首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is great interest in the therapeutic potential of non-hematopoietic stem cells obtained from bone marrow called mesenchymal stem cells (MSCs). Rare myogenic progenitor cells in MSC cultures have been shown to convert into skeletal muscle cells in vitro and also in vivo after transplantation of bone marrow into mice. To be clinically useful, however, isolation and expansion of myogenic progenitor cells is important to improve the efficacy of cell transplantation in generating normal skeletal muscle cells. We introduced into MSCs obtained from mouse bone marrow, a plasmid vector in which an antibiotic (Zeocin) resistance gene is driven by MyoD and Myf5 enhancer elements, which are selectively active in skeletal muscle progenitor cells. Myogenic precursor cells were then isolated by antibiotic selection, expanded in culture, and shown to differentiate appropriately into multinucleate myotubes in vitro. Our results show that using a genetic selection strategy, an enriched population of myogenic progenitor cells, which will be useful for cell transplantation therapies, can be isolated from MSCs.  相似文献   

2.
Induced pluripotent stem cells (iPSCs) and their differentiated derivatives can potentially be applied to cell-based therapy for human diseases. The properties of iPSCs are being studied intensively both to understand the basic biology of pluripotency and cellular differentiation and to solve problems associated with therapeutic applications. Examples of specific preclinical applications summarized briefly in this minireview include the use of iPSCs to treat diseases of the liver, nervous system, eye, and heart and metabolic conditions such as diabetes. Early stage studies illustrate the potential of iPSC-derived cells and have identified several challenges that must be addressed before moving to clinical trials. These include rigorous quality control and efficient production of required cell populations, improvement of cell survival and engraftment, and development of technologies to monitor transplanted cell behavior for extended periods of time. Problems related to immune rejection, genetic instability, and tumorigenicity must be solved. Testing the efficacy of iPSC-based therapies requires further improvement of animal models precisely recapitulating human disease conditions.  相似文献   

3.
Since the advent of induced pluripotent stem cells (iPSCs), clinical trials using iPSC-based cell transplantation therapy have been performed in various fields of regenerative medicine. We previously demonstrated that the transplantation of mouse iPSC-derived neurospheres containing neural stem/progenitor cells with bioabsorbable nerve conduits promoted nerve regeneration in the long term in murine sciatic nerve defect models. However, it remains unclear how long the grafted iPSC-derived neurospheres survived and worked after implantation. In this study, the long-term survival of the transplanted mouse iPSC-derived neurospheres with nerve conduits was evaluated in high-immunosuppressed or non-immunosuppressed mice using in vivo imaging for the development of iPSC-based cell therapy for peripheral nerve injury. Complete 5-mm long defects were created in the sciatic nerves of immunosuppressed and non-immunosuppressed mice and reconstructed using nerve conduits coated with iPSC-derived neurospheres labeled with ffLuc. The survival of mouse iPSC-derived neurospheres on nerve conduits was monitored using in vivo imaging. The transplanted iPSC-derived neurospheres with nerve conduits survived for 365 days after transplantation in the immunosuppressed allograft models, but only survived for at least 14 days in non-immunosuppressed allograft models. This is the first study to find the longest survival rate of stem cells with nerve conduits transplanted into the peripheral nerve defects using in vivo imaging and demonstrates the differences in graft survival rate between the immunosuppressed allograft model and immune responsive allograft model. In the future, if iPSC-derived neurospheres are successfully transplanted into peripheral nerve defects with nerve conduits using iPSC stock cells without eliciting an immune response, axonal regeneration will be induced due to the longstanding supportive effect of grafted cells on direct remyelination and/or secretion of trophic factors.  相似文献   

4.
Here we describe a protocol to generate a co-culture consisting of 2 different neuronal populations. Induced pluripotent stem cells (iPSCs) are reprogrammed from human fibroblasts using episomal vectors. Colonies of iPSCs can be observed 30 days after initiation of fibroblast reprogramming. Pluripotent colonies are manually picked and grown in neural induction medium to permit differentiation into neural progenitor cells (NPCs). iPSCs rapidly convert into neuroepithelial cells within 1 week and retain the capability to self-renew when maintained at a high culture density. Primary mouse NPCs are differentiated into astrocytes by exposure to a serum-containing medium for 7 days and form a monolayer upon which embryonic day 18 (E18) rat cortical neurons (transfected with channelrhodopsin-2 (ChR2)) are added. Human NPCs tagged with the fluorescent protein, tandem dimer Tomato (tdTomato), are then seeded onto the astrocyte/cortical neuron culture the following day and allowed to differentiate for 28 to 35 days. We demonstrate that this system forms synaptic connections between iPSC-derived neurons and cortical neurons, evident from an increase in the frequency of synaptic currents upon photostimulation of the cortical neurons. This co-culture system provides a novel platform for evaluating the ability of iPSC-derived neurons to create synaptic connections with other neuronal populations.  相似文献   

5.
Over the last years, the existence of different stem cells with myogenic potential has been widely investigated. Besides the classical skeletal muscle progenitors represented by satellite cells, numerous multipotent and embryologically unrelated progenitors with a potential role in muscle differentiation and repair have been identified. In order to conceive a therapeutic approach for degenerative muscle disorders, it is of primary importance to identify an ideal stem cell endowed with all the features for a possible use in vivo. Among all emerging populations, vessel-associated stem cells are a novel and promising class of multipotent progenitors of mesodermal origin and with high myogenic potential which seem to best fit all the requirements for a possible cell therapy. In vitro and in vivostudies have already tested the effectiveness and safety of vessel-associated stem cells in animal models. This leads to the concrete possibility in the future to start pilot human clinical trials, hopefully opening the way to a turning point in the treatment of genetic and acquired muscle disorders.  相似文献   

6.
Induced pluripotent stem cells (iPSCs) maintain during the first few culture passages a set of epigenetic marks and metabolites characteristic of their somatic cell of origin, a concept defined as epigenetic donor memory. These residual somatic features are lost over time after extensive culture passaging. Therefore, epigenetic donor memory may be responsible for the higher differentiation efficiency toward the tissue of origin observed in low passage iPSCs versus high passage iPSC or iPSCs derived from a different tissue source. Remarkably, there are no studies on the relevance of microRNA (miRNA) memory following reprogramming, despite the established role of these molecules in the context of pluripotency and differentiation. Using hematopoietic progenitors cells as a model, we demonstrated that miRNAs play a central role in somatic memory retention in iPSCs. Moreover, the comparison of the miRNA expression profiles among iPSCs from different sources allowed for the detection of a set of candidate miRNAs responsible for the higher differentiation efficiency rates toward blood progenitors observed in low passage iPSCs. Combining bioinformatic predictive algorithms with biological target validation, we identified miR-155 as a key player for the in vitro differentiation of iPSC toward hematopoietic progenitors. In summary, this study reveals that during the initial passages following reprogramming, iPSCs maintained the expression of a miRNA set exclusive to the original somatic population. Hence the use of these miRNAs might hold a direct application toward our understanding of the differentiation process of iPSCs toward hematopoietic progenitor cells.  相似文献   

7.
Derivation of patient-specific induced pluripotent stem cells (iPSCs) opens a new avenue for future applications of regenerative medicine. However, before iPSCs can be used in a clinical setting, it is critical to validate their in vivo fate following autologous transplantation. Thus far, preclinical studies have been limited to small animals and have yet to be conducted in large animals that are physiologically more similar to humans. In this study, we report the first autologous transplantation of iPSCs in a large animal model through the generation of canine iPSCs (ciPSCs) from the canine adipose stromal cells and canine fibroblasts of adult mongrel dogs. We confirmed pluripotency of ciPSCs using the following techniques: (i) immunostaining and quantitative PCR for the presence of pluripotent and germ layer-specific markers in differentiated ciPSCs; (ii) microarray analysis that demonstrates similar gene expression profiles between ciPSCs and canine embryonic stem cells; (iii) teratoma formation assays; and (iv) karyotyping for genomic stability. Fate of ciPSCs autologously transplanted to the canine heart was tracked in vivo using clinical positron emission tomography, computed tomography, and magnetic resonance imaging. To demonstrate clinical potential of ciPSCs to treat models of injury, we generated endothelial cells (ciPSC-ECs) and used these cells to treat immunodeficient murine models of myocardial infarction and hindlimb ischemia.  相似文献   

8.
Androgen receptor (AR) expression surveys found that normal prostate/prostate cancer (PCa) stem/progenitor cells, but not embryonic or mesenchymal stem cells, expressed little AR with high methylation in the AR promoter. Mechanism dissection revealed that the differential methylation pattern in the AR promoter could be due to differential expression of methyltransferases and binding of methylation binding protein to the AR promoter region. The low expression of AR in normal prostate/PCa stem/progenitor cells was reversed after adding 5-aza-2′-deoxycytidine, a demethylating agent, which could then lead to decreased stemness and drive cells into a more differentiated status, suggesting that the methylation in the AR promoter of prostate stem/progenitor cells is critical not only in maintaining the stemness but also critical in protection of cells from differentiation. Furthermore, induced AR expression, via alteration of its methylation pattern, led to suppression of the self-renewal/proliferation of prostate stem/progenitor cells and PCa tumorigenesis in both in vitro assays and in vivo orthotopic xenografted mouse studies. Taken together, these data prove the unique methylation pattern of AR promoter in normal prostate/PCa stem/progenitor cells and the influence of AR on their renewal/proliferation and differentiation. Targeting PCa stem/progenitor cells with alteration of methylated AR promoter status might provide a new potential therapeutic approach to battle PCa because the PCa stem/progenitor cells have high tumorigenicity.  相似文献   

9.
The abundance and cross-linking of intramuscular connective tissue contributes to the background toughness of meat, and is thus undesirable. Connective tissue is mainly synthesized by intramuscular fibroblasts. Myocytes, adipocytes and fibroblasts are derived from a common pool of progenitor cells during the early embryonic development. It appears that multipotent mesenchymal stem cells first diverge into either myogenic or non-myogenic lineages; non-myogenic mesenchymal progenitors then develop into the stromal-vascular fraction of skeletal muscle wherein adipocytes, fibroblasts and derived mesenchymal progenitors reside. Because non-myogenic mesenchymal progenitors mainly undergo adipogenic or fibrogenic differentiation during muscle development, strengthening progenitor proliferation enhances the potential for both intramuscular adipogenesis and fibrogenesis, leading to the elevation of both marbling and connective tissue content in the resulting meat product. Furthermore, given the bipotent developmental potential of progenitor cells, enhancing their conversion to adipogenesis reduces fibrogenesis, which likely results in the overall improvement of marbling (more intramuscular adipocytes) and tenderness (less connective tissue) of meat. Fibrogenesis is mainly regulated by the transforming growth factor (TGF) β signaling pathway and its regulatory cascade. In addition, extracellular matrix, a part of the intramuscular connective tissue, provides a niche environment for regulating myogenic differentiation of satellite cells and muscle growth. Despite rapid progress, many questions remain in the role of extracellular matrix on muscle development, and factors determining the early differentiation of myogenic, adipogenic and fibrogenic cells, which warrant further studies.  相似文献   

10.
Pluripotent stem cells have potential applications in regenerative medicine for diabetes. Differentiation of stem cells into insulin-producing cells has been achieved using various protocols. However, both the efficiency of the method and potency of differentiated cells are insufficient. Oxygen tension, the partial pressure of oxygen, has been shown to regulate the embryonic development of several organs, including pancreatic β-cells. In this study, we tried to establish an effective method for the differentiation of induced pluripotent stem cells (iPSCs) into insulin-producing cells by culturing under high oxygen (O2) conditions. Treatment with a high O2 condition in the early stage of differentiation increased insulin-positive cells at the terminus of differentiation. We found that a high O2 condition repressed Notch-dependent gene Hes1 expression and increased Ngn3 expression at the stage of pancreatic progenitors. This effect was caused by inhibition of hypoxia-inducible factor-1α protein level. Moreover, a high O2 condition activated Wnt signaling. Optimal stage-specific treatment with a high O2 condition resulted in a significant increase in insulin production in both mouse embryonic stem cells and human iPSCs and yielded populations containing up to 10% C-peptide-positive cells in human iPSCs. These results suggest that culturing in a high O2 condition at a specific stage is useful for the efficient generation of insulin-producing cells.  相似文献   

11.
The liver is one of the few organs that possess a high capacity to regenerate after liver failure or liver damage. The parenchymal cells of the liver, hepatocytes, contribute to the majority of the regeneration process. Thus, hepatocyte transplantation presents an alternative method to treating liver damage. However, shortage of hepatocytes and difficulties in maintaining primary hepatocytes still remain key obstacles that researchers must overcome before hepatocyte transplantation can be used in clinical practice. The unique properties of pluripotent stem cells (PSCs) and induced pluripotent stem cells (iPSCs) have provided an alternative approach to generating enough functional hepatocytes for cellular therapy. In this review, we will present a brief overview on the current state of hepatocyte differentiation from PSCs and iPSCs. Studies of liver regenerative processes using different cell sources (adult liver stem cells, hepatoblasts, hepatic progenitor cells, etc.) will be described in detail as well as how this knowledge can be applied towards optimizing culture conditions for the maintenance and differentiation of these cells towards hepatocytes. As the outlook of stem cell-derived therapy begins to look more plausible, researchers will need to address the challenges we must overcome in order to translate stem cell research to clinical applications.  相似文献   

12.
13.
Muscular dystrophies (MDs) are a heterogeneous group of inherited disorders characterized by progressive muscle wasting and weakness likely associated with exhaustion of muscle regeneration potential. At present, no cures or efficacious treatments are available for these diseases, but cell transplantation could be a potential therapeutic strategy. Transplantation of myoblasts using satellite cells or other myogenic cell populations has been attempted to promote muscle regeneration, based on the hypothesis that the donor cells repopulate the muscle and contribute to its regeneration. Embryonic stem cells (ESCs) and more recently induced pluripotent stem cells (iPSCs) could generate an unlimited source of differentiated cell types, including myogenic cells. Here we review the literature regarding the generation of myogenic cells considering the main techniques employed to date to elicit efficient differentiation of human and murine ESCs or iPSCs into skeletal muscle. We also critically analyse the possibility of using these cellular populations as an alternative source of myogenic cells for cell therapy of MDs.  相似文献   

14.
Hepatocyte transplantation is considered a promising therapy for patients with liver diseases. Induced pluripotent stem cells (iPSCs) are an unlimited source for the generation of functional hepatocytes. While several protocols that direct the differentiation of iPSCs into hepatocyte-like cells have already been reported, the liver engraftment potential of iPSC progeny obtained at each step of hepatic differentiation has not yet been thoroughly investigated. In this study, we present an efficient strategy to differentiate mouse iPSCs into hepatocyte-like cells and evaluate their liver engraftment potential at different time points of the protocol (5, 10, 15, and 20 days of differentiation). iPSCs were differentiated in the presence of cytokines, growth factors, and small molecules to finally generate hepatocyte-like cells. These iPSC-derived hepatocyte-like cells exhibited hepatocyte-associated functions, such as albumin secretion and urea synthesis. When we transplanted iPSC progeny into the spleen, we found that 15- and 20-day iPSC progeny engrafted into the livers and further acquired hepatocyte morphology. In contrast, 5- and 10-day iPSC progeny were also able to engraft but did not generate hepatocyte-like cells in vivo. Our data may aid in improving current protocols geared towards the use of iPSCs as a new source of liver-targeted cell therapies.  相似文献   

15.
Craniofacial skeletal repair and regeneration offers the promise of de novo tissue formation through a cell-based approach utilizing stem cells. Adipose-derived stromal cells (ASCs) have proven to be an abundant source of multipotent stem cells capable of undergoing osteogenic, chondrogenic, adipogenic, and myogenic differentiation. Many studies have explored the osteogenic potential of these cells in vivo with the use of various scaffolding biomaterials for cellular delivery. It has been demonstrated that by utilizing an osteoconductive, hydroxyapatite-coated poly(lactic-co-glycolic acid) (HA-PLGA) scaffold seeded with ASCs, a critical-sized calvarial defect, a defect that is defined by its inability to undergo spontaneous healing over the lifetime of the animal, can be effectively show robust osseous regeneration. This in vivo model demonstrates the basis of translational approaches aimed to regenerate the bone tissue - the cellular component and biological matrix. This method serves as a model for the ultimate clinical application of a progenitor cell towards the repair of a specific tissue defect.  相似文献   

16.
17.
Cachexia is a serious complication of many chronic diseases, such as congestive heart failure (CHF) and chronic kidney disease (CKD). Although patients with advanced CHF or CKD often have increased angiotensin II (Ang II) levels and cachexia and Ang II causes skeletal muscle wasting in rodents, the potential effects of Ang II on muscle regeneration are unknown. Muscle regeneration is highly dependent on the ability of a pool of muscle stem cells (satellite cells) to proliferate and to repair damaged myofibers or form new myofibers. Here we show that Ang II reduced skeletal muscle regeneration via inhibition of satellite cell (SC) proliferation. Ang II reduced the number of regenerating myofibers and decreased expression of SC proliferation/differentiation markers (MyoD, myogenin, and active-Notch) after cardiotoxin-induced muscle injury in vivo and in SCs cultured in vitro. Ang II depleted the basal pool of SCs, as detected in Myf5nLacZ/+ mice and by FACS sorting, and this effect was inhibited by Ang II AT1 receptor (AT1R) blockade and in AT1aR-null mice. AT1R was highly expressed in SCs, and Notch activation abrogated the AT1R-mediated antiproliferative effect of Ang II in cultured SCs. In mice that developed CHF postmyocardial infarction, there was skeletal muscle wasting and reduced SC numbers that were inhibited by AT1R blockade. Ang II inhibition of skeletal muscle regeneration via AT1 receptor-dependent suppression of SC Notch and MyoD signaling and proliferation is likely to play an important role in mechanisms leading to cachexia in chronic disease states such as CHF and CKD.  相似文献   

18.
Induced pluripotent stem cells (iPSCs) are novel stem cells derived from adult mouse and human tissues by reprogramming. Elucidation of mechanisms and exploration of efficient methods for their differentiation to functional cardiomyocytes are essential for developing cardiac cell models and future regenerative therapies. We previously established a novel mouse embryonic stem cell (ESC) and iPSC differentiation system in which cardiovascular cells can be systematically induced from Flk1(+) common progenitor cells, and identified highly cardiogenic progenitors as Flk1(+)/CXCR4(+)/VE-cadherin(-) (FCV) cells. We have also reported that cyclosporin-A (CSA) drastically increases FCV progenitor and cardiomyocyte induction from mouse ESCs. Here, we combined these technologies and extended them to mouse and human iPSCs. Co-culture of purified mouse iPSC-derived Flk1(+) cells with OP9 stroma cells induced cardiomyocyte differentiation whilst addition of CSA to Flk1(+) cells dramatically increased both cardiomyocyte and FCV progenitor cell differentiation. Spontaneously beating colonies were obtained from human iPSCs by co-culture with END-2 visceral endoderm-like cells. Appearance of beating colonies from human iPSCs was increased approximately 4.3 times by addition of CSA at mesoderm stage. CSA-expanded human iPSC-derived cardiomyocytes showed various cardiac marker expressions, synchronized calcium transients, cardiomyocyte-like action potentials, pharmacological reactions, and ultra-structural features as cardiomyocytes. These results provide a technological basis to obtain functional cardiomyocytes from iPSCs.  相似文献   

19.
Skeletal muscle repair occurs through a programmed series of events including myogenic precursor activation, myoblast proliferation, and differentiation into new myofibers. We previously identified a role for Stem cell antigen-1 (Sca-1) in myoblast proliferation and differentiation in vitro. We demonstrated that blocking Sca-1 expression resulted in sustained myoblast cell division. Others have since demonstrated that Sca-1-null myoblasts display a similar phenotype when cultured ex vivo. To test the importance of Sca-1 during myogenesis in vivo, we employed a myonecrotic injury model in Sca-1(-/-) and Sca-1(+/+) mice. Our results demonstrate that Sca-1(-/-) myoblasts exhibit a hyperproliferative response consisting of prolonged and accelerated cell division in response to injury. This leads to delayed myogenic differentiation and muscle repair. These data provide the first in vivo evidence for Sca-1 as a regulator of myoblast proliferation during muscle regeneration. These studies also suggest that the balance between myogenic precursor proliferation and differentiation is critical to normal muscle repair.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号