首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We studied redoximorphic features, field indicators and bacterial communities of soils in hummocks and hollows of a palustrine forested wetland in Virginia. We hypothesized that presence of hydric soils, soil physicochemistry and soil bacterial community structure would differ between hummocks and hollows. We fingerprinted soils collected from different microtopographic locations using Length Heterogeneity Polymerase Chain Reaction (LH-PCR) to study their bacterial community structures. Two hummocks had silty/sandy loam soils with mean chroma values of > 4, showing no indication of ‘hydric soils’ (i.e., wetland soils). Two hollows, however, had clay loam soils with mean chroma values of 2 with gleying and redox concentrations observed, indicative of seasonally inundated wetlands. The soils of hollows also had higher organic matter content and soil moisture compared to the soils of hummocks (P < 0.05). Multidimensional scaling (MDS) and Analysis of similarity (ANOSIM) of the fingerprints revealed differences in soil microbial community structures between hummocks and hollows (Global R = 0.30, P < 0.01). The diversity measures of the fingerprints (Shannon’s H′) were also different by microtopography with higher diversity in hollows relative to hummocks (P < 0.05). LH-PCR proves to be a useful tool in examining bacterial community composition of wetland soils in this study. However, cloning and sequencing of specific community LH-PCR profiles of interest is necessary to fully characterize the community down to genus/species level. With species identities we should be able to not only better explain differences observed in the community profiles, but study their relations to hydrologic and/or physicochemical conditions of wetlands.  相似文献   

2.
We conducted a field study to examine the influence of hydroperiod and concomitant changes in abiotic (wetland size, pH, conductivity, dissolved oxygen and water temperature) and biotic (predatory fish presence) characteristics on macroinvertebrate communities in isolated wetlands in southern New Hampshire. Invertebrates were sampled using dipnet sweeps in 42 wetlands with short (<4 months), intermediate (4–11 months) or long (permanent) hydroperiods in 1998 and 1999. We found that invertebrate genera richness, and to a lesser degree abundance, increased linearly along the hydrological gradient, and in response to temperature and dissolved oxygen. Relative abundance of genera also differed markedly with respect to hydroperiod. Most notably, invertebrate communities changed from Acilius-dominated communities to Notonecta-dominated communities. Invertebrate relative abundances in permanent wetlands also differed with respect to the occurrence of predatory fish. Some genera (e.g., Libellula, and Dytiscus) were more likely to occur in permanent wetlands without fish, whereas other genera (e.g., Buena, and Basiaeshna) were more likely to occur in wetlands with predatory fish. Because aquatic invertebrate communities differed markedly with respect to wetland hydroperiod, and in relation to the occurrence of predatory fish, it is essential to retain a diversity of wetlands in the landscape to ensure the long-term persistence of aquatic invertebrate biodiversity.  相似文献   

3.
The vegetation portion of the Florida Wetland Condition Index (FWCI), an index of biological integrity, provided consistent and repeatable measures of condition at eighteen wetlands sampled in two consecutive growing seasons. The sample wetlands reflected a gradient of adjacent land use from non-impacted reference areas to wetlands imbedded within silviculture, cattle pasture and residential areas. Wetlands were described as herbaceous depression (n = 6), forested depression (n = 5) and forested strand or floodplain wetlands (n = 7), and represented different states of succession. Even though the wetlands were unique from one another and occurred across a large geographic area in Florida, the FWCI results calculated for all the wetlands were representative of adjacent land use impacts and not sensitive to natural variation. During the duration of this study, changes in weather from drought to tropical storm conditions, as well as management activities such as fire and herbivory, impacted wetlands. These effects were apparent in the change of species composition between sampling periods; 23–56% of species were different when resampled. Even though composition changed, the proportion of indicators remained consistent. The resulting condition scores suggested a one-to-one relationship between sampling periods.  相似文献   

4.
Although it has become increasingly clear that arbuscular mycorrhizal fungi (AMF) play important roles in population, community, and ecosystem ecology, there is limited information on the spatial structure of the community composition of AMF in the field. We assessed small-scale spatial variation in the abundance and molecular diversity of AMF in a calcareous fen, where strong underlying environmental gradients such as depth to water table may influence AMF. Throughout an intensively sampled 2 × 2 m plot, we assessed AMF inoculum potential at a depth of 0–6 and 6–12 cm and molecular diversity of the AMF community using terminal restriction fragment length polymorphism of 18S rDNA. Inoculum potential was only significantly spatially autocorrelated at a depth of 6–12 cm and was significantly positively correlated with depth to water table at both depths. Molecular diversity of the AMF community was highly variable within the plot, ranging from 2–14 terminal restriction fragments (T-RFs) per core, but the number of T-RFs did not relate to water table or plant species richness. Plant community composition was spatially autocorrelated at small scales, but AMF community composition showed no significant spatial autocorrelation. Saturated soils of calcareous fens contain many infective AMF propagules and the abundance and diversity of AMF inoculum is patchy over small spatial scales. An erratum to this article can be found at  相似文献   

5.
Question: What is the influence of hydrological regime, soils and management on the plant community composition and species richness of Skealoghan turlough (groundwater dependent calcareous wetland). Location: Skealoghan turlough, County Mayo, Ireland. Methods: Percentage cover of vascular plants and bryophytes were recorded, and data on hydrological regimes, soils and management were collected. Data were analysed using multivariate statistical techniques. Results: A total of 69 species of vascular plants and mosses were recorded. Cluster analysis grouped the samples into two separate communities, the Cirsio‐Molinietum and the Ranunculo‐Potentilletum anserinae plant communities. The plant community composition and species richness followed a main gradient down into the turlough basin, but also varied with microtopography, resulting in a mosaic of vegetation types. Conclusions: The biodiversity and conservation value of the site is linked to the heterogeneity in its physical environment in which hydrology, soils and grazing management all play critical roles.  相似文献   

6.
The objective of this study was to identify the impact of nutrient enrichment on the diversity of the ciliate community associated with the roots of the aquatic macrophyte Eichhornia crassipes. The experiment was performed in the Garças Lake, located in the Upper Paraná River floodplain, Brazil. We conducted two treatments (fertilized and control) with three replicates each. To increase the initial nutrient concentrations in each mesocosm of the fertilized treatment, we added 1000 μg L−1 of KNO3 and 200 μg L−1 of KH2PO4 during each sampling date. We found a relative high number of ciliate species (85 species) and a predominance of hypotrichs. Among the recorded species, about 25% occurred exclusively in the fertilized treatment. Moreover, detrended correspondence analysis demonstrated that the ciliate community associated with E. crassipes roots changed significantly in response to the nutrient input in such a way that the species composition of the fertilized treatment was remarkably different from that of the control. In contrast to our expectations, species richness in the fertilized treatment was significantly higher than that in the control, refuting our hypothesis that species richness decreases under eutrophic conditions.  相似文献   

7.
Our objective was to detect environmental and disturbance factors that determine plant species composition in a downstream riverside floodplain of the Shinano River, where both natural flooding and artificial fire disturbances predominate. We classified the natural vegetation into five types by physiognomy, i.e., burnt field, intact (unburnt) field, early-successional forest, later-successional forest, and margin of channel. We deployed 14 transect belts containing 713 plots of 1 m × 1 m at these sites. In the plots, we determined plant occurrences and values of five environmental (soil moisture, soil texture, relative elevation above the river, horizontal distance from the river, and light conditions) and two disturbance factors (scouring of plants by flooding and fire). Plant species compositions and environmental and disturbance factors were different among the sites. Logistic regression analysis showed that burning stimulated the occurrences of herbaceous annuals and conversely constrained those of woody and fern species, suggesting that fire disturbance resets the succession. Scouring of plants by flooding also affected the occurrences of many species, and had a positive influence on that of herbaceous winter annuals in particular. Canonical correspondence analysis indicated that the distributional characteristics of the plant species in the riverside floodplain were influenced primarily by distance from the river, reflecting the magnitude of flood disturbance. We conclude that (1) magnitude of flood disturbance is the primary factor determining plant species composition, and (2) burning maintains early successional vegetation and simultaneously creates a unique plant species composition by stimulating the germination of buried viable seeds transported by flood.  相似文献   

8.
The length-weight relationship (LWRs) was estimated for eight fish species collected from oxbow lakes on the floodplain of the middle Purus River in western Brazilian Amazonia in January, May, and September 2012. The specimens were collected using 12 gillnets (80 m in length × 4 m in height, meshes of between 1.5 cm and 12.0 cm), which were set during both diurnal and nocturnal periods. The species had allometric coefficients (b) of between 2.92 and 3.37, and correlation coefficients (r2) ranging from 0.954 to 0.993 and we highlight that the work presents new data for literature.  相似文献   

9.
10.
The goal of this study was to investigate early plant community development in two sites (i.e., higher and lower elevation sites—LC1 and LC2, respectively) of the Loudoun County (LC) mitigation wetland created in the Virginia Piedmont. The effects of hydrologic design elements incorporated during the construction (i.e., disking-induced microtopography—MT and site level elevation difference) on vegetative and hydrologic attributes (e.g., species richness, biodiversity, plant cover, floristic quality assessment index, wetland indicator status, soil moisture content, and water table depths) were investigated. The study was conducted at the end of two growing seasons in 2008 and 2009 (i.e., second and third growing seasons). Drought conditions that persisted into the second growing season resulted in the abundance of a seeded cover grass, Lolium multiflorum (Italian ryegrass), intentionally planted during initial seeding for erosion control. L. multiflorum was subsequently phased out and replaced by facultative wet and obligate wetland species by the third growing season when above-average precipitation occurred, leading to a decrease in total percent cover. Prevalence index changed in both LC1 and LC2, dropping from overall facultative status in 2008 to obligate status in 2009 when obligate species such as Bidens cernua, Carex frankii, and Juncus effusus thrived and expanded with the change of hydrologic regime in 2009. Microtopographic treatment (i.e., disked or undisked) positively influenced vegetation development for LC1 site in 2008, but the positive influence was not consistent for LC2, which experienced an additional month of standing water conditions in the same year, nor for either site in 2009 when above-average precipitation occurred. The site differences in elevation, and thus hydrologic regime, seemed to overwhelm the effects on vegetation of disking-induced microtopography in each site when precipitation was at or above average range. Although shown on short spatial and temporal scales in this study, incorporation of micro- and macrotopographic design elements in creating a mitigation wetland can be beneficial to the early development of diverse vegetation communities wetland under varying climate conditions.  相似文献   

11.
The present study evaluated the hypothesis that after flooding events, non-random patterns of species co-occurrence (segregation) are progressively intensified in fish assemblages inhabiting seasonally isolated lagoons. We sampled lagoons in the upper Paraná River floodplain between 1992 and 1993, and classified them into five hydrological phases, according to their surface connectivity. During the period of isolation (9 months), lagoons depth decreased progressively, but desiccation was reversed after 4 months (possibly due to groundwater infiltration and rainfall). A significant co-occurrence pattern (segregation) occurred in the last phase, supporting our initial hypothesis. However, richness, abundance and composition were significantly correlated with habitat depth, indicating that assemblage structure and organization is closely associated with dynamics of habitat retraction/expansion during isolation. Although environmental conditions of lagoons (absence of prolonged desiccation) prevented an adequate test of our hypothesis, our data suggests that, in addition to the importance of surface floods, the hydrological cycle as a whole has a crucial role shaping the organization of fish assemblages in floodplain lagoons seasonally isolated.  相似文献   

12.
Abernethy  V.J.  Willby  N.J. 《Plant Ecology》1999,140(2):177-190
This study used germination methods to examine the density, species composition and functional composition of propagule banks in a series of riverine wetland aquatic habitats subject to varying degrees of hydrological and management-related disturbance. Under permanent inundation (the conditions prevailing at most sites during the growing season) propagule germination and species richness was low, with floodplain perennials and helophytes particularly affected. Densities of floodplain annuals were largely maintained through continued germination of a few flooding tolerant species. On damp mud (conditions associated with hydrological instability) total seedling number and species richness increased significantly, but species richness of germinating hydrophytes declined. Mean seedling density at 0–0.1m depth was 15450 ± 4400 m–2, reaching a maximum (162 050 m–2) in temporary backwaters. Annual (e.g., Lindernia dubia, Cyperus fuscus) and facultative ruderal species (e.g., Lythrum salicaria and Alisma plantago-aquatica) predominated. Vertical zonation of the propagule bank was weakly developed. The numbers of individuals and species germinating varied significantly between sites. The seasonal, most intensely disturbed sites (temporary backwaters) supported a numerically large, species-rich propagule bank based on floodplain annuals, while the permanent, less disturbed sites (ditches and an oxbow pond) had a small, species-poor propagule bank composed of hydrophytes and helophytes supplemented by allochthonous seed inputs. Sites intermediate on the gradient had a propagule bank dominated by facultative amphibious, ruderal hydrophytes. The composition of the seed bank and the established vegetation was most similar at the heavily disturbed sites where the seed bank was maintained by vigorously fruiting annuals and supplemented by inputs from temporary habitats upstream. At permanent sites much of the propagule bank composition could be accounted for by inputs of floodborne seed from the immediately adjacent floodplain. The established vegetation at such sites appeared to be maintained mainly by vegetative propagation with recruitment from the propagule bank likely only after severe disturbance. The potential contribution of functionally diverse propagule banks to sucessional processes within fluvially dynamic floodplain aquatic habitats is emphasised.  相似文献   

13.
Restoration efforts are typically based on an assumption that reestablishment of altered determinants of ecological structure and function will lead to a predictable reestablishment of populations and reassembly of communities. Dechannelization and reestablishment of natural hydrologic regimes provide the basis for the ongoing restoration of the Kissimmee River in Central Florida, United States. The expected reestablishment of historically dominant broadleaf marsh (BLM) and buttonbush shrub (BB) communities was evaluated over a 10‐year period following implementation of the first phase of the restoration project. Plant species composition and cover were assessed during dry (spring) and wet (summer) season sampling periods at five sites on the restored floodplain, and four “control” sites on the channelized floodplain. Mean daily stage data from nearby gauges indicated hydroperiods and depths on the reflooded floodplain were within the range of historic hydrologic conditions that selected for BLM and BB communities on the pre‐channelization floodplain. After reflooding, pasture grass and upland shrub communities rapidly transitioned to a fluid mix of obligate and facultative wetland species. Although signature BLM and BB species, Sagittaria lancifolia (bulltongue arrowhead), Pontederia cordata (pickerel weed), and Cephalanthus occidentalis (buttonbush), recolonized all study sites, the expected reestablishment of dominant cover of these species did not occur. Results indicate that restoration of BLM and BB communities has been impeded by deep flood pulse disturbances, establishment of invasive wetland grasses, and mineralized soil characteristics of the drained floodplain.  相似文献   

14.
The objective of this work was to study the effect of plant presence (Phragmites australis) and inoculant origin on wetland mesocosm start-up dynamics. Eight mesocosms were studied based on a duplicated 22 factorial design tracking bacterial community and hydrological changes during an 8 month start-up period. The mesocosms were characterized in terms of their hydrological character based on evapotranspiration (ET), porosity, and a dispersion coefficient. The microbiological regime was characterized using a microbial activity measure and community-level physiological profiling (CLPP) employing BIOLOG™ ECO plates. CLPP-related indices such as substrate richness, substrate diversity, over-all community profile, and community divergence are also presented. It was found that mesocosm porosities decreased over time as a result of media-related biofilm development. This biofilm development also contributed to a substantial increase in the dispersion coefficient in the mesocosms over the start-up period. Dispersion coefficients in planted systems reached values of ∼50-55 cm2/min whereas in the unplanted systems values of ∼30-35 cm2/min were observed. Bacterial community divergence in the mesocosms was quantified using a Euclidean-based divergence metric. All mesocosms showed a sharp increase in community divergence until day 75, at which point a steady state was reached. The interstitial communities were also characterized in terms of similarity based on the experimental design treatments. Four stages of mesocosm development were identified that can be described by an initial community state based on the origins of the initial inoculum [days 0-6]; a dynamic period where adjustments and shifts in the bacterial community occurred in all mesocosms [days 7-26]; a period where all interstitial CLPPs were quite similar [days 27-73]; and finally a shift towards unplanted and planted mesocosm CLPP groupings [days 74-232].  相似文献   

15.
【背景】随着中小城市经济的高速发展和人们生活水平的提高,生活污水排放量也日益增大,致使水源水质污染呈恶化趋势。【目的】了解湿地法处理生活污水对湿地地表水微生物群落多样性变化的影响。【方法】对人工湿地(仙桃)参照点(-2 000)、200、400、600、3 000、5 000 m水平方向6点地表水进行理化检测,再通过高通量测序对微生物群落结构进行解析,并探讨微生物群落结构变化与生活污水的污染效应。【结果】当湿地法处理的生活污水到达5 000 m时,化学需氧量、氨态氮、总氮和总磷均达《城镇污水处理厂污染物排放标准》一级标准,且理化指标之间均呈极显著正相关。样品在门水平上的优势物种分别为变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)、放线菌门(Actinobacteria)、蓝藻门(Cyanobacteria)、疣微菌门(Verrucomicrobia)、厚壁菌门(Firmicutes)、酸杆菌门(Acidobacteria)和绿弯菌门(Chloroflexi)。变形菌门(Proteobacteria)可用来作为排放生活污水污染物的指示性微生物,放线菌门(Actinobacteria)、蓝藻门(Cyanobacteria)、疣微菌门(Verrucomicrobia)和绿弯菌门(Chloroflexi)可用来作为排放生活污水净化的指示性微生物。【结论】首次比较分析了湿地法处理仙桃生活污水地表水环境中微生物群落多样性变化的情况,可使人们从微生物层面更加明确地了解人工湿地运作机理及地表水环境的污染情况。  相似文献   

16.
Human activities such as land clearing and intensive land use around water bodies, particularly wetlands, have a detrimental impact on water quality and quantity, aquatic plant communities, and associated wetland fauna. Lake Alexandrina and Lake Albert are internationally significant Ramsar wetlands located at the terminus of the Murray River, Australia's longest river system. Agriculture, water regulation, and extraction and droughts have had a detrimental impact on native plant communities in the lakes. We studied the influence of young (<1–3 years) and old (8–11 years) plantings of a native sedge (bulrush), Schoenoplectus tabernaemontani, to facilitate the establishment of aquatic plant communities in comparison with remnant and control sites. We also measured how planting structure (height, stand width, and stem density) changed with age in comparison with remnant sites. Results suggest that as plantings age they get substantially wider and have a greater maximum height, although do not reach similar stand widths by 11 years when compared to remnant areas. However, old plantings do not differ from remnant habitats in relation to aquatic plant species richness, counts of aquatic plants, and community composition. Young plantings have substantially less abundant and diverse plant communities, but are developing on a similar trajectory to old plantings. It is likely that planting sedges along lake shorelines causes a breakwater effect that facilitates the recolonization of wetland plants between the planted area and the water's edge. Management agencies should consider restoring native sedges to increase aquatic biodiversity, and potentially reduce erosion.  相似文献   

17.
In the last two decades, the relationship between diversity and stability/ecosystem functioning has been widely discussed and has become a central issue in ecology. Here, we assessed the relationship between wetland plant diversity and community resilience after a disturbance. Our study area was located in the Upper Paraná River floodplain (Brazil). An experiment was carried out in situ (18 1 m × 1 m plots with richness varying from 1 to 18 species). In each plot, we recorded the number of species, total per cent vegetation cover and per cent age cover of each species. The above‐ground biomass of wetland plants was removed, simulating a disturbance by animal trampling or an extreme flood. The recovery of vegetation was monitored over 3 months. According to a linear regression, the recovery of wetland plants was positively correlated with diversity. Comparisons with plots containing monocultures of one of the dominant species (Polygonum stelligerum) suggested that this species did not overyield in mixed cultures. Thus, our experiments indicate that the higher resilience in richer plots after a disturbance is mainly due to the fact that species have different resource use requirements (complementarity effect) and not due to the presence of a single, more productive species. Our experiment carried out in a more real condition (in situ) showed that biodiversity is important to wetland functioning and stability, paralleling the results obtained in laboratory and mesocosms experiments. These results also suggest that the loss of plant diversity in our study area could compromise community recovery following strong disturbances.  相似文献   

18.
To test the hypothesis that nonbuoyant seeds transported by river water are deposited with mineral sediment particles that have a similar fall velocity through water, we examined the relationship between the size of sediment deposited by a flood and the density of the deposited seeds of a invasive alien plant, Eragrostis curvula. The average estimated fall velocity of the seeds was 2.93 cm/s, and this value was similar to the fall velocity through water of fine sand (about 0.18 mm in size). Most seeds deposited by a flood pulse caused by a typhoon were observed in sites where fine sand and silt had accumulated on the surface. Over the course of two study years, the number of the seeds found in sediment deposited at microsites correlated significantly with the proportion of sediment particles <0.25 mm in size. Our results suggest that floodplain areas where fine sand is deposited by floods have a high risk of invasion by E. curvula. An erratum to this article can be found at  相似文献   

19.
20.
1. To study two factors which are predicted as causing changes to community structure in cut-off meanders (colloquially known in Australia as billabongs, a term of aboriginal origin), 16 experimental billabongs were constructed. These were designed to test two hypotheses: (a) that the structure of macrophyte and invertebrate communities within billabongs is altered by changing the pattern of flooding; and (b) that the presence of small planktivorous fish alters invertebrate community structure and diversity within billabongs.
2. An increase in the duration of flooding seems to favour animals better adapted to a greater availability of macrophyte habitat. Changing the seasonality of flooding resulted in prolonging of the time water was available over the summer months.
3. The presence of a planktivorous fish appears to affect macroinvertebrate communities through competition with other planktivores. Variable top-down pressure may create differing successional patterns and ultimately different communities at lower trophic levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号