首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of cold hardening on the accumulation of glutathione (GSH) and its precursors was studied in the shoots and roots of wheat (Triticum aestivum L.) cv. Cheyenne (Ch, frost-tolerant) and cv. Chinese Spring (CS, moderately frost-sensitive), in a T. spelta L. accession (Tsp, frost-sensitive) and in chro- mosome substitution lines CS (Ch 5A) and CS (Tsp 5A). The fast induction of total glutathione accumulation was detected during the first 3 d of hardening in the shoots, especially in the frost-tolerant Ch and CS (Ch 5A). This observation was corroborated by the study of de novo GSH synthesis using [35S]sulfate. In Ch and CS (Ch 5A) the total cysteine, γ-glutamylcysteine (precursors of GSH), hydroxymethylglutathione and GSH contents were greater during the 51-d treatment than in the sensitive genotypes. After 35 d hardening, when the maximum frost tolerance was observed, greater ratios of reduced to oxidised hydroxymethylglutathione and glutathione were detected in Ch and CS (Ch 5A) compared to the sensitive genotypes. A correspondingly greater glutathione reductase (EC 1.6.4.2) activity was also found in Ch and CS (Ch 5A). It can be assumed that chromosome 5A of wheat has an influence on GSH accumulation and on the ratio of reduced to oxidised glutathione as part of a complex regulatory function during hardening. Consequently, GSH may contribute to the enhancement of frost tolerance in wheat. Received: 24 March 1999 / Accepted: 19 July 1999  相似文献   

2.
Two kinds of wheat genotypes with different tolerance to osmotic stress (NaCl and PEG-treatment) were investigated with biochemical analyses, including the measurements of total antioxidant capacity, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity, reducing power and starch content. The results were compared with electron paramagnetic resonance (EPR) data concerning the nature and amounts of stable long lived radicals present in the control and stressed plants. In addition, the changes in manganese content upon stress conditions were monitored. Different mechanisms of protection against PEG stress in sensitive and tolerant wheat genotypes were postulated. In sensitive genotypes, electrons were created in excess in stress conditions, and were stabilized by polysaccharide molecules, whereas in tolerant genotypes, protection by antioxidants dominated. Moreover, the quinone–semiquinone balance shifted towards semiquinone, which became the place of electron trapping. NaCl-treatment yielded significant effects mainly in sensitive genotypes and was connected with the changes of water structure, leading to inactivation of reactive oxygen species by water molecules.  相似文献   

3.
The concentration of acid-soluble thiols other than reduced glutathione (SH - GSH) increases in the roots of zinc-sensitive and zinc-tolerant Silene vulgaris (Moench) Garcke after exposure to zinc for 1 to 3 d. The concentration of SH - GSH in the roots is higher in the sensitive plants than in the tolerant ones, both at equal external zinc concentrations and at zinc concentrations causing the same level of root-length growth inhibition. High performance liquid chromatography analyses show that the increase in the concentration of SH - GSH is not only due to the production of phytochelatins, but is also due to an increase in the concentration of cysteine and the production of nonidentified thiols. The cysteine concentration increases equally in the roots of sensitive and tolerant plants. The accumulation of phytochelatins is higher in the roots of the sensitive plants, whereas the chain length distribution of phytochelatins is the same in sensitive and tolerant plants. It is concluded that increased zinc tolerance in S. vulgaris is not due to increased production of phytochelatins.  相似文献   

4.
The transition from the vegetative rosette stage to the reproductive growth stage (bolting) in the rosette plant Eustoma grandiflorum has a strict requirement for vernalization, a treatment that causes oxidative stress. Since we have shown that reduced glutathione (GSH) and its biosynthesis are associated with bolting in another rosette plant Arabidopsis thaliana, we here investigated whether a similar mechanism governs the vernalization-induced bolting of E. grandiflorum. Addition of GSH or its precursor cysteine, instead of vernalization, induced bolting but other thiols, dithiothreitol and 2-mercaptoethanol, did not. The inductive effect of vernalization on bolting was nullified by addition of buthionine sulfoximine (BSO), an inhibitor of GSH synthesis, without decreasing the plant growth rate. BSO-mediated inhibition of bolting was reversed by addition of GSH but not by cysteine. These indicate that vernalization-induced bolting involves GSH biosynthesis and is specifically regulated by GSH. Plant GSH increased during the early vernalization period along with the activity of gamma-glutamylcysteine synthetase that catalyzes the first step of GSH biosynthesis, although there was little change in amounts of GSH precursor thiols, cysteine and gamma-glutamylcysteine. These findings strongly suggest that vernalization stimulates GSH synthesis and synthesized GSH specifically determines the bolting time of E. grandiflorum.  相似文献   

5.
Contents of ethylene, osmoprotectants, levels and forms of polyamines (PAs) and activities of antioxidant enzymes in the leaves and roots were investigated for five wheat cultivar seedlings (differing in drought tolerance) exposed to osmotic stress (?1.5 MPa). Stress was induced by 2-day-long treatment of plants with polyethylene glycol 6000 (PEG) or NaCl added to hydroponic cultures. Nawra, Parabola and Manu cv. (drought tolerant) showed a marked increase in osmoprotectors (proline and soluble carbohydrates, mainly glucose, saccharose and maltose), free PAs (putrescine Put, spermidine Spd and spermine Spm) and Spd-conjugated levels, in both leaves and roots, after PEG-treatments. Radunia and Raweta (drought sensitive) exhibited smaller changes in the content of these substances. The analysis of enzymes involved in proline metabolism revealed the glutamate as a precursor of proline synthesis in PEG-induced stress conditions. The increase in the activity of antioxidative enzymes, especially catalase and peroxidases, was characteristic for tolerant wheat plants, but for sensitive ones, a decrease in superoxide dismutase and an increase in mainly glutathione reductase activities were observed. After NaCl-treatment smaller changes of all biochemical parameters were registered in comparison with PEG-induced stress. Exceptions were the higher values of ethylene content and a significant increase in saccharose, raffinose and maltose levels (only in stress sensitive plants). The proline synthesis pathway was stimulated from both glutamate and ornithine precursors. These results suggest that the accumulation of inorganic ions in NaCl-stressed plants may be involved in protective mechanisms as an additional osmoregultor. Thus, a weaker stressogenic effect as determined as water deficit by leaf relative water content and relative dry weight increase rate and differences in metabolite synthesis in comparison with PEG stress was observed. Proline seems to be the most important osmo-protector in osmotic stress initiated by both PEG and NaCl. The synthesis of sugars and PAs may be stimulated in a stronger stress conditions (PEG).  相似文献   

6.
7.
The acclimation of reduced glutathione (GSH) biosynthesis and GSH-utilizing enzymes to salt stress was studied in two tomato species that differ in stress tolerance. Salt increased GSH content and GSH:GSSG (oxidized glutathione) ratio in oxidative stress-tolerant Lycopersicon pennellii (Lpa) but not in Lycopersicon esculentum (Lem). These changes were associated with salt-induced upregulation of gamma-glutamylcysteine synthetase protein, an effect which was prevented by preincubation with buthionine sulfoximine. Salt treatment induced glutathione peroxidase and glutathione-S-transferase but not glutathione reductase activities in Lpa. These results suggest a mechanism of coordinate upregulation of synthesis and metabolism of GSH in Lpa, that is absent from Lem.  相似文献   

8.
One-month old calli of two indica rice genotypes, i.e., Basmati-370 and Basmati-Kashmir were subjected to two iso-osmotic concentrations (−0.57 MPa and −0.74 MPa) created with 50 and 100 mol m−3 NaCl or 10 and 18% solutions of PEG-8000. Both genotypes tolerated only low levels of stress and showed severe growth suppression at −0.74 MPa. The degree of stress tolerance of both genotypes was greater for PEG induced stress than for NaCl induced stress. The relative growth rate of callus was reduced under both stresses, however, the reverse was true for callus dry weight. Sodium (Na+) content of the callus tissue was increased only under NaCl induced stress. Salt induced stress reduced K+ and Ca2+ contents, but the PEG induced stress increased them. Higher levels of stress increased the proline content many folds with more increase being under PEG stress than that under NaCl. Water and osmotic potentials of the callus tissue decreased, whereas turgor potential increased under both abiotic stresses. Overall, Basmati-370 was more tolerant to both NaCl and PEG induced stresses than Basmati-Kashmir, because of less reduction in growth and more dry weight. Moreover, Basmati-370 accumulated higher amounts of cations, free proline, and maintained maximum turgor as compared to Basmati-Kashmir. In conclusion, at cellular level, mechanism of NaCl induced osmotic stress tolerance was found to be associated with more ionic accumulation of inorganic solutes and that of PEG induced osmotic stress tolerance with the accumulation of free proline, as an important osmolyte in the cytosol.  相似文献   

9.
10.
The individual and interactive role of calcium and abscisic acid (ABA) in amelioration of water stress simulated by polyethylene glycol (PEG) 6000 was investigated in two contrasting wheat genotypes. PEG solution (osmotic potential –1.5 MPa) was applied to 10-d-old seedlings growing under controlled conditions and changes in photosynthetic rate, activities of ribulose-1,5-bisphosphate carboxylase and phosphoenolpyruvate carboxylase, water potential and stomatal conductance were observed in the presence of 0.1 mM ABA, 5 mM calcium chloride, 1 mM verapamil (Ca2+ channel blocker), and 1 mM fluridone (inhibitor of ABA biosynthesis). ABA and calcium chloride ameliorated the effects of water stress and the combination of the two was more effective. The two genotypes varied for their sensitivity to ABA and Ca2+ under stress. As was evident from application of their inhibitors, ABA caused more alleviation in C 306 (drought tolerant) while HD 2380 (drought susceptible) was more sensitive to Ca2+.  相似文献   

11.
The effects of cold, osmotic stress and abscisic acid (ABA) on polyamine accumulation were compared in the moderately freezing-sensitive wheat (Triticum aestivum L.) variety Chinese Spring (CS) and in two derived chromosome 5A substitution lines, CS(T. spelta 5A) and CS(Cheyenne 5A), exhibiting lower and higher levels of freezing tolerance, respectively. When compared with the other treatments, putrescine (Put) and spermidine (Spd) levels were much greater after cold treatment, spermine (Spm) following polyethylene glycol-induced (PEG) osmotic stress and Spm and cadaverine (Cad) after ABA treatment. During 3-week cold stress, the Put concentration, first exhibited a transient increase and decrease, and then gradually increased. These alterations may be due to changes in the expression of genes encoding the enzymes of Put synthesis. The Put content was higher in the freezing-tolerant chromosome 5A substitution line than in the sensitive one after 3 weeks of cold. In contrast to cold, ABA and PEG induced a continuous decrease in the Spd level when applied for a period of 3 weeks. The Spm content, which increased after PEG and ABA addition, was twice as high as that of Put during ABA treatment at most sampling points, but this difference was lower in the case of PEG. The Cad level, induced to a great extent by ABA, was much lower when compared with that of the other polyamines. The present experiments indicate that cold, osmotic stress and ABA have different effects on polyamines, and that some of these changes are affected by chromosome 5A and correlate with the level of stress tolerance.  相似文献   

12.
In this study, the seedlings of two wheat cultivars were used: drought-resistant Chinese Spring (CS) and drought-susceptible (SQ1). Seedlings were subjected to osmotic stress in order to assess the differences in response to drought stress between resistant and susceptible genotype. The aim of the experiment was to evaluate the changes in physiological and biochemical characteristics and to establish the optimum osmotic stress level in which differences in drought resistance between the genotypes could be revealed. Plants were subjected to osmotic stress by supplementing the root medium with three concentrations of PEG 6000. Seedlings were grown for 21 days in control conditions and then the plants were subjected to osmotic stress for 7 days by supplementing the root medium with three concentrations of PEG 6000 (D1, D2, D3) applied in two steps: during the first 3 days of treatment ?0.50, ?0.75 and ?1.00 and next ?0.75, ?1.25 and ?1.5 MPa, respectively. Measurements of gas exchange parameters, chlorophyll content, height of seedlings, length of root, leaf and root water content, leaf osmotic potential, lipid peroxidation, and contents of soluble carbohydrates and proline were taken. The results highlighted statistically significant differences in most traits for treatment D2 and emphasized that these conditions were optimum for expressing differences in the responses to osmotic stress between SQ1 and CS wheat genotypes. The level of osmotic stress defined in this study as most suitable for differentiating drought resistance of wheat genotypes will be used in further research for genetic characterization of this trait in wheat through QTL analysis of mapping population of doubled haploid lines derived from CS and SQ1.  相似文献   

13.
Indices of oxidative stress viz., superoxide radical and H2O2 content increased in leaves of all the cultivars with the rise in salinity level, the increase was more pronounced and significant in salt-sensitive varieties and non-significant in resistant cultivars. Except for glutathione reductase (GR), basal activities of all other antioxidative enzymes viz. superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), ascorbate peroxidase (APX) and glutathione reductase (GR) were significantly higher in leaves of all the resistant cultivars as compared to the sensitive ones. A differential response of salinity was observed on various enzymatic and non-enzymatic components of antioxidant system in leaves of salt-tolerant and salt-sensitive cultivars of rice (Oryza sativa L.). Activities of superoxide dismutase and glutathione reductase enhanced in all the tolerant cultivar while declined in the sensitive cultivars with increasing salinity from 0 to 100 mM. Salt-stress induced the activities of catalase and peroxidase in all the cultivars but the magnitude of increase was more pronounced in the sensitive cultivars than in the tolerant cultivars. Contrarily, APX activity increased in the salt-sensitive cultivars but showed no significant change in the salt-tolerant cultivars. The amount of ascorbic acid content, reduced glutathione (GSH), reduced/oxidized glutathione (GSSG) ratio was higher in leaves of the tolerant cultivars than that of the sensitive cultivars under saline conditions. It is inferred that leaves of salt-tolerant cultivars tend to attain greater capacity to perform reactions of antioxidative pathway under saline conditions to combat salinity-induced oxidative stress.  相似文献   

14.
The development of drought tolerant wheat cultivars has been slow due to lack of understanding the diagnostic physiological parameters associated with improved productivity under water stress. We evaluated responses to PEG induced osmotic stress under hydroponics in D-genome synthetic derived and bread wheat germplasm with the main aim to unravel and identify some promising attributes having role in stress tolerances. Genotypes used in this study differed in their morpho-physiological and biochemical attributes. Tolerant genotypes exhibited the ability to ameliorate harmful effects of PEG induced osmotic stress through better osmotic adjustment achieved through substantial relative water content (RWC), lowered osmotic potential, relatively stable root length having maximum water extraction capacity, significant increase in osmoprotectant concentration and relatively enhanced antioxidant activities. The results clearly revealed the importance of synthetic derivatives over check cultivars and conventional wheats in terms of osmotic stress responses. Interestingly, synthetic-derived advanced lines with Aegilops tauschii in its parentage including AWL-02, AWL-04 and AWL-07 proved superior over the best rainfed check cultivar (Wa-01). It was concluded that synthetic-derived wheats has great potential to improve a range of stress adaptive traits. It could, therefore, be recommended to be a useful strategy for allowing modern bread wheat to become adapted to a wider range of environments in future climate change scenarios.  相似文献   

15.
外源GSH对盐胁迫下水稻叶绿体活性氧清除系统的影响   总被引:6,自引:0,他引:6  
研究了外源GSH对盐胁迫下耐盐性不同的水稻品种Pokkali(耐盐)和Peta(盐敏感)叶绿体中抗氧化酶活性和抗氧化剂含量的影响.结果表明:盐胁迫下,外源GSH可以提高水稻叶绿体中活性氧清除系统中SOD、APX、GR的活性以及AsA、GSH的含量,降低叶绿体中H2O2和MDA的含量,从而降低了叶绿体膜脂过氧化的水平,缓解盐胁迫对叶绿体膜的伤害.外源GSH对盐胁迫下盐敏感品种Peta叶绿体中上述指标增加或减少的幅度大于耐盐品种Pokkali.  相似文献   

16.
The effect of cold and abscisic acid (ABA) treatment on soluble carbohydrate content was compared in callus cultures of wheat genotypes differing in frost tolerance. The effect of 5A chromosome substituted from the frost tolerant to the sensitive on cold-induced carbohydrate accumulation was also determined. Following cold hardening, the increase in sucrose and fructan level in calli of tolerant varieties was significantly higher than those of the sensitive ones. In 5A substitution line higher sucrose and fructan content was detected than in recipient . Tendentiously, cold stress caused higher degree of changes in carbohydrate content than the exogenously applied ABA did. Comparing the accumulation pattern of the components of WSC measured in vitro to the previously published in vivo results it can be concluded that in the case of sucrose and fructans it was similar, while for the reducing sugars it was different. The regulatory role of chromosome 5A either in the development of freezing tolerance or carbohydrate accumulation was confirmed in dedifferentiated calli, as well.  相似文献   

17.
This study was undertaken to investigate oxidative stress tolerant mechanisms in chilli (Capsicum annuum L.) under drought genotypes through evaluating morphological, physiological, biochemical and stomatal parameters. Twenty genotypes were evaluated for their genetic potential to drought stress tolerant at seedling stage. Thirty days old seedlings were exposed to drought stress induced by stop watering for the following 10 days and rewatering for the following one week as recovery. Based on their survival performance, two tolerant genotypes viz. BD-10906 and BD-109012 and two susceptible genotypes viz. BD-10902 and RT-20 were selected for studying the oxidative stress tolerance mechanism. Drought reduced root and shoot length, dry weight, ratio, petiole weight and leaf area in both tolerant and susceptible genotypes, and a higher reduction was observed in susceptible genotypes. Lower reduction of leaf area and photosynthetic pigments were also found in tolerant genotypes. Moreover, tolerant genotypes showed higher recovery than susceptible genotypes after the removal of stress. A higher reduction of relative water content (RWC) may cause an imbalance between absorbed and transpirated water in susceptible genotypes. Higher accumulation of proline in tolerant genotypes might be helpful to for better osmotic maintenance than that in susceptible genotypes. Tolerant genotypes showed higher antioxidant activity as they showed DPPH radical scavenging percentage than the susceptible genotypes. Moreover, closer stomata in tolerant genotypes than susceptible ones helped to avoid dehydration in tolerant genotypes. Thus, the above morphological, physiological, biochemical and stomatal parameters helped to show better tolerance in chilli under drought stress.  相似文献   

18.
Salinity stress is a major factor limiting plant growth and productivity of many crops including oilseed. The present study investigated the identification of salt tolerant mustard genotypes and better understanding the mechanism of salinity tolerance. Salt stresses significantly reduced relative water content (RWC), chlorophyll (Chl) content, K+ and K+ /Na+ ratio, photosynthetic rate (PN), transpiration rate (Tr), stomatal conductance (gs), intercellular CO2 concentration (Ci) and increased the levels of proline (Pro) and lipid peroxidation (MDA) contents, Na+ , superoxide (O2•− ) and hydrogen peroxide (H2O2) in both tolerant and sensitive mustard genotypes. The tolerant genotypes maintained higher Pro and lower MDA content than the salt sensitive genotypes under stress condition. The activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione peroxidase (GPX), monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR) were increased with increasing salinity in salt tolerant genotypes, BJ-1603, BARI Sarisha-11 and BARI Sarisha-16, but the activities were unchanged in salt sensitive genotype, BARI Sarisha-14. Besides, the increment of ascorbate peroxidase (APX) activity was higher in salt sensitive genotype as compared to tolerant ones. However, the activities of glutathione reductase (GR) and glutathione S-transferase (GST) were increased sharply at stress conditions in tolerant genotypes as compared to sensitive genotype. Higher accumulation of Pro along with improved physiological and biochemical parameters as well as reduced oxidative damage by up-regulation of antioxidant defense system are the mechanisms of salt tolerance in selected mustard genotypes, BJ-1603 and BARI Sarisha-16.  相似文献   

19.
Seedlings of selected six genotypes of maize (Zea mays L.) differing in their drought sensitivity (LM5 and Parkash drought-tolerant and PMH2, JH3459, Paras and LM14 as drought-sensitive) were exposed to 72 h drought stress at two leaf stage. Alterations in their antioxidant pools combined with activities of enzymes involved in defense against oxidative stress were investigated in leaves. Activities of some reactive oxygen species (ROS)-scavenging enzymes, catalase (CAT) and ascorbate peroxidase (APX) were enhanced in tolerant genotypes in response to drought stress. Superoxide dismutase (SOD) activity was significantly decreased in sensitive genotypes, but remained unchanged in tolerant genotypes under stress. Peroxidase (POX) activity was significantly induced in tolerant, as well as sensitive genotypes. Imposition of stress led to increase in H2O2 and malondialdehyde (MDA, a marker for lipid peroxidation) content in sensitive genotypes, while in tolerant genotypes no change was observed. Significant increase in glutathione content was observed in sensitive genotypes. Ascorbic acid pool was induced in both tolerant and sensitive genotypes, but induction was more pronounced in tolerant genotypes. Significant activation of antioxidative defence mechanisms correlated with drought-induced oxidative stress tolerance was the characteristic of the drought tolerant genotypes. These studies provide a mechanism for drought tolerance in maize seedlings.  相似文献   

20.
The roles of ascorbic acid (AsA, 1 mM) under an osmotic stress [induced by 15 % (m/v) polyethylene glycol, PEG-6000] were investigated by examining morphological and physiological attributes in Brassica species. The osmotic stress reduced the fresh and dry masses, leaf relative water content (RWC), and chlorophyll (Chl) content, whereas increased the proline (Pro), malondialdehyde (MDA), and H2O2 content, and lipoxygenase (LOX) activity. The ascorbate content in B. napus, B. campestris, and B. juncea decreased, increased, and remained unaltered, respectively. The dehydroascorbate (DHA) content increased only in B. napus. The AsA/DHA ratio was reduced by the osmotic stress in all the species except B. juncea. The osmotic stress increased the glutathione (GSH) content only in B. juncea, but increased the glutathione disulfide (GSSG) content and decreased the GSH/GSSG ratio in all the species. The osmotic stress increased the activities of ascorbate peroxidase (APX) (except in B. napus), glutathione reductase (GR) (except in B. napus), glutathione S-transferase (GST) (except in B. juncea), and glutathione peroxidase (GPX), and decreased the activities of catalase (CAT) and monodehydroascorbate reductase (MDHAR) (only in B. campestris). The osmotic stress decreased the glyoxalase I (Gly I) and increased glyoxalase II (Gly II) activities. The application of AsA in combination with PEG improved the fresh mass, RWC, and Chl content, whereas decreased the Pro, MDA, and H2O2 content in comparison with PEG alone. The AsA addition improved AsA-GSH cycle components and improved the activities of all antioxidant and glyoxalase enzymes in most of the cases. So, exogenous AsA improved physiological adaptation and alleviated oxidative damage under the osmotic stress by improving the antioxidant and glyoxalase systems. According to measured parameters, B. juncea can be recognized as more drought tolerant than B. napus and B. campestris.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号