首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effectiveness of 13 disinfectants used in hospitals, day-care centers, and food service kitchens in killing Enterobacter sakazakii in suspension, dried on the surface of stainless steel, and in biofilm was determined. E. sakazakii exhibited various levels of resistance to the disinfectants, depending on the composition of the disinfectants, amount and type of organic matrix surrounding cells, and exposure time. Populations of planktonic cells suspended in water (7.22 to 7.40 log CFU/ml) decreased to undetectable levels (<0.30 log CFU/ml) within 1 to 5 min upon treatment with disinfectants, while numbers of cells in reconstituted infant formula were reduced by only 0.02 to 3.69 log CFU/ml after the treatment for 10 min. The presence of infant formula also enhanced the resistance to the disinfectants of cells dried on the surface of stainless steel. The resistance of cells to disinfectants in 6-day-old and 12-day-old biofilms on the surface of stainless steel was not significantly different. The overall order of efficacy of disinfectants in killing E. sakazakii was planktonic cells > cells inoculated and dried on stainless steel > cells in biofilms on stainless steel. Findings show that disinfectants routinely used in hospital, day-care, and food service kitchen settings are ineffective in killing some cells of E. sakazakii embedded in organic matrices.  相似文献   

2.
3.
Streptococcus pneumoniae (pneumococcus) forms organized biofilms to persist in the human nasopharynx. This persistence allows the pneumococcus to produce severe diseases such as pneumonia, otitis media, bacteremia and meningitis that kill nearly a million children every year. While bacteremia and meningitis are mediated by planktonic pneumococci, biofilm structures are present during pneumonia and otitis media. The global emergence of S. pneumoniae strains resistant to most commonly prescribed antibiotics warrants further discovery of alternative therapeutics. The present study assessed the antimicrobial potential of a plant extract, 220D-F2, rich in ellagic acid, and ellagic acid derivatives, against S. pneumoniae planktonic cells and biofilm structures. Our studies first demonstrate that, when inoculated together with planktonic cultures, 220D-F2 inhibited the formation of pneumococcal biofilms in a dose-dependent manner. As measured by bacterial counts and a LIVE/DEAD bacterial viability assay, 100 and 200 µg/ml of 220D-F2 had significant bactericidal activity against pneumococcal planktonic cultures as early as 3 h post-inoculation. Quantitative MIC’s, whether quantified by qPCR or dilution and plating, showed that 80 µg/ml of 220D-F2 completely eradicated overnight cultures of planktonic pneumococci, including antibiotic resistant strains. When preformed pneumococcal biofilms were challenged with 220D-F2, it significantly reduced the population of biofilms 3 h post-inoculation. Minimum biofilm inhibitory concentration (MBIC)50 was obtained incubating biofilms with 100 µg/ml of 220D-F2 for 3 h and 6 h of incubation. 220D-F2 also significantly reduced the population of pneumococcal biofilms formed on human pharyngeal cells. Our results demonstrate potential therapeutic applications of 220D-F2 to both kill planktonic pneumococcal cells and disrupt pneumococcal biofilms.  相似文献   

4.
Aims: To compare the susceptibility of a 3‐day‐old biofilm and planktonic Salmonella to disinfectants at different exposure times. We hypothesize that Salmonella biofilms are more resilient to disinfectants compared to planktonic Salmonella. Methods and Results: The susceptibility of planktonic cells to disinfectants was tested by a modified version of the Council of Europe suspension test EN 1276. Salmonella biofilms were formed using the Calgary Biofilm Device. Results show that 3‐day‐old Salmonella biofilms are less susceptible to the disinfectants benzalkonium chloride, chlorhexidine gluconate, citric acid, quaternary ammonium compounds, sodium hypochlorite (SH) and ethanol, compared to planktonic Salmonella. Surprisingly, the results also demonstrate that low concentrations of SH were more effective against a 3‐day‐old biofilm compared to high concentrations of SH. Conclusions: While all the disinfectants evaluated were able to reduce biofilm‐associated cells at concentrations and contact times sufficient to eliminate planktonic cells, there were still sufficient viable cells remaining in the biofilm to cause further contamination and potential infection. Significance and Impact of the Study: Protocols for the use of chemical disinfectants need to include biofilm susceptibility testing. There is a requirement for an effective and standardized tool for determining the susceptibility of biofilms to disinfectants.  相似文献   

5.
The effectiveness of 13 disinfectants used in hospitals, day-care centers, and food service kitchens in killing Enterobacter sakazakii in suspension, dried on the surface of stainless steel, and in biofilm was determined. E. sakazakii exhibited various levels of resistance to the disinfectants, depending on the composition of the disinfectants, amount and type of organic matrix surrounding cells, and exposure time. Populations of planktonic cells suspended in water (7.22 to 7.40 log CFU/ml) decreased to undetectable levels (<0.30 log CFU/ml) within 1 to 5 min upon treatment with disinfectants, while numbers of cells in reconstituted infant formula were reduced by only 0.02 to 3.69 log CFU/ml after the treatment for 10 min. The presence of infant formula also enhanced the resistance to the disinfectants of cells dried on the surface of stainless steel. The resistance of cells to disinfectants in 6-day-old and 12-day-old biofilms on the surface of stainless steel was not significantly different. The overall order of efficacy of disinfectants in killing E. sakazakii was planktonic cells > cells inoculated and dried on stainless steel > cells in biofilms on stainless steel. Findings show that disinfectants routinely used in hospital, day-care, and food service kitchen settings are ineffective in killing some cells of E. sakazakii embedded in organic matrices.  相似文献   

6.
Antibiofilm activity of several human defensin analogs that have the ability to kill planktonic bacteria, against pre-established biofilms of Escherichia coli MG1655 and Staphylococcus aureus NCTC 8530 were examined. Linear and linear fatty acylated analogs did not show any activity while disulfide constrained analogs disrupted pre-established S. aureus biofilms. Chimeric analogs of human β-defensin 1 and θ-defensin, hBTD-1 and [d]hBTD-1 were highly active against S. aureus biofilms. Among the analogs tested, only the d-enantiomer [d]hBTD-1 showed activity against E. coli biofilm. Our study provides insights into the structural requirements for the eradication of pre-established biofilms in defensin analogs.  相似文献   

7.
In clinical staphylococci, the presence of the ica genes and biofilm formation are considered important for virulence. Biofilm formation may also be of importance for survival and virulence in food-related staphylococci. In the present work, staphylococci from the food industry were found to differ greatly in their abilities to form biofilms on polystyrene. A total of 7 and 21 of 144 food-related strains were found to be strong and weak biofilm formers, respectively. Glucose and sodium chloride stimulated biofilm formation. The biofilm-forming strains belonged to nine different coagulase-negative species of Staphylococcus. The icaA gene of the intercellular adhesion locus was detected by Southern blotting and hybridization in 38 of 67 food-related strains tested. The presence of icaA was positively correlated with strong biofilm formation. The icaA gene was partly sequenced for 22 food-related strains from nine different species of Staphylococcus, and their icaA genes were found to have DNA similarities to previously sequenced icaA genes of 69 to 100%. Northern blot analysis indicated that the expression of the ica genes was higher in strong biofilm formers than that seen with strains not forming biofilms. Biofilm formation on polystyrene was positively correlated with biofilm formation on stainless steel and with resistance to quaternary ammonium compounds, a group of disinfectants.  相似文献   

8.
The formation of the organized bacterial community called biofilm is a crucial event in bacterial physiology. Given that biofilms are often refractory to antibiotics and disinfectants to which planktonic bacteria are susceptible, their formation is also an industrially and medically relevant issue. Pseudomonas aeruginosa, a well-known human pathogen causing acute and chronic infections, is considered a model organism to study biofilms. A large number of environmental cues control biofilm dynamics in bacterial cells. In particular, the dispersal of individual cells from the biofilm requires metabolic and morphological reprogramming in which the second messenger bis-(3′-5′)-cyclic dimeric GMP (c-di-GMP) plays a central role. The diatomic gas nitric oxide (NO), a well-known signaling molecule in both prokaryotes and eukaryotes, is able to induce the dispersal of P. aeruginosa and other bacterial biofilms by lowering c-di-GMP levels. In this review, we summarize the current knowledge on the molecular mechanisms connecting NO sensing to the activation of c-di-GMP-specific phosphodiesterases in P. aeruginosa, ultimately leading to c-di-GMP decrease and biofilm dispersal.  相似文献   

9.
Sabrina Behnke 《Biofouling》2013,29(6):635-647
Disinfection efficacy testing is usually done with planktonic cells or more recently, biofilms. While disinfectants are much less effective against biofilms compared to planktonic cells, questions regarding the disinfection tolerance of detached biofilm clusters remain largely unanswered. Burkholderia cepacia and Pseudomonas aeruginosa were grown in chemostats and biofilm tubing reactors, with the tubing reactor serving as a source of detached biofilm clusters. Chlorine dioxide susceptibility was assessed for B. cepacia and P. aeruginosa in these three sample types as monocultures and binary cultures. Similar doses of chlorine dioxide inactivated samples of chemostat and tubing reactor effluent and no statistically significant difference between the log10 reductions was found. This contrasts with chlorine, shown previously to be generally less effective against detached biofilm particles. Biofilms were more tolerant and required chlorine dioxide doses ten times higher than chemostat and tubing reactor effluent samples. A second species was advantageous in all sample types and resulted in lower log10 reductions when compared to the single species cultures, suggesting a beneficial interaction of the species.  相似文献   

10.

Background

Coagulase-negative staphylococci are major causes of bloodstream infections in very low birth weight babies cared for in Neonatal Intensive Care Units. The virulence of these bacteria is mainly due to their ability to form biofilms on indwelling medical devices. Biofilm-related infections often fail to respond to antibiotic chemotherapy guided by conventional antibiotic susceptibility tests.

Methods

Coagulase-negative staphylococcal blood culture isolates were grown in different phases relevant to biofilm formation: planktonic cells at mid-log phase, planktonic cells at stationary phase, adherent monolayers and mature biofilms and their susceptibilities to conventional antibiotics were assessed. The effects of oxacillin, gentamicin, and vancomycin on preformed biofilms, at the highest achievable serum concentrations were examined. Epifluorescence microscopy and confocal laser scanning microscopy in combination with bacterial viability staining and polysaccharide staining were used to confirm the stimulatory effects of antibiotics on biofilms.

Results

Most coagulase-negative staphylococcal clinical isolates were resistant to penicillin G (100%), gentamicin (83.3%) and oxacillin (91.7%) and susceptible to vancomycin (100%), ciprofloxacin (100%), and rifampicin (79.2%). Bacteria grown as adherent monolayers showed similar susceptibilities to their planktonic counterparts at mid-log phase. Isolates in a biofilm growth mode were more resistant to antibiotics than both planktonic cultures at mid-log phase and adherent monolayers; however they were equally resistant or less resistant than planktonic cells at stationary phase. Moreover, for some cell-wall active antibiotics, concentrations higher than conventional MICs were required to prevent the establishment of planktonic cultures from biofilms. Finally, the biofilm-growth of two S. capitis isolates could be enhanced by oxacillin at the highest achievable serum concentration.

Conclusion

We conclude that the resistance of coagulase-negative staphylococci to multiple antibiotics initially remain similar when the bacteria shift from a planktonic growth mode into an early attached mode, then increase significantly as the adherent mode further develops. Furthermore, preformed biofilms of some CoNS are enhanced by oxacillin in a dose-dependent manner.  相似文献   

11.
12.
The fungus Cryptococcus neoformans possesses a polysaccharide capsule and can form biofilms on medical devices. We describe the characteristics of C. neoformans biofilm development using a microtiter plate model, microscopic examinations, and a colorimetric 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium-hydroxide (XTT) reduction assay to observe the metabolic activity of cryptococci within a biofilm. A strong correlation between XTT and CFU assays was demonstrated. Chemical analysis of the exopolymeric material revealed sugar composition consisting predominantly of xylose, mannose, and glucose, indicating the presence of other polysaccharides in addition to glucurunoxylomannan. Biofilm formation was affected by surface support differences, conditioning films on the surface, characteristics of the medium, and properties of the microbial cell. A specific antibody to the capsular polysaccharide of this fungus was used to stain the extracellular polysaccharide matrix of the fungal biofilms using light and confocal microscopy. Additionally, the susceptibility of C. neoformans biofilms and planktonic cells to environmental stress was investigated using XTT reduction and CFU assays. Biofilms were less susceptible to heat, cold, and UV light exposition than their planktonic counterparts. Our findings demonstrate that fungal biofilm formation is dependent on support surface characteristics and that growth in the biofilm state makes fungal cells less susceptible to potential environmental stresses.  相似文献   

13.
Bacterial species are found primarily as residents of complex surface-associated communities, known as biofilms. Although these structures prevail in nature, bacteria still exist in planktonic lifestyle and differ from those in morphology, physiology, and metabolism. This study aimed to investigate the influence of physiological states of Pseudomonas aeruginosa and Escherichia coli in cell-to-cell interactions. Filtered supernatants obtained under planktonic and biofilm cultures of each single species were supplemented with tryptic soy broth (TSB) and used as the growth media (conditioned media) to planktonic and sessile growth of both single- and two-species cultures. Planktonic bacterial growth was examined through OD640 measurement. One-day-old biofilms were evaluated in terms of biofilm biomass (CV), respiratory activity (XTT), and CFU number. Conditioned media obtained either in biofilm or in planktonic mode of life triggered a synergistic effect on planktonic growth, mainly for E. coli single cultures growing in P. aeruginosa supernatants. Biofilms grown in the presence of P. aeruginosa biofilms-derived metabolites presented less mass and activity. These events highlight that, when developed in biofilm, P. aeruginosa release signals or metabolites able to prejudice single and binary biofilm growth of others species and of their own species. However, products released by their planktonic counterparts did not impair biofilm growth or activity. E. coli, living as planktonic or sessile cultures, released signals and metabolites or removed un-beneficial compounds which promoted the growth and activity of all the species. Our findings revealed that inter and intraspecies behaviors depend on the involved bacteria and their adopted mode of life.  相似文献   

14.
Current antibiofilm solutions based on planktonic bacterial physiology have limited efficacy in clinical and occasionally environmental settings. This has prompted a search for suitable alternatives to conventional therapies. This study compares the inhibitory properties of two biological surfactants (rhamnolipids and a plant-derived surfactant) against a selection of broad-spectrum antibiotics (ampicillin, chloramphenicol and kanamycin). Testing was carried out on a range of bacterial physiologies from planktonic and mixed bacterial biofilms. Rhamnolipids (Rhs) have been extensively characterised for their role in the development of biofilms and inhibition of planktonic bacteria. However, there are limited direct comparisons with antimicrobial substances on established biofilms comprising single or mixed bacterial strains. Baseline measurements of inhibitory activity using planktonic bacterial assays established that broad-spectrum antibiotics were 500 times more effective at inhibiting bacterial growth than either Rhs or plant surfactants. Conversely, Rhs and plant biosurfactants reduced biofilm biomass of established single bacterial biofilms by 74–88 and 74–98 %, respectively. Only kanamycin showed activity against biofilms of Bacillus subtilis and Staphylococcus aureus. Broad-spectrum antibiotics were also ineffective against a complex biofilm of marine bacteria; however, Rhs and plant biosurfactants reduced biofilm biomass by 69 and 42 %, respectively. These data suggest that Rhs and plant-derived surfactants may have an important role in the inhibition of complex biofilms.  相似文献   

15.
In both natural and artificial environments, bacteria predominantly grow in biofilms, and bacteria often disperse from biofilms as freely suspended single-cells. In the present study, the formation and dispersal of planktonic cellular aggregates, or ‘suspended biofilms’, by Pseudomonas aeruginosa in liquid batch cultures were closely examined, and compared to biofilm formation on a matrix of polyester (PE) fibers as solid surface in batch cultures. Plankton samples were analyzed by laser-diffraction particle-size scanning (LDA) and microscopy of aggregates. Interestingly, LDA indicated that up to 90% of the total planktonic biomass consisted of cellular aggregates in the size range of 10–400 µm in diameter during the growth phase, as opposed to individual cells. In cultures with PE surfaces, P. aeruginosa preferred to grow in biofilms, as opposed to planktonicly. However, upon carbon, nitrogen or oxygen limitation, the planktonic aggregates and PE-attached biofilms dispersed into single cells, resulting in an increase in optical density (OD) independent of cellular growth. During growth, planktonic aggregates and PE-attached biofilms contained densely packed viable cells and extracellular DNA (eDNA), and starvation resulted in a loss of viable cells, and an increase in dead cells and eDNA. Furthermore, a release of metabolites and infective bacteriophage into the culture supernatant, and a marked decrease in intracellular concentration of the second messenger cyclic di-GMP, was observed in dispersing cultures. Thus, what traditionally has been described as planktonic, individual cell cultures of P. aeruginosa, are in fact suspended biofilms, and such aggregates have behaviors and responses (e.g. dispersal) similar to surface associated biofilms. In addition, we suggest that this planktonic biofilm model system can provide the basis for a detailed analysis of the synchronized biofilm life cycle of P. aeruginosa.  相似文献   

16.
Staphylococcal biofilms are a major concern in both clinical and food settings because they are an important source of contamination. The efficacy of established cleaning procedures is often hindered due to the ability of some antimicrobial compounds to induce biofilm formation, and to the presence of persister cells, a small bacterial subpopulation that exhibits multidrug tolerance. Phage lytic enzymes have demonstrated antimicrobial activity against planktonic and sessile bacteria. However, their ability to lyse and/or select persister cells remains largely unexplored so far. In this work, the lytic activity of the endolysin LysH5 against Staphylococcus aureus and Staphylococcus epidermidis biofilms was confirmed. LysH5 reduced staphylococcal sessile cell counts by 1–3 log units, compared with the untreated control, and sub-inhibitory concentrations of this protein did not induce biofilm formation. LysH5-surviving cells were not resistant to the lytic activity of this protein, suggesting that no persister cells were selected. Moreover, to prove the lytic ability of LysH5 against this subpopulation, both S. aureus exponential cultures and persister cells obtained after treatment with rifampicin and ciprofloxacin were subsequently treated with LysH5. The results demonstrated that besides the notable activity of endolysin LysH5 against staphylococcal biofilms, persister cells were also inhibited, which raises new opportunities as an adjuvant for some antibiotics.  相似文献   

17.
[Pasteurella] pneumotropica biotypes Jawetz and Heyl and [Actinobacillus] muris are the most prevalent Pasteurellaceae species isolated from laboratory mouse. However, mechanisms contributing to their high prevalence such as the ability to form biofilms have not been studied yet. In the present investigation we analyze if these bacterial species can produce biofilms in vitro and investigate whether proteins, extracellular DNA and polysaccharides are involved in the biofilm formation and structure by inhibition and dispersal assays using proteinase K, DNase I and sodium periodate. Finally, the capacity of the biofilms to confer resistance to antibiotics is examined. We demonstrate that both [P.] pneumotropica biotypes but not [A.] muris are able to form robust biofilms in vitro, a phenotype which is widely spread among the field isolates. The biofilm inhibition and dispersal assays by proteinase and DNase lead to a strong inhibition in biofilm formation when added at the initiation of the biofilm formation and dispersed pre-formed [P.] pneumotropica biofilms, revealing thus that proteins and extracellular DNA are essential in biofilm formation and structure. Sodium periodate inhibited the bacterial growth when added at the beginning of the biofilm formation assay, making difficult the assessment of the role of β-1,6-linked polysaccharides in the biofilm formation, and had a biofilm stimulating effect when added on pre-established mature biofilms of [P.] pneumotropica biotype Heyl and a majority of [P.] pneumotropica biotype Jawetz strains, suggesting that the presence of β-1,6-linked polysaccharides on the bacterial surface might attenuate the biofilm production. Conversely, no effect or a decrease in the biofilm quantity was observed by biofilm dispersal using sodium periodate on further biotype Jawetz isolates, suggesting that polysaccharides might be incorporated in the biofilm structure. We additionally show that [P.] pneumotropica cells enclosed in biofilms were less sensitive to treatment with amoxicillin and enrofloxacin than planktonic bacteria. Taken together, these findings provide a first step in understanding of the biofilm mechanisms in [P.] pneumotropica, which might contribute to elucidation of colonization and pathogenesis mechanisms for these obligate inhabitants of the mouse mucosa.  相似文献   

18.
A rapid method for screening the metabolic susceptibility of biofilms to toxic compounds was developed by combining the Calgary Biofilm Device (MBEC device) and Phenotype MicroArray (PM) technology. The method was developed using Pseudomonas alcaliphila 34, a Cr(VI)-hyper-resistant bacterium, as the test organism. P. alcaliphila produced a robust biofilm after incubation for 16 h, reaching the maximum value after incubation for 24 h (9.4 × 106 ± 3.3 × 106 CFU peg?1). In order to detect the metabolic activity of cells in the biofilm, dye E (5×) and menadione sodium bisulphate (100 μM) were selected for redox detection chemistry, because they produced a high colorimetric yield in response to bacterial metabolism (340.4 ± 6.9 Omnilog Arbitrary Units). This combined approach, which avoids the limitations of traditional plate counts, was validated by testing the susceptibility of P. alcaliphila biofilm to 22 toxic compounds. For each compound the concentration level that significantly lowered the metabolic activity of the biofilm was identified. Chemical sensitivity analysis of the planktonic culture was also performed, allowing comparison of the metabolic susceptibility patterns of biofilm and planktonic cultures.  相似文献   

19.
Pseudomonas aeruginosa is a pathogenic bacterium widely investigated for its high incidence in clinical environments and its ability to form strong biofilms. During biofilm development, sessile cells acquire physiological characteristics differentiating them from planktonic cells. But after treatment with disinfectants, or to ensure survival of the species in hostile environments, biofilm cells can detach. This complicates disinfection procedures. This study aimed to physiologically characterize cells detached from a P. aeruginosa biofilm and to compare them with their sessile and planktonic counterparts. We first tested planktonic growth kinetics and capacities to form new biofilms. Then we investigated cell-surface properties. And finally, we tested in vitro susceptibility to antibiotics. The results first indicated that sessile and detached cells have similar planktonic growth kinetics and cell-surface properties, distinguishable from those of planktonic cells. Interestingly, the three populations exhibited different biofilm-forming capacities, suggesting that there is a transitional phenotype between sessile and planktonic states, at least during the first hours following cell detachment. It is important to consider this observation when developing treatments to optimize disinfection processes. Surprisingly, the three populations showed the same antibiotic susceptibility profile.  相似文献   

20.
Streptococcus pneumoniae persist in the human nasopharynx within organized biofilms. However, expansion to other tissues may cause severe infections such as pneumonia, otitis media, bacteremia, and meningitis, especially in children and the elderly. Bacteria within biofilms possess increased tolerance to antibiotics and are able to resist host defense systems. Bacteria within biofilms exhibit different physiology, metabolism, and gene expression profiles than planktonic cells. These differences underscore the need to identify alternative therapeutic targets and novel antimicrobial compounds that are effective against pneumococcal biofilms. In bacteria, DNA adenine methyltransferase (Dam) alters pathogenic gene expression and catalyzes the methylation of adenine in the DNA duplex and of macromolecules during the activated methyl cycle (AMC). In pneumococci, AMC is involved in the biosynthesis of quorum sensing molecules that regulate competence and biofilm formation. In this study, we examine the effect of a small molecule Dam inhibitor, pyrimidinedione, on Streptococcus pneumoniae biofilm formation and evaluate the changes in global gene expression within biofilms via microarray analysis. The effects of pyrimidinedione on in vitro biofilms were studied using a static microtiter plate assay, and the architecture of the biofilms was viewed using confocal and scanning electron microscopy. The cytotoxicity of pyrimidinedione was tested on a human middle ear epithelium cell line by CCK-8. In situ oligonucleotide microarray was used to compare the global gene expression of Streptococcus pneumoniae D39 within biofilms grown in the presence and absence of pyrimidinedione. Real-time RT-PCR was used to study gene expression. Pyrimidinedione inhibits pneumococcal biofilm growth in vitro in a concentration-dependent manner, but it does not inhibit planktonic cell growth. Confocal microscopy analysis revealed the absence of organized biofilms, where cell-clumps were scattered and attached to the bottom of the plate when cells were grown in the presence of pyrimidinedione. Scanning electron microscopy analysis demonstrated the absence of an extracellular polysaccharide matrix in pyrimidinedione-grown biofilms compared to control-biofilms. Pyrimidinedione also significantly inhibited MRSA, MSSA, and Staphylococcus epidermidis biofilm growth in vitro. Furthermore, pyrimidinedione does not exhibit eukaryotic cell toxicity. In a microarray analysis, 56 genes were significantly up-regulated and 204 genes were significantly down-regulated. Genes involved in galactose metabolism were exclusively up-regulated in pyrimidinedione-grown biofilms. Genes related to DNA replication, cell division and the cell cycle, pathogenesis, phosphate-specific transport, signal transduction, fatty acid biosynthesis, protein folding, homeostasis, competence, and biofilm formation were down regulated in pyrimidinedione-grown biofilms. This study demonstrated that the small molecule Dam inhibitor, pyrimidinedione, inhibits pneumococcal biofilm growth in vitro at concentrations that do not inhibit planktonic cell growth and down regulates important metabolic-, virulence-, competence-, and biofilm-related genes. The identification of a small molecule (pyrimidinedione) with S. pneumoniae biofilm-inhibiting capabilities has potential for the development of new compounds that prevent biofilm formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号