首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite the existence of an impressive body of work on human immune responses against filarial infections, the occurrence of a protective response to infection remains unclear. Here, we use a combined modelling and comparative data analysis framework to address this issue for human infections with the filarial parasite, Wuchereria bancrofti. By analogy with previous work, the analysis involves the comparison of observed field patterns of infection with epidemiological patterns predicted by a mathematical model of parasite immunity. Unlike most other human helminths, which are transmitted by ingestion or dermal penetration, exposure to infection with lymphatic filariasis can be measured explicitly in terms of vector mosquito biting rates, thereby also allowing, probably for the first time, examination of the suggested role of exposure in generating herd immunity to macroparasites. Observed field patterns in this study were derived from 19 different published studies, which gave parallel estimates of community exposure rates and the corresponding age--prevalence patterns of infection, while predictions of the epidemiological impact of herd immunity were obtained using a catalytic model framework. The results provide the first conclusive evidence to date that variations in the observed age--prevalence patterns of infection in filariasis can be effectively explained by the occurrence of an exposure-driven acquisition of herd immunity. We discuss this result in terms of implications for the new World Health Organization-led initiative for the global control of this parasitic disease.  相似文献   

2.
Hosts counteract infections using two distinct defence strategies, resistance (reduction in pathogen fitness) and tolerance (limitation of infection damage). These strategies have been minimally investigated in multi-host systems, where they may vary across host species, entailing consequences both for hosts (virulence) and parasites (transmission). Comprehending the interplay among resistance, tolerance, virulence and parasite success is highly relevant for our understanding of the ecology and evolution of infectious and parasitic diseases. Our work investigated the interaction between an insect parasite and its most common bird host species, focusing on two relevant questions: (i) are defence strategies different between main and alternative hosts and, (ii) what are the consequences (virulence and parasite success) of different defence strategies? We conducted a matched field experiment and longitudinal studies at the host and the parasite levels under natural conditions, using a system comprising Philornis torquans flies and three bird hosts – the main host and two of the most frequently used alternative hosts. We found that main and alternative hosts have contrasting defence strategies, which gave rise in turn to contrasting virulence and parasite success. In the main bird host, minor loss of fitness, no detectable immune response, and high parasite success suggest a strategy of high tolerance and negligible resistance. Alternative hosts, on the contrary, resisted by mounting inflammatory responses, although with very different efficiency, which resulted in highly dissimilar parasite success and virulence. These results show clearly distinct defence strategies between main and alternative hosts in a natural multi-host system. They also highlight the importance of defence strategies in determining virulence and infection dynamics, and hint that defence efficiency is a crucial intervening element in these processes.  相似文献   

3.
Understanding linkages between environmental changes and disease emergence in human and wildlife populations represents one of the greatest challenges to ecologists and parasitologists. While there is considerable interest in drivers of amphibian microparasite infections and the resulting consequences, comparatively little research has addressed such questions for amphibian macroparasites. What work has been done in this area has largely focused on nematodes of the genus Rhabdias and on two genera of trematodes (Ribeiroia and Echinostoma). Here, we provide a synopsis of amphibian macroparasites, explore how macroparasites may affect amphibian hosts and populations, and evaluate the significance of these parasites in larger community and ecosystem contexts. In addition, we consider environmental influences on amphibian-macroparasite interactions by exploring contemporary ecological factors known or hypothesized to affect patterns of infection. While some macroparasites of amphibians have direct negative effects on individual hosts, no studies have explicitly examined whether such infections can affect amphibian populations. Moreover, due to their complex life cycles and varying degrees of host specificity, amphibian macroparasites have rich potential as bioindicators of environmental modifications, especially providing insights into changes in food webs. Because of their documented pathologies and value as bioindicators, we emphasize the need for broader investigation of this understudied group, noting that ecological drivers affecting these parasites may also influence disease patterns in other aquatic fauna.  相似文献   

4.
Sex hormones, reproductive status, and pathogen load all affect stress. Together with stress, these factors can modulate the immune system and affect disease incidence. Thus, it is important to concurrently measure these factors, along with their seasonal fluctuations, to better understand their complex interactions. Using steroid hormone metabolites from fecal samples, we examined seasonal correlations among zebra and springbok stress, reproduction, gastrointestinal (GI) parasite infections, and anthrax infection signatures in zebra and springbok in Etosha National Park (ENP), Namibia, and found strong seasonal effects. Infection intensities of all three GI macroparasites examined (strongyle helminths, Strongyloides helminths, and Eimeria coccidia) were highest in the wet season, concurrent with the timing of anthrax outbreaks. Parasites also declined with increased acquired immune responses. We found hormonal evidence that both mares and ewes are overwhelmingly seasonal breeders in ENP, and that reproductive hormones are correlated with immunosuppression and higher susceptibility to GI parasite infections. Stress hormones largely peak in the dry season, particularly in zebra, when parasite infection intensities are lowest, and are most strongly correlated with host mid-gestation rather than with parasite infection intensity. Given the evidence that GI parasites can cause host pathology, immunomodulation, and immunosuppression, their persistence in ENP hosts without inducing chronic stress responses supports the hypothesis that hosts are tolerant of their parasites. Such tolerance would help to explain the ubiquity of these organisms in ENP herbivores, even in the face of their potential immunomodulatory trade-offs with anti-anthrax immunity.  相似文献   

5.
Hatchery-reared mature male Atlantic salmon parr were shorter than immature parr of the same age through the winter period and this difference increased prior to smolting in spring. Stripping had no effect on growth. In autumn mature male parr had a higher condition factor (CF) than immature parr, but from early January no difference was observed between unstripped mature males and immature parr. Stripping reduced the CF of male parr but the difference had disappeared by the time of smolting when the CFs of both mature groups were lower than that of immature fish. The quantity of expressible milt in stripped males decreased from c . 3% body weight in November and December to <0.05% by 2 March, after which no further milt expression was recorded. Milt expression in previously unstripped males was about 1% of body weight on 2 March, similar to that of stripped males 1 month earlier.  相似文献   

6.
To minimize the negative effects of an infection on fitness, hosts can respond adaptively by altering their reproductive effort or by adjusting their timing of reproduction. We studied effects of the pathogenic fungus Batrachochytrium dendrobatidis on the probability of calling in a stream-breeding rainforest frog (Litoria rheocola). In uninfected frogs, calling probability was relatively constant across seasons and body conditions, but in infected frogs, calling probability differed among seasons (lowest in winter, highest in summer) and was strongly and positively related to body condition. Infected frogs in poor condition were up to 40% less likely to call than uninfected frogs, whereas infected frogs in good condition were up to 30% more likely to call than uninfected frogs. Our results suggest that frogs employed a pre-existing, plastic, life-history strategy in response to infection, which may have complex evolutionary implications. If infected males in good condition reproduce at rates equal to or greater than those of uninfected males, selection on factors affecting disease susceptibility may be minimal. However, because reproductive effort in infected males is positively related to body condition, there may be selection on mechanisms that limit the negative effects of infections on hosts.  相似文献   

7.
8.
The vast majority of parasites exhibit an aggregated frequency distribution within their host population, such that most hosts have few or no parasites while only a minority of hosts are heavily infected. One exception to this rule is the trophically transmitted parasite Pterygodermatites peromysci of the white-footed mouse (Peromyscus leucopus), which is randomly distributed within its host population. Here, we ask: what are the factors generating the random distribution of parasites in this system when the majority of macroparasites exhibit non-random patterns? We hypothesise that tight density-dependent processes constrain parasite establishment and survival, preventing the build-up of parasites within individual hosts, and preclude aggregation within the host population. We first conducted primary infections in a laboratory experiment using white-footed mice to test for density-dependent parasite establishment and survival of adult worms. Secondary or challenge infection experiments were then conducted to investigate underlying mechanisms, including intra-specific competition and host-mediated restrictions (i.e. acquired immunity). The results of our experimental infections show a dose-dependent constraint on within-host-parasite establishment, such that the proportion of mice infected rose initially with exposure, and then dropped off at the highest dose. Additional evidence of density-dependent competition comes from the decrease in worm length with increasing levels of exposure. In the challenge infection experiment, previous exposure to parasites resulted in a lower prevalence and intensity of infection compared with primary infection of naïve mice; the magnitude of this effect was also density-dependent. Host immune response (IgG levels) increased with the level of exposure, but decreased with the number of worms established. Our results suggest that strong intra-specific competition and acquired host immunity operate in a density-dependent manner to constrain parasite establishment, driving down aggregation and ultimately accounting for the observed random distribution of parasites.  相似文献   

9.
The Barn Owl Tyto alba was the most common owl killed on motorways in northeastern France. The possible causes of this mortality and the age, sex and body condition of the road-killed birds in 1991–1994 have been investigated. The number of birds killed on roads was highest in the period from early autumn to late winter, i.e. during the non-breeding period, and showed a pattern similar to that of the temporal difference between sunset, which varies with day length, and peak of traffic, the occurrence of which is constant throughout the year. An autumnal mortality peak, concomitant with the post-fledging dispersal, was mainly of immature birds, especially females. A second mortality peak in late winter was composed mainly of mature birds, with an equal proportion of males and females. From autumn to winter, there was no significant change in body mass in the different age and sex categories of birds killed on roads, except for mature males which had a significantly lower body mass in winter. From early autumn to late winter, the mean body mass of immature owls killed on motorways did not differ significantly from that of captive immatures fed ad libitum. This suggests that the immature birds were in good body condition. In contrast, the body mass of road-killed mature females was significantly lower than that of captive mature females over the same time periods. In mature males in late winter, a drop in body mass in both road-killed and captive birds suggests an endogenous seasonal phenomenon. Except for mature females, Barn Owls killed on roads in 1991–1994 were in good body condition. This does not support the idea that only birds in poor body condition were killed. We conclude that the mortality of Barn Owls on motorways in autumn and winter was probably related to the concomitance between the peak of traffic and the onset of hunting activity and the large number and dispersal of immature individuals during the same period.  相似文献   

10.
Insight into the dynamics of parasite-host relationships of higher vertebrates requires an understanding of two important features: the nature of transmission and the development of acquired immunity in the host. A dominant hypothesis proposes that acquired immunity develops with the cumulative exposure to infection, and consequently predicts a negative relationship between peak intensity of infection and host age at this peak. Although previous studies have found evidence to support this hypothesis through between-population comparisons, these results are confounded by spatial effects. In this study, we examined the dynamics of infection of the nematode Trichostrongylus retortaeformis within a natural population of rabbits sampled monthly for 26 years. The rabbit age structure was reconstructed using body mass as a proxy for age, and the host age-parasite intensity relationship was examined for each rabbit cohort born from February to August. The age-intensity curves exhibited a typical concave shape, and a significant negative relationship was found between peak intensity of infection and host age at this peak. Adult females showed a distinct periparturient rise in T. retortaeformis infection, with higher intensities in breeding adult females than adult males and non-breeding females. These findings are consistent with the hypothesis of an acquired immune response of the host to a parasite infection, supporting the principle that acquired immunity can be modelled using the cumulative exposure to infection. These findings also show that seasonality can be an important driver of host-parasite interactions.  相似文献   

11.
The mortality of Aedes aegypti pre-imagos harboring metacercariae of Plagiorchis noblei Park, 1936, is governed by the stage of development of the host at the time of infection and the location of the parasite in the insect body. First and second instar larvae generally succumbed to infection, regardless of site. Infections of the head and thorax of third and fourth instar larvae were generally lethal or gave rise to imparied adults. However, older instars frequently survived abdominal infections. Pupae showed greater tolerance to cephalic, thoracic and abdominal infections and generally emerged as adults. Again, many such infected adults were impaired.  相似文献   

12.
Solid organ transplants contain small numbers of leukocytes that can migrate into the host and establish long-lasting microchimerism. Although such microchimerism is often associated with graft acceptance and tolerance, it has been difficult to demonstrate a true causal link. Using skin from mutant mice deficient for leukocyte subsets, we found that donor T-cell chimerism is a 'double-edged sword' that can result in very different outcomes depending on the host's immunological maturity and the antigenic disparities involved. In immunologically mature hosts, chimerism resulted in immunity and stronger graft rejection. In immature hosts, it resulted in tolerance to the chimeric T cells, but not to graft antigens not expressed by the chimeric cells. Clinical efforts aimed at augmenting chimerism to induce tolerance must take into account the maturation state of host T cells, the type of chimerism produced by each organ and the antigenic disparities involved, lest the result be increased rejection rather than tolerance.  相似文献   

13.
Human cytomegalovirus (CMV) infection initiates in mucosal epithelia and disseminates via leukocytes throughout the body. Langerhans cells (LCs), the immature dendritic cells (DCs) that reside in epithelial tissues, are among the first cells to encounter virus and may play important roles in the immune response, as well as in pathogenesis as hosts for viral replication and as vehicles for dissemination. Here, we demonstrate that CD34(+) progenitor cell-derived LC-type DCs exhibit a differentiation state-dependent susceptibility to CMV infection. In contrast to the small percentage (3 to 4%) of the immature LCs that supported infection, a high percentage (48 to 74%) of mature, LC-derived DCs were susceptible to infection with endotheliotropic strains (TB40/E or VHL/E) of CMV. These cells were much less susceptible to viral strains AD169varATCC, TownevarRIT(3), and Toledo. When exposed to endotheliotropic strains, viral gene expression (IE1/IE2 and other viral gene products) and viral replication proceeded efficiently in LC-derived mature DCs (mDCs). Productive infection was associated with downmodulation of cell surface CD83, CD1a, CD80, CD86, ICAM-1, major histocompatibility complex (MHC) class I, and MHC class II on these cells. In addition, the T-cell proliferative response to allogeneic LC-derived mDCs was attenuated when CMV-infected cultures were used as stimulators. This investigation revealed important characteristics of the interaction between CMV and the LC lineage of DCs, suggesting that LC-derived mDCs are important to viral pathogenesis and immunity through their increased susceptibility to virus replication and virus-mediated immune escape.  相似文献   

14.
Anti-parasite behaviour can reduce parasitic infections, but little is known about how such behaviours affect infection location within the host''s body and whether parasite distribution ultimately affects tolerance of infection. To assess these questions, we exposed both anaesthetized (no behaviour) and non-anaesthetized Hyla femoralis tadpoles to plagiorchiid cercariae (larval trematodes), and quantified resistance, tolerance (relationship between mass change and infection intensity) and encystment location. Non-anaesthetized tadpoles had significantly more infections in their tail region than anaesthetized tadpoles, which had the majority of their infections in the head. This pattern indicates that parasites preferred to infect the head, but that hosts shunted infections to the tail when possible. Furthermore, there was a significant effect of encystment location on tolerance, with head-infected tadpoles having poorer tolerance to infection than tail-infected tadpoles. Variance partitioning suggests that, among infected tadpoles, behaviour contributed more to tolerance than resistance. These results suggest that, in addition to using behaviour to resist parasites, H. femoralis tadpoles also use behaviour to enhance infection tolerance by deflecting infections posteriorly, away from their vital sensory organs. These findings highlight the need to assess how widespread and important behaviour is to the tolerance of infections.  相似文献   

15.
Parasites and the avian spleen: helminths   总被引:4,自引:0,他引:4  
A comparative analysis of the relationship between the spleen–a major organ of immunity and helminths was undertaken with bird species, using the phylogenetic regression technique. Species in which many individuals are infected with nematodes relative to the number of individuals examined for the presence of helminths (termed 'relative nematode presence') have significantly larger spleens, for a given body weight, in females (though not in males). There was little indication that this relationship depends on incidental ecological indices, the weights of other organs, or the 'relative presences' of trematodes, cestodes or haematozoa. Combined with previous, experimental, work it suggests that the avian spleen is important in resisting nematodes. Body weight is correlated with the relative presence of helminths; but even after removing body size effects, bird species which tend to be infected with trematodes are also more likely to be infected with cestodes. This paper indicates that the spleens of wild bird species are associated with macroparasites in the natural environment.  相似文献   

16.
  1. Sex differences in immune investment and infection rate are predicted due to the divergent life histories of males and females, where females invest more toward immunity due to the fitness consequences of a reduced lifespan and males allocate less toward immunity due to increased resource investment in traits critical to sexual selection. Consequently, males are expected to fight infection less adeptly, resulting in higher parasite loads relative to females across all taxa.
  2. Wild animals rarely face a single parasite within their given environment, yet nearly all studies on sex‐biased infection rates have focused on a single host–parasite relationship. Here, we investigate how simultaneous natural infections of ecto‐ and endosymbionts (i.e. both parasitic and phoretic taxa) correlate with sex biases in host immune response and reproductive investment in a field‐caught cricket, Gryllus texensis.
  3. Our comprehensive analysis found no significant sex differences in two measures of immune response (melanization and nodulation), and found no strong evidence of a sex bias in the prevalence or intensity of parasitism by the three most common parasites infecting wild G. texensis field crickets (Eutrombidiidae, gregarines, and nematodes).
  4. Two traits related to female fitness, egg number and egg size, showed no relation to parasitic infection; however, males having wider heads and poorer body condition were significantly more infected by eutrombidiid mites, gregarines, and nematodes.
  5. Despite frequent predictions of male‐biased parasitism in the literature, our results concur with many other studies indicating that the divergent life histories of males and females alone are not sufficient to explain natural infection rates in wild insects.
  相似文献   

17.
In the white-footed mouse, Peromyscus leucopus, the tapeworm Hymenolepis citelli occurs at low (2-3%) prevalence in the field. We found that mature infections (i.e., with egg production) developed in up to 100% of hosts. In the laboratory, a majority of hosts lost their infection by 28 days postintubation. In wild mice infected in the laboratory and returned to the field, infections were more prolonged, with half of the mice still infected at 100 days postintubation. A majority of previously infected hosts resisted challenge infection. Our introduction of laboratory-infected mice into a natural population of hosts appeared to cause infections among previously uninfected mice, leading to an increase in the prevalence of tapeworm infection among mice not intubated. Although genetically based expulsion of tapeworms before maturity is important in causing low prevalence in a similar host-parasite system, such resistance cannot explain low prevalence in the present system. It appears that both heterogeneous distribution and rarity of intermediate hosts as well as short parasite lifespan contribute to low prevalence and overdispersion. Host-parasite dynamics of 2 very similar systems appear to differ markedly.  相似文献   

18.
1. Seasonality of rainfall can exert a strong influence on animal condition and on host-parasite interactions. The body condition of ruminants fluctuates seasonally in response to changes in energy requirements, foraging patterns and resource availability, and seasonal variation in parasite infections may further alter ruminant body condition. 2. This study disentangles the effects of rainfall and gastrointestinal parasite infections on springbok (Antidorcas marsupialis) body condition and determines how these factors vary among demographic groups. 3. Using data from four years and three study areas, we investigated (i) the influence of rainfall variation, demographic factors and parasite interactions on parasite prevalence or infection intensity, (ii) whether parasitism or rainfall is a more important predictor of springbok body condition and (iii) how parasitism and condition vary among study areas along a rainfall gradient. 4. We found that increased parasite intensity is associated with reduced body condition only for adult females. For all other demographic groups, body condition was significantly related to prior rainfall and not to parasitism. Rainfall lagged by two months had a positive effect on body condition. 5. Adult females showed evidence of a 'periparturient rise' in parasite intensity and had higher parasite intensity and lower body condition than adult males after parturition and during early lactation. After juveniles were weaned, adult females had lower parasite intensity than adult males. Sex differences in parasitism and condition may be due to differences between adult females and males in the seasonal timing of reproductive effort and its effects on host immunity, as well as documented sex differences in vulnerability to predation. 6. Our results highlight that parasites and the environment can synergistically affect host populations, but that these interactions might be masked by their interwoven relationships, their differential impacts on demographic groups, and the different time-scales at which they operate.  相似文献   

19.
Predator control programmes are generally implemented in an attempt to increase prey population sizes. However, predator removal could prove harmful to prey populations that are regulated primarily by parasitic infections rather than by predation. We develop models for microparasitic and macroparasitic infection that specify the conditions where predator removal will (a) increase the incidence of parasitic infection, (b) reduce the number of healthy individuals in the prey population and (c) decrease the overall size of the prey population. In general, predator removal is more likely to be harmful when the parasite is highly virulent, macroparasites are highly aggregated in their prey, hosts are long‐lived and the predators select infected prey.  相似文献   

20.
Sex-biased parasitism is rarely investigated in relation to host tolerance and resistance, which are two defense strategies hosts can adopt when challenged by parasites. Health or fitness deteriorations in less tolerant individuals with increasing parasite burden would be faster than those in more tolerant ones. Hence, the body condition and reproductive potential of an infected individual host can be considered proxies for tolerance to parasitism. We studied Mediterranean populations of the wood mouse (Apodemus sylvaticus) and its helminth parasites. We assessed their resistance using the phytohemagglutinin test and spleen size, and their tolerance using body condition in males and females and testes mass in males. In order to avoid spurious correlations, we took into account the phylogeographic structure of the Mediterranean wood mouse populations. We used a mixed model adapted from the animal model used in quantitative genetics. While helminth infection did not differ between the two sexes, females and males differed in their measured defenses. Females seem to invest more in immune defense with increasing risk of parasite diversity, but also appear to be potentially more tolerant of parasitic diversity. These results suggest the existence of sexual differences in resistance and tolerance, and that measurements of parasitic loads alone could be insufficient to detect any underlying sexual differences in the two strategies that have evolved in response to multiple parasitic attacks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号