首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The E2 ubiquitin-conjugating enzymes UbcH7 and UbcH5B both show specific binding to the RING (really interesting new gene) domain of the E3 ubiquitin-protein ligase c-Cbl, but UbcH7 hardly supports ubiquitination of c-Cbl and substrate in a reconstituted system. Here, we found that neither structural changes nor subtle differences in the E2-E3 interaction surface are possible explanations for the functional specificity of UbcH5B and UbcH7 in their interaction with c-Cbl. The quick transfer of ubiquitin from the UbcH5B∼Ub thioester to c-Cbl or other ubiquitin acceptors suggests that UbcH5B might functionally be a relatively pliable E2 enzyme. In contrast, the UbcH7∼Ub thioester is too stable to transfer ubiquitin under our assay conditions, indicating that UbcH7 might be a more specific E2 enzyme. Our results imply that the interaction specificity between c-Cbl and E2 is required but not sufficient for transfer of ubiquitin to potential targets.  相似文献   

2.
The ubiquitin-signaling pathway utilizes E1 activating, E2 conjugating, and E3 ligase enzymes to sequentially transfer the small modifier protein ubiquitin to a substrate protein. During the last step of this cascade different types of E3 ligases either act as scaffolds to recruit an E2 enzyme and substrate (RING), or form an ubiquitin-thioester intermediate prior to transferring ubiquitin to a substrate (HECT). The RING-inBetweenRING-RING (RBR) proteins constitute a unique group of E3 ubiquitin ligases that includes the Human Homologue of Drosophila Ariadne (HHARI). These E3 ligases are proposed to use a hybrid RING/HECT mechanism whereby the enzyme uses facets of both the RING and HECT enzymes to transfer ubiquitin to a substrate. We now present the solution structure of the HHARI RING2 domain, the key portion of this E3 ligase required for the RING/HECT hybrid mechanism. The structure shows the domain possesses two Zn2+-binding sites and a single exposed cysteine used for ubiquitin catalysis. A structural comparison of the RING2 domain with the HECT E3 ligase NEDD4 reveals a near mirror image of the cysteine and histidine residues in the catalytic site. Further, a tandem pair of aromatic residues exists near the C-terminus of the HHARI RING2 domain that is conserved in other RBR E3 ligases. One of these aromatic residues is remotely located from the catalytic site that is reminiscent of the location found in HECT E3 enzymes where it is used for ubiquitin catalysis. These observations provide an initial structural rationale for the RING/HECT hybrid mechanism for ubiquitination used by the RBR E3 ligases.  相似文献   

3.
Ubiquitination involves the attachment of ubiquitin to lysine residues on substrate proteins or itself, which can result in protein monoubiquitination or polyubiquitination. Ubiquitin attachment to different lysine residues can generate diverse substrate-ubiquitin structures, targeting proteins to different fates. The mechanisms of lysine selection are not well understood. Ubiquitination by the largest group of E3 ligases, the RING-family E3 s, is catalyzed through co-operation between the non-catalytic ubiquitin-ligase (E3) and the ubiquitin-conjugating enzyme (E2), where the RING E3 binds the substrate and the E2 catalyzes ubiquitin transfer. Previous studies suggest that ubiquitination sites are selected by E3-mediated positioning of the lysine toward the E2 active site. Ultimately, at a catalytic level, ubiquitination of lysine residues within the substrate or ubiquitin occurs by nucleophilic attack of the lysine residue on the thioester bond linking the E2 catalytic cysteine to ubiquitin. One of the best studied RING E3/E2 complexes is the Skp1/Cul1/F box protein complex, SCFCdc4, and its cognate E2, Cdc34, which target the CDK inhibitor Sic1 for K48-linked polyubiquitination, leading to its proteasomal degradation. Our recent studies of this model system demonstrated that residues surrounding Sic1 lysines or lysine 48 in ubiquitin are critical for ubiquitination. This sequence-dependence is linked to evolutionarily conserved key residues in the catalytic region of Cdc34 and can determine if Sic1 is mono- or poly-ubiquitinated. Our studies indicate that amino acid determinants in the Cdc34 catalytic region and their compatibility to those surrounding acceptor lysine residues play important roles in lysine selection. This may represent a general mechanism in directing the mode of ubiquitination in E2 s.  相似文献   

4.
RING‐in‐between‐RING (RBR) ubiquitin (Ub) ligases are a distinct class of E3s, defined by a RING1 domain that binds E2 Ub‐conjugating enzyme and a RING2 domain that contains an active site cysteine similar to HECT‐type E3s. Proposed to function as RING/HECT hybrids, details regarding the Ub transfer mechanism used by RBRs have yet to be defined. When paired with RING‐type E3s, E2s perform the final step of Ub ligation to a substrate. In contrast, when paired with RBR E3s, E2s must transfer Ub onto the E3 to generate a E3~Ub intermediate. We show that RBRs utilize two strategies to ensure transfer of Ub from the E2 onto the E3 active site. First, RING1 domains of HHARI and RNF144 promote open E2~Ubs. Second, we identify a Ub‐binding site on HHARI RING2 important for its recruitment to RING1‐bound E2~Ub. Mutations that ablate Ub binding to HHARI RING2 also decrease RBR ligase activity, consistent with RING2 recruitment being a critical step for the RBR Ub transfer mechanism. Finally, we demonstrate that the mechanism defined here is utilized by a variety of RBRs.  相似文献   

5.
The linear ubiquitin chain assembly complex (LUBAC) is a RING E3 ligase that regulates immune and inflammatory signalling pathways. Unlike classical RING E3 ligases, LUBAC determines the type of ubiquitin chain being formed, an activity normally associated with the E2 enzyme. We show that the RING-in-between-RING (RBR)-containing region of HOIP-the catalytic subunit of LUBAC-is sufficient to generate linear ubiquitin chains. However, this activity is inhibited by the N-terminal portion of the molecule, an inhibition that is released upon complex formation with HOIL-1L or SHARPIN. Furthermore, we demonstrate that HOIP transfers ubiquitin to the substrate through a thioester intermediate formed by a conserved cysteine in the RING2 domain, supporting the notion that RBR ligases act as RING/HECT hybrids.  相似文献   

6.
The transfer of ubiquitin (Ub) to a substrate protein requires a cascade of E1 activating, E2 conjugating, and E3 ligating enzymes. E3 Ub ligases containing U-box and RING domains bind both E2~Ub conjugates and substrates to facilitate transfer of the Ub molecule. Although the overall mode of action of E3 ligases is well established, many of the mechanistic details that determine the outcome of ubiquitination are poorly understood. CHIP (carboxyl terminus of Hsc70-interacting protein) is a U-box E3 ligase that serves as a co-chaperone to heat shock proteins and is critical for the regulation of unfolded proteins in the cytosol. We have performed a systematic analysis of the interactions of CHIP with E2 conjugating enzymes and found that only a subset bind and function. Moreover, some E2 enzymes function in pairs to create products that neither create individually. Characterization of the products of these reactions showed that different E2 enzymes produce different ubiquitination products, i.e. that E2 determines the outcome of Ub transfer. Site-directed mutagenesis on the E2 enzymes Ube2D1 and Ube2L3 (UbcH5a and UbcH7) established that an SPA motif in loop 7 of E2 is required for binding to CHIP but is not sufficient for activation of the E2~Ub conjugate and consequent ubiquitination activity. These data support the proposal that the E2 SPA motif provides specificity for binding to CHIP, whereas activation of the E2~Ub conjugate is derived from other molecular determinants.  相似文献   

7.
RING (really interesting new gene) and U-box E3 ligases bridge E2 ubiquitin-conjugating enzymes and substrates to enable the transfer of ubiquitin to a lysine residue on the substrate or to one of the seven lysine residues of ubiquitin for polyubiquitin chain elongation. Different polyubiquitin chains have different functions. Lys(48)-linked chains target proteins for proteasomal degradation, and Lys(63)-linked chains function in signal transduction, endocytosis and DNA repair. For this reason, chain topology must be tightly controlled. Using the U-box E3 ligase CHIP [C-terminus of the Hsc (heat-shock cognate) 70-interacting protein] and the RING E3 ligase TRAF6 (tumour-necrosis-factor-receptor-associated factor 6) with the E2s Ubc13 (ubiquitin-conjugating enzyme 13)-Uev1a (ubiquitin E2 variant 1a) and UbcH5a, in the present study we demonstrate that Ubc13-Uev1a supports the formation of free Lys(63)-linked polyubiquitin chains not attached to CHIP or TRAF6, whereas UbcH5a catalyses the formation of polyubiquitin chains linked to CHIP and TRAF6 that lack specificity for any lysine residue of ubiquitin. Therefore the abilities of these E2s to ubiquitinate a substrate and to elongate polyubiquitin chains of a specific topology appear to be mutually exclusive. Thus two different classes of E2 may be required to attach a polyubiquitin chain of a particular topology to a substrate: the properties of one E2 are designed to mono-ubiquitinate a substrate with no or little inherent specificity for an acceptor lysine residue, whereas the properties of the second E2 are tailored to the elongation of a polyubiquitin chain using a defined lysine residue of ubiquitin.  相似文献   

8.
9.
E3 ubiquitin ligases catalyze the final step of ubiquitin conjugation and regulate numerous cellular processes. The HECT class of E3 ubiquitin (Ub) ligases directly transfers Ub from bound E2 enzyme to a myriad of substrates. The catalytic domain of HECT Ub ligases has a bilobal architecture that separates the E2 binding region and catalytic site. An important question regarding HECT domain function is the control of ligase activity and specificity. Here we present a functional analysis of the HECT domain of the E3 ligase HUWE1 based on crystal structures and show that a single N-terminal helix significantly stabilizes the HECT domain. We observe that this element modulates HECT domain activity, as measured by self-ubiquitination induced in the absence of this helix, as distinct from its effects on Ub conjugation of substrate Mcl-1. Such subtle changes to the protein may be at the heart of the vast spectrum of substrate specificities displayed by HECT domain E3 ligases.  相似文献   

10.
Ubiquitination of proteins provides a powerful and versatile post-translational signal in the eukaryotic cell. The formation of a thioester bond between ubiquitin (Ub) and the active site of a ubiquitin-conjugating enzyme (E2) is critical for the transfer of Ub to substrates. Assembly of a functional ubiquitin ligase (E3) complex poised for Ub transfer involves recognition and binding of an E2~Ub conjugate. Therefore, full characterization of the structure and dynamics of E2~Ub conjugates is required for further mechanistic understanding of Ub transfer reactions. Here we present characterization of the dynamic behavior of E2~Ub conjugates of two human enzymes, UbcH5c~Ub and Ubc13~Ub, in solution as determined by nuclear magnetic resonance and small-angle X-ray scattering. Within each conjugate, Ub retains great flexibility with respect to the E2, indicative of highly dynamic species that adopt manifold orientations. The population distribution of Ub conformations is dictated by the identity of the E2: the UbcH5c~Ub conjugate populates an array of extended conformations, and the population of Ubc13~Ub conjugates favors a closed conformation in which the hydrophobic surface of Ub faces helix 2 of Ubc13. We propose that the varied conformations adopted by Ub represent available binding modes of the E2~Ub species and thus provide insight into the diverse E2~Ub protein interactome, particularly with regard to interaction with Ub ligases.  相似文献   

11.
TRIM E3 ubiquitin ligases regulate a wide variety of cellular processes and are particularly important during innate immune signalling events. They are characterized by a conserved tripartite motif in their N‐terminal portion which comprises a canonical RING domain, one or two B‐box domains and a coiled‐coil region that mediates ligase dimerization. Self‐association via the coiled‐coil has been suggested to be crucial for catalytic activity of TRIMs; however, the precise molecular mechanism underlying this observation remains elusive. Here, we provide a detailed characterization of the TRIM ligases TRIM25 and TRIM32 and show how their oligomeric state is linked to catalytic activity. The crystal structure of a complex between the TRIM25 RING domain and an ubiquitin‐loaded E2 identifies the structural and mechanistic features that promote a closed E2~Ub conformation to activate the thioester for ubiquitin transfer allowing us to propose a model for the regulation of activity in the full‐length protein. Our data reveal an unexpected diversity in the self‐association mechanism of TRIMs that might be crucial for their biological function.  相似文献   

12.
The RING‐in‐between‐RING (RBR) E3s are a curious family of ubiquitin E3‐ligases, whose mechanism of action is unusual in several ways. Their activities are auto‐inhibited, causing a requirement for activation by protein‐protein interactions or posttranslational modifications. They catalyse ubiquitin conjugation by a concerted RING/HECT‐like mechanism in which the RING1 domain facilitates E2‐discharge to directly form a thioester intermediate with a cysteine in RING2. This short‐lived, HECT‐like intermediate then modifies the target. Uniquely, the RBR ligase HOIP makes use of this mechanism to target the ubiquitin amino‐terminus, by presenting the target ubiquitin for modification using its distinctive LDD region.  相似文献   

13.
RING (Really Interesting New Gene)‐in‐between‐RING (RBR) enzymes are a distinct class of E3 ubiquitin ligases possessing a cluster of three zinc‐binding domains that cooperate to catalyse ubiquitin transfer. The regulation and biological function for most members of the RBR ligases is not known, and all RBR E3s characterized to date are auto‐inhibited for in vitro ubiquitylation. Here, we show that TRIAD1 and HHARI, two members of the Ariadne subfamily ligases, associate with distinct neddylated Cullin‐RING ligase (CRL) complexes. In comparison to the modest E3 ligase activity displayed by isolated TRIAD1 or HHARI, binding of the cognate neddylated CRL to TRIAD1 or HHARI greatly stimulates RBR ligase activity in vitro, as determined by auto‐ubiquitylation, their ability to stimulate dissociation of a thioester‐linked UBCH7~ubiquitin intermediate, and reactivity with ubiquitin‐vinyl methyl ester. Moreover, genetic evidence shows that RBR ligase activity impacts both the levels and activities of neddylated CRLs in vivo. Cumulatively, our work proposes a conserved mechanism of CRL‐induced Ariadne RBR ligase activation and further suggests a reciprocal role of this special class of RBRs as regulators of distinct CRLs.  相似文献   

14.
Proteasome-dependent degradation of ubiquitinated proteins plays a key role in many important cellular processes. Ubiquitination requires the E1 ubiquitin activating enzyme, an E2 ubiquitin conjugating enzyme, and frequently a substrate-specific ubiquitin protein ligase (E3). One class of E3 ubiquitin ligases has been shown to contain a common zinc-binding RING finger motif. We have previously shown that herpes simplex virus type 1 ICP0, itself a RING finger protein, induces the proteasome-dependent degradation of several cellular proteins and induces the accumulation of colocalizing conjugated ubiquitin in vivo. We now report that both full-length ICP0 and its isolated RING finger domain induce the accumulation of polyubiquitin chains in vitro in the presence of E1 and the E2 enzymes UbcH5a and UbcH6. Mutations within the RING finger region that abolish the in vitro ubiquitination activity also cause severe reductions in ICP0 activity in other assays. We conclude that ICP0 has the potential to act as an E3 ubiquitin ligase during viral infection and to target specific cellular proteins for destruction by the 26S proteasome.  相似文献   

15.
EMBO J (2012) 31 19, 3833–3844 doi:10.1038/emboj.2012.217; published online September072012EMBO Rep (2012) 13 9, 840–846 doi:10.1038/embor.2012.105; published online September072012The ‘RING-between-RING''-type E3 ubiquitin ligase HOIP acts via a novel RING/HECT-hybrid ubiquitin transfer mechanism and catalyses the formation of linear ubiquitin chains by non-covalently binding the acceptor ubiquitin. But in the absence of a binding partner, HOIP is auto-inhibited. This explains why assembly of either HOIP/HOIL-1L or HOIP/SHARPIN is required to catalyse linear chain formation.Post-translational modification of a protein with Ubiquitin (Ub) requires the activity of three enzymes: a Ub activating enzyme (E1), a Ub conjugating enzyme (E2), and a Ub ligase (E3). Final Ub transfer is performed by an E3 enzyme, which mediates the ligation of Ub from an E2∼Ub conjugate (‘∼'' denotes a thioester) onto a substrate. E3s are commonly divided into two mechanistic classes: RING/U-box E3s and HECT E3s. RING/U-box E3s facilitate the transfer of Ub from the E2∼Ub directly onto a substrate amino group. In contrast, HECTs transfer Ub from the E2∼Ub to the substrate via a HECT∼Ub intermediate. This mechanistic difference leads to an important distinction regarding what determines the type of Ub product (i.e., the specific Ub-chain linkage) formed: in ubiquitination pathways involving RING-type E3 ligases, the E2 determines the product formed, whereas for HECT-catalysed pathways, the E3 governs product formation (Christensen et al, 2007; Kim and Huibregtse, 2009).RING-between-RING (RBR) E3s comprise a class of E3s that appear to have special properties. Although RBR E3s have been considered as a subfamily of RING E3s, the RBR E3 HHARI (Human Homologue of ARIadne) was recently shown to form a HECT-like E3∼Ub intermediate (Wenzel et al, 2011). Two other members of the RBR family, HOIL-1 and HOIP, form the Linear Ub Chain Assembly Complex (LUBAC), the only E3 ligase known to catalyse the synthesis of linear Ub chains (Kirisako et al, 2006). Linear Ub chains are produced by head-to-tail conjugation of Ub molecules through their N- and C-termini and have been shown to activate the canonical NF-κB pathway (Tokunaga et al, 2009).Two studies by the Rittinger and Sixma groups now reveal important insights regarding the formation of linear Ub chains by the dimeric RBR E3 complex HOIP/HOIL-1L (Smit et al, 2012; Stieglitz et al, 2012). Results from these studies highlight three emerging themes among RBR ligases: a RING/HECT-hybrid Ub transfer mechanism; auto-inhibition of RBR E3 activity, and a role for E3:Ub interactions.The RBR E3 ligase domain consists of two distinct RING domains, called RING1 and RING2, connected by an IBR (In-Between-Ring) domain. Despite its name, RING2 is not a canonical RING domain as it contains an active site Cysteine (Cys), which has recently been shown to form a thioester E3∼Ub intermediate, as directly detected for the RBR E3 HHARI. Although the Ub-loaded species could not be detected for the RBR E3 parkin, mutation of the analogous cysteine residue abrogated parkin''s ligase activity implying that it works via the same mechanism. On the basis of these observations, Wenzel et al (2011) proposed that the RBR E3s are a family of RING/HECT hybrids that use RING1 to bind an E2 (RING-like) and RING2 to present the active site Cys (HECT-like) as shown schematically in Figure 1. Both Smit et al (2012) and Stieglitz et al (2012) observed a HOIP∼Ub thioester, confirming that HOIP also acts via a RING/HECT-hybrid mechanism. Furthermore, Smit et al (2012) used a clever strategy to uncouple the first transfer event (E2∼Ub to E3) from the final transfer event (E3∼Ub to substrate Ub) to verify that the E3∼Ub intermediate is a prerequisite for Ub transfer onto a substrate and not just a serendipitous side product. The results extend the number of RBR E3s for which a thioester intermediate has been observed and support the notion that RBR E3s are indeed RING/HECT hybrids.Open in a separate windowFigure 1Three common themes are emerging among RBR ligases: a RING/HECT-hybrid Ub transfer mechanism; auto-inhibition of RBR E3 activity, and a role for E3:Ub interactions. RBR E3s are characterized by their RBR domain that consists of two distinct RING domains, RING1 that binds the E2, and RING2 that harbours the active site Cys. Two new studies on the RBR E3 HOIP show that (a) domain(s) in HOIP''s N-terminal region inhibits its ligase activity and (b) a domain C-terminal to HOIP''s RBR binds and orients an acceptor Ub to direct linear Ub-chain formation (‘Linear Ub chain Determining Domain'' or LDD). (A)Three ways in which auto-inhibition might occur are illustrated: (1) inhibition of E2∼Ub binding by RING1, (2) obstruction of the active site cysteine on RING2, and/or (3) occlusion of acceptor Ub binding on the LDD. (B) A possible flow of events that occur once auto-inhibition released is shown. Details of each step and how specifically auto-inhibition is released are still unknown.Previous studies have established that HOIP Ub ligase activity and subsequent activation of NF-κB require either the RBR-containing protein, HOIL-1L, or SHARPIN, an adaptor protein associated with LUBAC (Ikeda et al, 2011; Tokunaga et al, 2011). The two current studies now show that although full-length HOIP exhibits very low activity on its own, removal of the N-terminal ∼700 residues results in robust ligase activity. Thus, HOIP appears to be auto-inhibited in the absence of a binding partner. Further analysis revealed that HOIP''s UBA (Ub-Associated) domain is partly responsible for auto-inhibition, although additional N-terminal domains appear to have auto-inhibitory effects as well. SHARPIN, which contains a UBL (Ub-Like) domain, can relieve auto-inhibition of HOIP. Similarly, the addition of the HOIL-1L UBL domain, previously shown to interact with the HOIP UBA domain (Yagi et al, 2012), relieves inhibition. Interestingly, the addition of full-length HOIL-1L results in even greater ubiquitination activity.Stieglitz et al (2012) show that the RBR E3 HOIL-1L has very low E3 activity on its own. Intriguingly, they found that mutation of the HOIL-1L RING2 active site Cys (C460A) reduced activity of the HOIP/HOIL-1L complex back to levels comparable to HOIP activity in presence of HOIL UBL alone. This suggests a more active, catalytic role for HOIL-1L in linear Ub-chain formation than previously appreciated. The details regarding this role must await further studies, but involvement of an active site Cys residue on a second RING2 domain suggests a possible reciprocal transfer mechanism. Perhaps linear chains can be pre-built via such a mechanism and passed en bloc to substrate, similarly to mechanisms used by some HECT-type bacterial E3 ligases (Levin et al, 2010).Parkin, another RBR E3, also exhibits auto-inhibition (Chaugule et al, 2011), but the auto-inhibitory mechanism and the release thereof differ from HOIP. Unlike parkin''s N-terminal UBL, which is thought to interact within the RBR domain at RING2, HOIP''s UBA does not bind detectably in trans to any region in the RBR domain (Stieglitz et al, 2012). Furthermore, addition of its UBA in trans does not inhibit the activity of HOIP RBR E3 as was seen with parkin and its UBL domain. The auto-inhibition of parkin is likely released by substrate binding, because addition of either the UIM of Eps15 or the SH3 domain of endophilin-A, both known to bind the parkin UBL, can restore the activity of parkin (Chaugule et al, 2011). In addition, phosphorylation of Ser65 within the UBL of parkin by PINK-1 activates parkin, presumably by releasing the UBL from RING2 (Kondapalli et al, 2012). In contrast, HOIP overcomes its auto-inhibition through binding either HOIL-1L or SHARPIN. There is no additive effect when both binding partners are present, consistent with the notion that both proteins act via their UBL domains, although this remains to be demonstrated for SHARPIN. The activity of either SHARPIN/HOIP or HOIL-1L/HOIP can activate NF-κB (Ikeda et al, 2011; Tokunaga et al, 2011), but how the protein complexes differ in their cellular roles remains to be further analysed.The finding that HOIP and parkin exhibit auto-inhibition raises the question whether there is something special about the RBR E3s that require auto-inhibition. In this regard, we note that RBR E3s bind the E2 UbcH7 with significantly tighter affinity than canonical RING E3s bind their E2s (Dove and Klevit, unpublished). In the absence of a substrate, RING1 loaded with UbcH7∼Ub would lead to non-productive transfer of Ub from UbcH7∼Ub to the active site of RING2. Occlusion of the active site by auto-inhibition may therefore act as a safety check until its activity is required for transfer of Ub to a substrate. As yet, there is no evidence to indicate whether substrate binding will release HOIP auto-inhibition, as it does for parkin, but this remains a possibility.The revelation that removal of all domains N-terminal to the HOIP RING1 domain yields a highly active ligase allowed both groups to explore questions pertaining to how linear chains are built. Remarkably, constructs comprised of only the RBR domain through the C-terminus of HOIP are sufficient to specify linear Ub chains. (The two groups use HOIP constructs that differ by only two N-terminal residues (697/699–1072) but Stieglitz et al call their construct RBR whereas Smit et al call it RBR-LDD.) (Smit et al, 2012; Stieglitz et al, 2012). Smit et al (2012) demonstrate that the region immediately C-terminal to RING2 is required for linear chain building activity and name the region the ‘LDD'' (Linear Ub chain Determining Domain). Their results indicate that the LDD binds and orients the acceptor Ub to promote transfer of the donor Ub from the RING2 active site to the N-terminus of the acceptor Ub (Figure 1). Parkin has also been suggested to bind free Ub. Details about whether parkin binds acceptor or donor Ub and whether Ub binding determines Ub-chain specificity are still unknown.There is precedence for acceptor Ub binding by HECT E3s and this interaction is essential for chain formation by NEDD4 and its yeast orthologue Rsp5 (Kim et al, 2011; Maspero et al, 2011). In another example, the inactive E2 variant MMS2 binds an acceptor Ub and orients the Ub-Lys63 into the active site of Ubc13 thereby guaranteeing K63-linked chain formation by the E2 (Eddins et al, 2006). Besides proper orientation of the acceptor Ub, chemical differences between α- and ɛ-amino groups likely contribute to linear Ub-chain specificity. For example, E2s known to be active with RING-type E3s can transfer Ub onto the amino acid lysine, but not the other amino acids containing α-amino groups indicating specificity towards the ɛ-amino of lysine (Wenzel et al, 2011).Catalysed by the unexpected discovery that HHARI is a HECT/RING hybrid E3, details about how the RBR class of E3s function are beginning to emerge. We now know, either directly or indirectly, that at least 4 RBR E3s of the 13 identified in humans (HHARI, HOIL, HOIP, and parkin) require a trans-thiolation event using an active site cysteine within RING2. Conservation of this cysteine among all RBR E3s strongly suggests that the RING/HECT-hybrid mechanism is conserved and therefore defines the class. The hybrid mechanism also offers an explanation for the heretofore puzzling observation that, despite being categorized as a RING E3, HOIP determines the type of Ub chain formed. The ability to bind an acceptor Ub close to the RING2 active site likely contributes to how the RBR E3s dictate the type of product they produce. Finally, both HOIP and parkin are auto-inhibited. It remains to be seen whether HOIP''s auto-inhibitory domains work via inhibition of E2∼Ub binding by RING1, obstruction of the active site cysteine on RING2, and/or occlusion of acceptor Ub binding on the LDD (Figure 1). Regardless of the mechanistic details, the ability to modulate their activity may be a common trait of the RBR E3s. Given recent rapid progress, our understanding of this special class of E3s will continue to grow apace.  相似文献   

16.
Ubiquitin (Ub) ligation is implicated in active protein metabolism and subcellular trafficking and its impairment is involved in various neurologic diseases. In rat brain, we identified two novel Ub ligases, Momo and Sakura, carrying double zinc finger motif and RING finger domain. Momo expression is enriched in the brain gray matter and testis, and Sakura expression is more widely detected in the brain white matter as well as in many peripheral organs. Both proteins associate with the cell membranes of neuronal and/or glial cells. We examined their Ub ligase activity in vivo and in vitro using viral expression vectors carrying myc-tagged Momo and Sakura. Overexpression of either Momo or Sakura in mixed cortical cultures increased total polyubiquitination levels. In vitro ubiquitination assay revealed that the combination of Momo and UbcH4 and H5c, or of Sakura and UbcH4, H5c and H6 is required for the reaction. Deletion mutagenesis suggested that the E3 Ub ligase activity of Momo and Sakura depended on their C-terminal domains containing RING finger structure, while their N-terminal domains influenced their membrane association. In agreement, Sakura associating with the membrane was specifically palmitoylated. Although the molecular targets of their Ub ligation remain to be identified, these findings imply a novel function of the palmitoylated E3 Ub ligase(s).  相似文献   

17.
Protein ubiquitination plays an important role in regulating the abundance and conformation of a broad range of eukaryotic proteins. This process involves a cascade of enzymes including ubiquitin-activating enzymes (E1), ubiquitin-conjugating enzymes (E2), and ubiquitin ligases (E3). E1 and E2 represent two families of structurally related proteins and are relatively well characterized. In contrast, the nature and mechanism of E3, proposed to contain activities in catalyzing isopeptide bond formation (ubiquitin ligation) and substrate targeting, remains inadequately understood. Two major families of E3 ubiquitin ligases, the HECT (for homologous to E6-AP C terminus) family and the RING family, have been identified that utilize distinct mechanisms in promoting isopeptide bond formation. Here, we showed that purified RING finger domain of ROC1, an essential subunit of SKP1-cullin/CDC53-F box protein ubiquitin ligases, was sufficient to activate UBCH5c to synthesize polyubiquitin chains. The sequence flanking the RING finger in ROC1 did not contribute to UBCH5c activation, but was required for binding with CUL1. We demonstrated that all cullins, through their binding with ROC proteins, constituted active ubiquitin ligases, suggesting the existence in vivo of a large number of cullin-RING ubiquitin ligases. These results are consistent with the notion that the RING finger domains allosterically activate E2. We suggest that RING-E2, rather than cullin-RING, constitutes the catalytic core of the ubiquitin ligase and that one major function of the cullin subunit is to assemble the RING-E2 catalytic core and substrates together.  相似文献   

18.
Mutations in the protein Parkin are associated with Parkinson's disease (PD), the second most common neurodegenerative disease in men. Parkin is an E3 ubiquitin (Ub) ligase of the structurally uncharacterized RING‐in‐between‐RING(IBR)‐RING (RBR) family, which, in an HECT‐like fashion, forms a catalytic thioester intermediate with Ub. We here report the crystal structure of human Parkin spanning the Unique Parkin domain (UPD, also annotated as RING0) and RBR domains, revealing a tightly packed structure with unanticipated domain interfaces. The UPD adopts a novel elongated Zn‐binding fold, while RING2 resembles an IBR domain. Two key interactions keep Parkin in an autoinhibited conformation. A linker that connects the IBR with the RING2 over a 50‐Å distance blocks the conserved E2~Ub binding site of RING1. RING2 forms a hydrophobic interface with the UPD, burying the catalytic Cys431, which is part of a conserved catalytic triad. Opening of intra‐domain interfaces activates Parkin, and enables Ub‐based suicide probes to modify Cys431. The structure further reveals a putative phospho‐peptide docking site in the UPD, and explains many PD‐causing mutations.  相似文献   

19.
Wang M  Pickart CM 《The EMBO journal》2005,24(24):4324-4333
Individual ubiquitin (Ub)-protein ligases (E3s) cooperate with specific Ub-conjugating enzymes (E2s) to modify cognate substrates with polyubiquitin chains. E3s belonging to the Really Interesting New Gene (RING) and Homologous to E6-Associated Protein (E6AP) C-Terminus (HECT) domain families utilize distinct molecular mechanisms. In particular, HECT E3s, but not RING E3s, form a thiol ester with Ub before transferring Ub to the substrate lysine. Here we report that different HECT domain E3s can employ distinct mechanisms of polyubiquitin chain synthesis. We show that E6AP builds up a K48-linked chain on its HECT cysteine residue, while KIAA10 builds up K48- and K29-linked chains as free entities. A small region near the N-terminus of the conserved HECT domain helps to bring about this functional distinction. Thus, a given HECT domain can specify both the linkage of a polyubiquitin chain and the mechanism of its assembly.  相似文献   

20.
Ubiquitin (Ub) ligases (E3s) catalyze the attachment of Ub chains to target proteins and thereby regulate a wide array of signal transduction pathways in eukaryotes. In HECT-type E3s, Ub first forms a thioester intermediate with a strictly conserved Cys in the C-lobe of the HECT domain and is then ligated via an isopeptide bond to a Lys residue in the substrate or a preceding Ub in a poly-Ub chain. To date, many key aspects of HECT-mediated Ub transfer have remained elusive. Here, we provide structural and functional insights into the catalytic mechanism of the HECT-type ligase Huwe1 and compare it to the unrelated, K63-specific Smurf2 E3, a member of the Nedd4 family. We found that the Huwe1 HECT domain, in contrast to Nedd4-family E3s, prioritizes K6- and K48-poly-Ub chains and does not interact with Ub in a non-covalent manner. Despite these mechanistic differences, we demonstrate that the architecture of the C-lobe ~ Ub intermediate is conserved between Huwe1 and Smurf2 and involves a reorientation of the very C-terminal residues. Moreover, in Nedd4 E3s and Huwe1, the individual sequence composition of the Huwe1 C-terminal tail modulates ubiquitination activity, without affecting thioester formation. In sum, our data suggest that catalysis of HECT ligases hold common features, such as the β-sheet augmentation that primes the enzymes for ligation, and variable elements, such as the sequence of the HECT C-terminal tail, that fine-tune ubiquitination activity and may aid in determining Ub chain specificity by positioning the substrate or acceptor Ub.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号