首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Cardiac induction, the first step in heart development in vertebrate embryos, is thought to be initiated by anterior endoderm during gastrulation, but what the signals are and how they act is unknown. Several signaling pathways, including FGF, Nodal, BMP and Wnt have been implicated in cardiac specification, in both gain- and loss-of-function experiments. However, as these pathways regulate germ layer formation and patterning, their specific roles in cardiac induction have been difficult to define.

Methodology/Principal Findings

To investigate the mechanisms of cardiac induction directly we devised an assay based on conjugates of anterior endoderm from early gastrula stage Xenopus embryos as the inducing tissue and pluripotent ectodermal explants as the responding tissue. We show that the anterior endoderm produces a specific signal, as skeletal muscle is not induced. Cardiac inducing signal needs up to two hours of interaction with the responding tissue to produce an effect. While we found that the BMP pathway was not necessary, our results demonstrate that the FGF and Nodal pathways are essential for cardiogenesis. They were required only during the first hour of cardiogenesis, while sustained activation of ERK was required for at least four hours. Our results also show that transient early activation of the Wnt/β-catenin pathway has no effect on cardiogenesis, while later activation of the pathway antagonizes cardiac differentiation.

Conclusions/Significance

We have described an assay for investigating the mechanisms of cardiac induction by anterior endoderm. The assay was used to provide evidence for a direct, early and transient requirement of FGF and Nodal pathways. In addition, we demonstrate that Wnt/β-catenin pathway plays no direct role in vertebrate cardiac specification, but needs to be suppressed just prior to differentiation.  相似文献   

2.
3.
While particular combinations of mesodermal signals are known to induce distinct tissue-specific programs in the endoderm, there is little information about the response pathways within endoderm cells that control their specification. We have used signaling inhibitors on embryo tissue explants and whole-embryo cultures as well as genetic approaches to reveal part of an intracellular network by which FGF signaling helps induce hepatic genes and stabilize nascent hepatic cells within the endodermal epithelium. Specifically, we found that hepatic gene induction is elicited by an FGF/MAPK pathway. Although the PI3K pathway is activated in foregut endoderm cells, its inhibition does not block hepatic gene induction in explants; however, it does block tissue growth. We also found that at the onset of hepatogenesis, the FGF/MAPK and PI3K pathways do not crossregulate in the endoderm. The finding of separate pathways for endoderm tissue specification and growth provides insights for guiding cellular regeneration and stem cell differentiation.  相似文献   

4.
Two lineages of endoderm develop during mammalian embryogenesis, the primitive endoderm in the pre-implantation blastocyst and the definitive endoderm at gastrulation. This complexity of endoderm cell populations is mirrored during pluripotent cell differentiation in vitro and has hindered the identification and purification of the definitive endoderm for use as a substrate for further differentiation. The aggregation and differentiation of early primitive ectoderm-like (EPL) cells, resulting in the formation of EPL-cell derived embryoid bodies (EPLEBs), is a model of gastrulation that progresses through the sequential formation of primitive streak-like intermediates to nascent mesoderm and more differentiated mesoderm populations. EPL cell-derived EBs have been further analysed for the formation of definitive endoderm by detailed morphological studies, gene expression and a protein uptake assay. In comparison to embryoid bodies derived from ES cells, which form primitive and definitive endoderm, the endoderm compartment of embryoid bodies formed from EPL cells was comprised almost exclusively of definitive endoderm. Definitive endoderm was defined as a population of squamous cells that expressed Sox17, CXCR4 and Trh, which formed without the prior formation of primitive endoderm and was unable to endocytose horseradish peroxidase from the medium. Definitive endoderm formed in EPLEBs provides a substrate for further differentiation into specific endoderm lineages; these lineages can be used as research tools for understanding the mechanisms controlling lineage establishment and the nature of the transient intermediates formed. The similarity between mouse EPL cells and human ES cells suggests EPLEBs can be used as a model system for the development of technologies to enrich for the formation of human ES cell-derived definitive endoderm in the future.  相似文献   

5.
6.
Lithium is a commonly used drug for the treatment of bipolar disorder. At high doses, lithium becomes teratogenic, which is a property that has allowed this agent to serve as a useful tool for dissecting molecular pathways that regulate embryogenesis. This study was designed to examine the impact of lithium on heart formation in the developing frog for insights into the molecular regulation of cardiac specification. Embryos were exposed to lithium at the beginning of gastrulation, which produced severe malformations of the anterior end of the embryo. Although previous reports characterized this deformity as a posteriorized phenotype, histological analysis revealed that the defects were more comprehensive, with disfigurement and disorganization of all interior tissues along the anterior-posterior axis. Emerging tissues were poorly segregated and cavity formation was decreased within the embryo. Lithium exposure also completely ablated formation of the heart and prevented myocardial cell differentiation. Despite the complete absence of cardiac tissue in lithium treated embryos, exposure to lithium did not prevent myocardial differentiation of precardiac dorsal marginal zone explants. Moreover, precardiac tissue freed from the embryo subsequent to lithium treatment at gastrulation gave rise to cardiac tissue, as demonstrated by upregulation of cardiac gene expression, display of sarcomeric proteins, and formation of a contractile phenotype. Together these data indicate that lithium's effect on the developing heart was not due to direct regulation of cardiac differentiation, but an indirect consequence of disrupted tissue organization within the embryo.  相似文献   

7.
The establishment of heart mesoderm during Xenopus development has been examined using an assay for heart differentiation in explants and explant combinations in culture. Previous studies using urodele embryos have shown that the heart mesoderm is induced by the prospective pharyngeal endoderm during neurula and postneurula stages. In this study, we find that the specification of heart mesoderm must begin well before the end of gastrulation in Xenopus embryos. Explants of prospective heart mesoderm isolated from mid- or late neurula stages were capable of heart formation in nearly 100% of cases, indicating that the specification of heart mesoderm is complete by midneurula stages. Moreover, inclusion of pharyngeal endoderm had no statistically significant effect upon either the frequency of heart formation or the timing of the initiation of heartbeat in explants of prospective heart mesoderm isolated after the end of gastrulation. When the superficial pharyngeal endoderm was removed at the beginning of gastrulation, experimental embryos formed hearts, as did explants of prospective heart mesoderm from such embryos. These results indicate that the inductive interactions responsible for the establishment of heart mesoderm occur prior to the end of gastrulation and do not require the participation of the superficial pharyngeal endoderm.  相似文献   

8.
9.
10.
During gastrulation, a cascade of inductive tissue interactions converts pre-existing polarity in the mammalian embryo into antero-posterior pattern. This process is triggered by Nodal, a protein related to transforming growth factor-beta (TFG-beta) that is expressed in the epiblast and visceral endoderm, and its co-receptor Cripto, which is induced downstream of Nodal. Here we show that the proprotein convertases Spc1 and Spc4 (also known as Furin and Pace4, respectively) are expressed in adjacent extraembryonic ectoderm. They stimulate Nodal maturation after its secretion and are required in vivo for Nodal signalling. Embryo explants deprived of extraembryonic ectoderm phenocopy Spc1(-/-); Spc4(-/-) double mutants in that endogenous Nodal fails to induce Cripto. But recombinant mature Nodal, unlike uncleaved precursor, can efficiently rescue Cripto expression. Cripto is also expressed in explants treated with bone morphogenetic protein 4 (BMP4). This indicates that Nodal may induce Cripto through both a signalling pathway in the embryo and induction of Bmp4 in the extraembryonic ectoderm. A lack of Spc1 and Spc4 affects both pathways because these proteases also stimulate induction of Bmp4.  相似文献   

11.
12.
It is known from work with amniote embryos that regional specification of the gut requires cell-cell signalling between the mesoderm and the endoderm. In recent years, much of the interest in Xenopus endoderm development has focused on events that occur before gastrulation and this work has led to a different model whereby regional specification of the endoderm is autonomous. In this paper, we examine the specification and differentiation of the endoderm in Xenopus using neurula and tail-bud-stage embryos and we show that the current hypothesis of stable autonomous regional specification is not correct. When the endoderm is isolated alone from neurula and tail bud stages, it remains fully viable but will not express markers of regional specification or differentiation. If mesoderm is present, regional markers are expressed. If recombinations are made between mesoderm and endoderm, then the endodermal markers expressed have the regional character of the mesoderm. Previous results with vegetal explants had shown that endodermal differentiation occurs cell-autonomously, in the absence of mesoderm. We have repeated these experiments and have found that the explants do in fact show some expression of mesoderm markers associated with lateral plate derivatives. We believe that the formation of mesoderm cells by the vegetal explants accounts for the apparent autonomous development of the endoderm. Since the fate map of the Xenopus gut shows that the mesoderm and endoderm of each level do not come together until tail bud stages, we conclude that stable regional specification of the endoderm must occur quite late, and as a result of inductive signals from the mesoderm.  相似文献   

13.
Several lines of evidence suggest that GATA6 has an integral role in controlling development of the mammalian liver. Unfortunately, this proposal has been impossible to address directly because mouse embryos lacking GATA6 die during gastrulation. Here we show that the early embryonic deficiency associated with GATA6-knockout mice can be overcome by providing GATA6-null embryos with a wild-type extraembryonic endoderm with the use of tetraploid embryo complementation. Analysis of rescued Gata6-/- embryos revealed that, although hepatic specification occurs normally, the specified cells fail to differentiate and the liver bud does not expand. Although GATA6 is expressed in multiple tissues that impact development of the liver, including the heart, septum transversum mesenchyme, and vasculature, all are relatively unaffected by loss of GATA6, which is consistent with a cell-autonomous requirement for GATA6 during hepatogenesis. We also demonstrate that a closely related GATA factor, GATA4, is expressed transiently in the prehepatic endoderm during hepatic specification and then lost during expansion of the hepatic primordium. Our data support the proposal that GATA4 and GATA6 are functionally redundant during hepatic specification but that GATA6 alone is available for liver bud growth and commitment of the endoderm to a hepatic cell fate.  相似文献   

14.
15.
16.
Generating lineage-committed intestinal stem cells from embryonic stem cells (ESCs) could provide a tractable experimental system for understanding intestinal differentiation pathways and may ultimately provide cells for regenerating damaged intestinal tissue. We tested a two-step differentiation procedure in which ESCs were first cultured with activin A to favor formation of definitive endoderm, and then treated with fibroblast-conditioned medium with or without Wnt3A. The definitive endoderm expressed a number of genes associated with gut-tube development through mouse embryonic day 8.5 (Sox17, Foxa2, and Gata4 expressed and Id2 silent). The intestinal stem cell marker Lgr5 gene was also activated in the endodermal cells, whereas the Msi1, Ephb2, and Dcamkl1 intestinal stem cell markers were not. Exposure of the endoderm to fibroblast-conditioned medium with Wnt3A resulted in the activation of Id2, the remaining intestinal stem cell markers and the later gut markers Cdx2, Fabp2, and Muc2. Interestingly, genes associated with distal gut-associated mesoderm (Foxf2, Hlx, and Hoxd8) were also simulated by Wnt3A. The two-step differentiation protocol generated gut bodies with crypt-like structures that included regions of Lgr5-expressing proliferating cells and regions of cell differentiation. These gut bodies also had a smooth muscle component and some underwent peristaltic movement. The ability of the definitive endoderm to differentiate into intestinal epithelium was supported by the vivo engraftment of these cells into mouse colonic mucosa. These findings demonstrate that definitive endoderm derived from ESCs can carry out intestinal cell differentiation pathways and may provide cells to restore damaged intestinal tissue.  相似文献   

17.
Excess alcohol consumption during pregnancy has been acknowledged to increase the incidence of congenital disorders, especially the cardiovascular system. However, the mechanism involved in ethanol-induced cardiac malformation in prenatal fetus is still unknown. We demonstrated that ethanol exposure during gastrulation in the chick embryo increased the incidence of cardia bifida. Previously, we reported that autophagy was involved in heart tube formation. In this context, we demonstrated that ethanol exposure increased ATG7 and LC3 expression. mTOR was found to be inhibited by ethanol exposure. We activated autophagy using exogenous rapamycin (RAPA) and observed that it induced cardiac bifida and increased GATA5 expression. RAPA beads implantation experiments revealed that RAPA restricted ventricular myosin heavy chain (VMHC) expression. In vitro explant cultures of anterior primitive streak demonstrated that both ethanol and RAPA treatments could reduce cell differentiation and the spontaneous beating of cardiac precursor cells. In addition, the bead experiments showed that RAPA inhibited GATA5 expression during heart tube formation. Semiquantitative RT-PCR analysis indicated that BMP2 expression was increased while GATA4 expression was suppressed. In the embryos exposed to excess ethanol, BMP2, GATA4 and FGF8 expression was repressed. These genes are associated with cardiomyocyte differentiation, while heart tube fusion is associated with increased Wnt3a but reduced VEGF and Slit2 expression. Furthermore, the ethanol exposure also caused the production of excess ROS, which might damage the cardiac precursor cells of developing embryos. In sum, our results revealed that disrupting autophagy and excess ROS generation are responsible for inducing abnormal cardiogenesis in ethanol-treated chick embryos.  相似文献   

18.
19.
20.
Early mouse endoderm is patterned by soluble factors from adjacent germ layers   总被引:15,自引:0,他引:15  
Endoderm that forms the respiratory and digestive tracts is a sheet of approximately 500-1000 cells around the distal cup of an E7.5 mouse embryo. Within 2 days, endoderm folds into a primitive gut tube from which numerous organs will bud. To characterize the signals involved in the developmental specification of this early endoderm, we have employed an in vitro assay using germ layer explants and show that adjacent germ layers provide soluble, temporally specific signals that induce organ-specific gene expression in endoderm. Furthermore, we show that FGF4 expressed in primitive streak-mesoderm can induce the differentiation of endoderm in a concentration-dependent manner. We conclude that the differentiation of gastrulation-stage endoderm is directed by adjacent mesoderm and ectoderm, one of the earliest reported patterning events in formation of the vertebrate gut tube.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号