首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 574 毫秒
1.
Psoriasis is recognized as a chronic inflammatory disease characterized by epidermal hyperproliferation. To identify psoriasis-related genes, we compared the mRNA populations of normal and psoriatic skin. We identified one gene, designated as cornifelin, which showed increased expression in psoriatic skin. Human cornifelin contains 112 amino acids and is expressed in the uterus, cervix, and skin. In situ hybridization analysis demonstrated the presence of human cornifelin in the granular cell layer of the epidermis. To investigate the function of cornifelin, we established a transgenic mouse line overexpressing human cornifelin. Using these mice, we have shown that cornifelin is directly or indirectly cross-linked to at least two other cornified envelope proteins, loricrin and involucrin, in vivo. Overexpression of human cornifelin correlated with decreased loricrin expression and increased involucrin expression in the transgenic mouse. However, abnormality of epidermal differentiation was not observed in the transgenic mouse.  相似文献   

2.
3.
Diacylglycerol acyltransferases (DGAT) catalyze the final and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. DGAT genes have been identified in numerous organisms. Multiple isoforms of DGAT are present in eukaryotes. We previously cloned DGAT1 and DGAT2 genes of tung tree (Vernicia fordii), whose novel seed TAGs are useful in a wide range of industrial applications. The objective of this study was to understand the developmental regulation of DGAT family gene expression in tung tree. To this end, we first cloned a tung tree gene encoding DGAT3, a putatively soluble form of DGAT that possesses 11 completely conserved amino acid residues shared among 27 DGAT3s from 19 plant species. Unlike DGAT1 and DGAT2 subfamilies, DGAT3 is absent from animals. We then used TaqMan and SYBR Green quantitative real-time PCR, along with northern and western blotting, to study the expression patterns of the three DGAT genes in tung tree tissues. Expression results demonstrate that 1) all three isoforms of DGAT genes are expressed in developing seeds, leaves and flowers; 2) DGAT2 is the major DGAT mRNA in tung seeds, whose expression profile is well-coordinated with the oil profile in developing tung seeds; and 3) DGAT3 is the major form of DGAT mRNA in tung leaves, flowers and immature seeds prior to active tung oil biosynthesis. These results suggest that DGAT2 is probably the major TAG biosynthetic isoform in tung seeds and that DGAT3 gene likely plays a significant role in TAG metabolism in other tissues. Therefore, DGAT2 should be a primary target for tung oil engineering in transgenic organisms.  相似文献   

4.
Lipopenia and skin barrier abnormalities in DGAT2-deficient mice   总被引:14,自引:0,他引:14  
The synthesis of triglycerides is catalyzed by two known acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. Although they catalyze the same biochemical reaction, these enzymes share no sequence homology, and their relative functions are poorly understood. Gene knockout studies in mice have revealed that DGAT1 contributes to triglyceride synthesis in tissues and plays an important role in regulating energy metabolism but is not essential for life. Here we show that DGAT2 plays a fundamental role in mammalian triglyceride synthesis and is required for survival. DGAT2-deficient (Dgat2(-/-)) mice are lipopenic and die soon after birth, apparently from profound reductions in substrates for energy metabolism and from impaired permeability barrier function in the skin. DGAT1 was unable to compensate for the absence of DGAT2, supporting the hypothesis that the two enzymes play fundamentally different roles in mammalian triglyceride metabolism.  相似文献   

5.
6.
7.
Triacylglycerols (triglycerides) (TGs) are the major storage molecules of metabolic energy and FAs in most living organisms. Excessive accumulation of TGs, however, is associated with human diseases, such as obesity, diabetes mellitus, and steatohepatitis. The final and the only committed step in the biosynthesis of TGs is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. The genes encoding two DGAT enzymes, DGAT1 and DGAT2, were identified in the past decade, and the use of molecular tools, including mice deficient in either enzyme, has shed light on their functions. Although DGAT enzymes are involved in TG synthesis, they have distinct protein sequences and differ in their biochemical, cellular, and physiological functions. Both enzymes may be useful as therapeutic targets for diseases. Here we review the current knowledge of DGAT enzymes, focusing on new advances since the cloning of their genes, including possible roles in human health and diseases.  相似文献   

8.
Gan L  Lee I  Smith R  Argonza-Barrett R  Lei H  McCuaig J  Moss P  Paeper B  Wang K 《Gene》2000,257(1):119-130
The human kallikrein gene cluster, located in the chromosome band 19q13, contains several tissue-specific serine protease genes including the prostate-specific KLK2, KLK3 and prostase genes. To further characterize the gene cluster, we have mapped, sequenced, and analyzed the genomic sequence from the region. The results of EST database searches and GENSCAN gene prediction analysis reveal 13 serine protease genes and several pseudogenes in the region. Expression analysis by RT-PCR indicates that most of these protease genes are expressed only in a subset of the 35 different normal tissues that have been examined. Several protease genes expressed in skin show higher expression levels in psoriatic lesion samples than in non-lesional skin samples from the same patient. This suggests that the imbalance of a complex protease cascade in skin may contribute to the pathology of disease. The proteases, excluding the kallikrein genes, share approximately 40% of their sequences suggesting that the serine protease gene cluster on chromosome 19q13 arose from ancient gene duplications.  相似文献   

9.
10.
11.
Using real-time polymerase chain reaction (RT-PCR), we measured mRNA amounts of matrix metalloproteinases (MMPs): MMP-1, MMP-2, MMP-9, and MMP-12 genes in psoriatic lesions and unaffected skin of the same patients. We observed significant (about 15-fold) increase in the expression level of matrix metalloproteinase MMP-1 and MMP-12 genes associated with psoriasis. The results of our studies of MMP gene expression in cultured primary human keratinocytes treated with interleukin (IL-17) have shown upregulation of MMP gene expression both in cultured keratinocytes and in psoriatic skin lesions. Therefore, upregulation of MMP genes in the skin affected by psoriasis could result from IL-17 effects on skin cells.  相似文献   

12.
Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) is one of two known DGAT enzymes that catalyze the final step in triglyceride synthesis. Findings from genetically modified mice as well as pharmacological studies suggest that inhibition of DGAT1 is a promising strategy for the treatment of obesity and type 2 diabetes. Here we characterize a tool DGAT1 inhibitor compound, T863. We found that T863 is a potent inhibitor for both human and mouse DGAT1 in vitro, which acts on the acyl-CoA binding site of DGAT1 and inhibits DGAT1-mediated triacylglycerol formation in cells. In an acute lipid challenge model, oral administration of T863 significantly delayed fat absorption and resulted in lipid accumulation in the distal small intestine of mice, mimicking the effects of genetic ablation of DGAT1. In diet-induced obese mice, oral administration of T863 for 2 weeks caused weight loss, reduction in serum and liver triglycerides, and improved insulin sensitivity. In addition to the expected triglyceride-lowering activity, T863 also lowered serum cholesterol. Hepatic IRS2 protein was dramatically up-regulated in mice treated with T863, possibly contributing to improved insulin sensitivity. In differentiated 3T3-L1 adipocytes, T863 enhanced insulin-stimulated glucose uptake, suggesting a possible role for adipocytes to improve insulin sensitivity upon DGAT1 inhibition. These results reveal novel mechanistic insights into the insulin-sensitizing effects of DGAT1 inhibition in mouse models. Taken together, our study provides a comprehensive evaluation of a small molecule inhibitor for DGAT1 and suggests that pharmacological inhibition of DGAT1 holds promise in treating diverse metabolic disorders.  相似文献   

13.
Studies involving the cloning and disruption of the gene for acyl-CoA:diacylglycerol acyltransferase (DGAT) have shown that alternative mechanisms exist for triglyceride synthesis. In this study, we cloned and characterized a second mammalian DGAT, DGAT2, which was identified by its homology to a DGAT in the fungus Mortierella rammaniana. DGAT2 is a member of a gene family that has no homology with DGAT1 and includes several mouse and human homologues that are candidates for additional DGAT genes. The expression of DGAT2 in insect cells stimulated triglyceride synthesis 6-fold in assays with cellular membranes, and DGAT2 activity was dependent on the presence of fatty acyl-CoA and diacylglycerol, indicating that this protein is a DGAT. Activity was not observed for acyl acceptors other than diacylglycerol. DGAT2 activity was inhibited by a high concentration (100 mm) of MgCl(2) in an in vitro assay, a characteristic that distinguishes DGAT2 from DGAT1. DGAT2 is expressed in many tissues with high expression levels in the liver and white adipose tissue, suggesting that it may play a significant role in mammalian triglyceride metabolism.  相似文献   

14.
Homeobox (HOX) genes control axial specification during mammalian development and also regulate skin morphogenesis. Although selected HOX genes are variably expressed in leukemias and kidney and colon cancer cell lines, their relationship with the neoplastic phenotype remains unclear. In both normal development and neoplastic transformation, HOX target genes are largely unknown. We investigated the expression and function of HOXB cluster genes in human melanoma. The HOXB7 gene was constitutively expressed in all 25 melanoma cell lines and analyzed under both normal and serum-starved conditions, as well as in in vivo primary and metastatic melanoma cells; conversely, HOXB7 was expressed in proliferating but not quiescent normal melanocytes. Treatment of melanoma cell lines with antisense oligomers targeting HOXB7 mRNA markedly inhibited cell proliferation and specifically abolished expression of basic fibroblast growth factor (bFGF) mRNA. Band shift and cotransfection experiments showed that HOXB7 directly transactivates the hFGF gene through one out of five putative homeodomain binding sites present in its promoter. These novel findings indicate a key role for constitutive HOXB7 expression in melanoma cell proliferation via bFGF. The results also raise the possibility that growth factor genes are critical HOX target genes in other developmental and/or neoplastic cell systems.  相似文献   

15.
Adiponectin is an adipocyte-derived factor that plays pivotal roles in lipid and glucose metabolism in muscle and liver. The following two adiponectin receptor types were recently identified: AdipoR1 is abundantly expressed in muscle, whereas AdipoR2 is predominantly expressed in the liver. To clarify the regulation of adiponectin receptor gene expression in diabetic states, we examined mRNA levels of AdipoR1 in the muscles of diabetic animals by Northern blotting. The level of AdipoR1 mRNA was increased approximately 2.5-fold in muscle of streptozotocin (STZ) diabetic mice, but the normal level was restored by insulin administration, indicating that insulin has an inhibitory effect on AdipoR1 expression. To confirm this inhibitory effect of insulin, we performed in vitro experiments using C2C12 skeletal muscle cells. Insulin treatment for 24 h decreased AdipoR1 expression by approximately 60% in C2C12 cells. In addition, this effect was mediated by the phosphatidylinositol 3-kinase-dependent pathway rather than the mitogen-activated protein kinase pathway. AdipoR1 expression in insulin-resistant diabetic mice was also investigated. AdipoR1 expression was decreased by 36% in type 2 diabetic obese db/db mice compared with lean mice. In contrast, hepatic AdipoR2 expression was not significantly changed in either STZ mice or genetically obese mice. Our results indicate that regulation of AdipoR1, but not that of AdipoR2, may be involved in glucose and lipid metabolism in diabetic states.  相似文献   

16.
17.
Diacylglycerol (DAG) acyl transferase 1 (Dgat1) knockout ((-/-)) mice are resistant to high-fat-induced obesity and insulin resistance, but the reasons are unclear. Dgat1(-/-) mice had reduced mRNA levels of all three Ppar genes and genes involved in fatty acid oxidation in the myocardium of Dgat1(-/-) mice. Although DGAT1 converts DAG to triglyceride (TG), tissue levels of DAG were not increased in Dgat1(-/-) mice. Hearts of chow-diet Dgat1(-/-) mice were larger than those of wild-type (WT) mice, but cardiac function was normal. Skeletal muscles from Dgat1(-/-) mice were also larger. Muscle hypertrophy factors phospho-AKT and phospho-mTOR were increased in Dgat1(-/-) cardiac and skeletal muscle. In contrast to muscle, liver from Dgat1(-/-) mice had no reduction in mRNA levels of genes mediating fatty acid oxidation. Glucose uptake was increased in cardiac and skeletal muscle in Dgat1(-/-) mice. Treatment with an inhibitor specific for DGAT1 led to similarly striking reductions in mRNA levels of genes mediating fatty acid oxidation in cardiac and skeletal muscle. These changes were reproduced in cultured myocytes with the DGAT1 inhibitor, which also blocked the increase in mRNA levels of Ppar genes and their targets induced by palmitic acid. Thus, loss of DGAT1 activity in muscles decreases mRNA levels of genes involved in lipid uptake and oxidation.  相似文献   

18.
Although a number of genes expressed in most tissues, including the liver, exhibit circadian regulation, gene expression profiles are usually examined only at one scheduled time each day. In this study, we investigated the effects of obese diabetes on the hepatic mRNA levels of various genes at 6-h intervals over a single 24-h period. Microarray analysis revealed that many genes are expressed rhythmically, not only in control KK mice but also in obese diabetic KK-A(y) mice. Real-time quantitative PCR verified that 19 of 23 putative circadianly expressed genes showed significant 24-h rhythmicity in both strains. However, obese diabetes attenuated these expression rhythms in 10 of 19 genes. More importantly, the effects of obese diabetes were observed throughout the day in only two genes. These results suggest that observation time influences the results of gene expression analyses of genes expressed circadianly.  相似文献   

19.
20.
Using real-time polymerase chain reaction (RT-PCR), we measured mRNA amounts of matrix metalloproteinases (MMPs): MMP-1, MMP-2, MMP-9, and MMP-12 genes in psoriatic lesions and unaffected skin of the same patients. We observed significant (about 15-fold) increase in the expression level of matrix metalloproteinase MMP-1 and MMP-12 genes associated with psoriasis. The results of our studies of MMP gene expression in cultured primary human keratinocytes treated with interleukin (IL)-17 have shown upregulation of MMP gene expression both in cultured keratinocytes and in psoriatic skin lesions. Therefore, upregulation of MMP genes in the skin affected by psoriasis could result from IL-17 effects on skin cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号