysis showed a moderate content of basic residues, which reduced mobility at pH 2.9. With respect to the charge, the archaeal enzyme behaved differently from the eukaryotic thermolabile poly(ADP-ribose) polymerase, described as a basic protein (pI=9.5). Well known inhibitors of the mesophilic polymerase like Zn(2+), nicotinamide and 3-aminobenzamide exerted a smaller effect on the enzyme from S. solfataricus, reducing the activity by at most 50%. Mg(2+) was a positive effector, although in a dose-dependent manner. It influenced the fluorescence spectrum of the archaeal protein, whereas NaCl had no effect.  相似文献   

9.
The reversible thermal unfolding of the archaeal histone-like protein Ssh10b from the extremophile Sulfolobus shibatae was studied using differential scanning calorimetry and circular dichroism spectroscopy. Analytical ultracentrifugation and gel filtration showed that Ssh10b is a stable dimer in the pH range 2.5–7.0. Thermal denaturation data fit into a two-state unfolding model, suggesting that the Ssh10 dimer unfolds as a single cooperative unit with a maximal melting temperature of 99.9 °C and an enthalpy change of 134 kcal/mol at pH 7.0. The heat capacity change upon unfolding determined from linear fits of the temperature dependence of ΔHcal is 2.55 kcal/(mol K). The low specific heat capacity change of 13 cal/(mol K residue) leads to a considerable flattening of the protein stability curve (ΔG (T)) and results in a maximal ΔG of only 9.5 kcal/mol at 320 K and a ΔG of only 6.0 kcal/mol at the optimal growth temperature of Sulfolobus.  相似文献   

10.
A 2 kilobase pair cDNA coding for the entire C-terminal catalytic domain of rat poly(ADP-ribose)polymerase has been expressed in E. coli. The overproduced 55 kDa polypeptide is active in synthesizing poly(ADP-ribose) and the 4 kDa N-terminal region of this domain is recognized by the monoclonal antibody C I,2 directed against the calf enzyme. Also, the minor alpha-chymotrypsin cleavage site found in the human catalytic domain is not present in the rat enzyme as revealed by the absence of the 40 kDa specific degradation product in the E. coli cells expressing the rat domain. The expression of this partial rat cDNA should thus permit the rapid purification and subsequent crystallization of the catalytic domain of the enzyme.  相似文献   

11.
Human thymus poly(A) polymerase (EC 2.7.7.19) activity has been investigated using poly(A) and oligo(A) as initiators. All obtained fractions reveal more than one polypeptide as detected by immunoblotting after SDS-PAGE. In addition to the homogeneously purified (Tsiapalis et al., J Biol Chem 250: 4486–1496, 1975 and Wahle, J Biol Chem 266: 3131–3139, 1991), about 60 kDa polypeptide, a larger polypeptide, about 80 kDa, that comigrates in the region of poly(A) polymerase activity was detected, enriched and partially characterized; it appears having similar size with bovine poly(A) polymerase cloned in E. coli. Polyclonal antiserum produced against recombinant bovine poly(A) polymerase reacts more efficiently with the about 80 kDa polypeptide upon immunoblotting, and can precipitate the poly(A) polymerase activity. This enzyme form, from human tissue, is novel in terms of size and may reflect intact or physiological form of poly(A) polymerase in human thymus, and supports and substantiates recent reports on the enzyme from other sources.  相似文献   

12.
《Gene》1998,222(2):249-255
A gene encoding an FK506 binding protein (FKBP)-type peptidyl-prolyl cis–trans isomerase (PPIase) was cloned from a hyperthermophilic archaeon, Thermococcus sp. KS-1, and sequenced. This gene encoded an FKBP with 159 amino-acid residues with a molecular mass of 17.6 kDa. Two insertion sequences with 13 and 44 amino acids were found in the regions corresponding to the bulge and flap regions of human FKBP-12, respectively. Comparison with other archaeal FKBP sequences obtained from reported genome sequences revealed that the insertion sequences in the bulge and flap regions were common to archaeal FKBPs. It was also revealed that archaeal FKBPs are classified into two groups: one is approx. 17 kDa and the other 27 kDa. This Thermococcus FKBP (TcFK) belonged to the smaller archaeal FKBP. In this TcFK, 9 out of 15 amino acid residues forming the FK506 binding pocket of human FKBP12 were found. This gene was expressed in Escherichia coli and the recombinant protein was purified. The purified protein showed PPIase activity and its activity was inhibited by FK506 with an IC50 of 7 μM. This enzyme showed high kinetic stability with a half-life of 40 min at 100°C. Catalytic efficiency of this recombinant PPIase was 1.2-times higher with the substrate N-succinyl-A-L-P-F-p-nitroanilide than with N-succinyl-A-A-P-F-p-nitroanilide.  相似文献   

13.
Summary Poly(ADP-ribose) polymerase catalyses the formation of ADP-ribose polymers covalently attached to various nuclear proteins, using NAD+ as substrate. The activity of this enzyme is strongly stimulated upon binding to DNA single or double strand breaks. Poly(ADP-ribosyl)ation is an immediate cellular response to DNA damage and is thought to be involved in DNA repair, genetic recombination, apoptosis and other processes during which DNA strand breaks are formed. In recent years we and others have established cell culture systems with altered poly(ADP-ribose) polymerase activity. Here we describe immunocytochemistry protocols based on the use of antibodies against the DNA-binding domain of human poly(ADP-ribose) polymerase and against its reaction product poly(ADP-ribose). These protocols allow for the convenient mass screening of cell transfectants with overexpression of poly(ADP-ribose) polymerase or of a dominant-negative mutant for this enzyme, i.e. the DNA-binding domain. In addition, the immunocytochemical detection of poly(ADP-ribose) allows screening for cells with altered enzyme activity.  相似文献   

14.
SV40-3T3 cells were exposed in monolayer cultures to 5 × 10−7 M methotrexate (MTX), that inhibited thymidylate synthetase, arrested cell growth without cell killing in 24 h and did not induce single- (ss) or double-strand (ds) breaks in DNA. Following 24, up to 72 h, the poly(ADP-ribose) polymerase content of attached cells was induced by 5 × 10−7 M MTX and the augmentation of the enzyme increased with the time of exposure to the drug. Inhibition of protein or RNA synthesis abolished augmentation of enzymatic activity; so too did the initiation of maximal cell growth by thymidine + hypoxanthine, by-passing the inhibitory site of MTX. Isolation of the ADP-ribosylated enzyme protein by gel electrophoresis identified poly(ADP-ribose) polymerase protein as the molecule that was induced by 5 × 10−7 M MTX. Under identical conditions, the poly(ADP-ribose) polymerase induction in 3T3 cells could not be demonstrated. A possible cell-cycle-dependent biosynthesis of the enzyme protein is proposed in SV40 3T3 cells.  相似文献   

15.
Macro domain is a highly conserved protein domain found in both eukaryotes and prokaryotes. Macro domains are also encoded by a set of positive-strand RNA viruses that replicate in the cytoplasm of animal cells, including coronaviruses and alphaviruses. The functions of the macro domain are poorly understood, but it has been suggested to be an ADP-ribose-binding module. We have here characterized three novel human macro domain proteins that were found to reside either in the cytoplasm and nucleus [macro domain protein 2 (MDO2) and ganglioside-induced differentiation-associated protein 2] or in mitochondria [macro domain protein 1 (MDO1)], and compared them with viral macro domains from Semliki Forest virus, hepatitis E virus, and severe acute respiratory syndrome coronavirus, and with a yeast macro protein, Poa1p. MDO2 specifically bound monomeric ADP-ribose with a high affinity (Kd = 0.15 μM), but did not bind poly(ADP-ribose) efficiently. MDO2 also hydrolyzed ADP-ribose-1″ phosphate, resembling Poa1p in all these properties. Ganglioside-induced differentiation-associated protein 2 did not show affinity for ADP-ribose or its derivatives, but instead bound poly(A). MDO1 was generally active in these reactions, including poly(A) binding. Individual point mutations in MDO1 abolished monomeric ADP-ribose binding, but not poly(ADP-ribose) binding; in poly(ADP-ribose) binding assays, the monomer did not compete against polymer binding. The viral macro proteins bound poly(ADP-ribose) and poly(A), but had a low affinity for monomeric ADP-ribose. Thus, the viral proteins do not closely resemble any of the human proteins in their biochemical functions. The differential activity profiles of the human proteins implicate them in different cellular pathways, some of which may involve RNA rather than ADP-ribose derivatives.  相似文献   

16.
Purified recombinant HIV-1 Tat protein stimulated acceptor-dependent reaction of poly(ADP-ribose) polymerase in a dose-dependent manner. Analysis of the reaction products by SDS-polyacrylamide gel electrophoresis followed by immunoblotting with anti-poly(ADP-ribose) antibody revealed that recombinant Tat proteins were covalently modified with poly(ADP-ribose) in the enzyme reaction. Eventhough no significant effect of the modification was detected in the activity of Tat to form a specific complex with TAR (a viral transactivation response element) RNA, the present results raise the possibility that poly(ADP-ribose) polymerase is involved in the regulation of HIV-1 through the modification of a virus-encoded transactivator, Tat protein.  相似文献   

17.
There is increasing evidence that the hypersensitive response during plant–pathogen interactions is a form of programmed cell death. In an attempt to understand the biochemical nature of this form of programmed cell death in the cowpea–cowpea rust fungus system, proteolytic activity in extracts of fungus-infected and uninfected cowpea plants was investigated, using exogenously added poly(ADP-ribose) polymerase as a marker. Unlike the proteolytic cleavage pattern of endogenous poly(ADP-ribose) polymerase in apoptotic animal cells, exogenously added poly(ADP-ribose) polymerase in extracts of fungus-infected plants was proteolytically cleaved into fragments of molecular masses 77, 52, 47, and 45 kDa.In vitroandin vivoprotease inhibitor experiments revealed the activation of cysteine proteases, and possibly a regulatory role, during the hypersensitive response.  相似文献   

18.
Zhao H  Brown PH  Schuck P 《Biophysical journal》2011,100(9):2309-2317
The protein refractive index increment, dn/dc, is an important parameter underlying the concentration determination and the biophysical characterization of proteins and protein complexes in many techniques. In this study, we examine the widely used assumption that most proteins have dn/dc values in a very narrow range, and reappraise the prediction of dn/dc of unmodified proteins based on their amino acid composition. Applying this approach in large scale to the entire set of known and predicted human proteins, we obtain, for the first time, to our knowledge, an estimate of the full distribution of protein dn/dc values. The distribution is close to Gaussian with a mean of 0.190 ml/g (for unmodified proteins at 589 nm) and a standard deviation of 0.003 ml/g. However, small proteins <10 kDa exhibit a larger spread, and almost 3000 proteins have values deviating by more than two standard deviations from the mean. Due to the widespread availability of protein sequences and the potential for outliers, the compositional prediction should be convenient and provide greater accuracy than an average consensus value for all proteins. We discuss how this approach should be particularly valuable for certain protein classes where a high dn/dc is coincidental to structural features, or may be functionally relevant such as in proteins of the eye.  相似文献   

19.
Summary Ribosomal subunits from the thermoacidophilic Archaebacterium Sulfolobus were purified and their protein composition analyzed by gel electrophoretic methods. A tentative nomenclature was proposed. 30S subunits contained 27, and 50S subunits 34, electrophoretically distinguishable proteins. Three additional proteins were present on both the 30S and 50S subunits. The protein pattern of three geographically different isolates of Sulfolobus (Italy, Japan, Yellowstone) were nearly identical.  相似文献   

20.
The 7 kDa Sso7 is a basic protein particularly abundant in Sulfolobus solfataricus and is involved in DNA assembly. This protein undergoes in vitro ADP-ribosylation by an endogenous poly(ADP-ribose) polymerase-like enzyme. The circular dichroism spectrum of purified ADP-ribosylated Sso7 shows that this modification stabilizes the prevalent protein β-conformation, as suggested by shifting of negative ellipticity minimum to 220 nm. Moreover, a short ADP-ribose chain (up to 6-mers) bound to Sso7 is able to reduce drastically the thermoprotective and DNA condensing ability of the protein, suggesting a possible regulatory role of ADP-ribosylation in sulfolobal DNA organization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号