首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thude S  Classen B 《Phytochemistry》2005,66(9):1026-1032
This investigation shows structural features of two macromolecules from roots of Echinacea pallida (Nutt.) Nutt: an arabinogalactan-protein (AGP) and an arabinan. The arabinogalactan-protein was precipitated with beta-glucosyl Yariv reagent from a high molecular weight fraction. Investigations of the neutral sugar composition revealed Gal (52.1% w/w) and Ara (38.2% w/w) in a ratio of 1.4:1, accompanied by Glc (6.9% w/w) and Rha (2.8% w/w). The content of uronic acids was 6.2%. Mild acid hydrolysis detects Ara and Glc being located at the periphery of the molecule. Linkage analyses and NMR spectroscopy revealed a backbone of the polysaccharide mainly consisting of 3-linked and 3,6-linked Galp-residues. Side chains are composed of 3,6-linked or 6-linked Galp terminating in 5-linked Araf, terminal Araf, Glcp and GlcAp. The protein part (3.9% w/w) of the AGP is rich in Hyp, Ser, Ala, Thr, Glu, Asp and Gly. The amount of Hyp was determined by a colorimetric method and found to be (0.65% (w/w) of the AGP, which is in good agreement with the result obtained by amino acid hydrolysis (0.67% w/w). The arabinan was isolated from the supernatant of the Yariv precipitation on the basis of solubility in EtOH (80%). It mainly consists of Ara (85.8%). Linkage analyses and NMR spectroscopy indicate a highly branched molecule, consisting of 3,5-linked, 5-linked and terminal Araf-residues in equal amounts.  相似文献   

2.
Suspension cultures of Echinacea purpurea have been established in MS medium supplemented with 2,4-D and an arabinogalactan-protein (AGP) was purified from the secreted soluble polymers by precipitation with ethanol, followed by precipitation with β-glucosyl Yariv reagent. It revealed typical features of AGPs: a high amount of polysaccharide (90% w/w) with the dominating monosaccharides galactose and arabinose and some glucuronic acid, and a small protein moiety (10% w/w) with the main amino acids Ala, Hyp, Glx, Ser, Asx and Thr. Linkage- and NMR-analyses showed the polysaccharide part to be composed of a branched core-polysaccharide of 3-, 6- and 3,6-linked Galp residues with terminal Araf, Arap, Galp and GlcAp residues. Compared to an AGP from pressed juice of the aerial parts of Echinacea purpurea, differences particularly in terminal arabinose mono- and oligosaccharides in arabinogalactan (AG) side branches could be detected. Testing of different AGP-antibodies with both AGPs confirmed the results of the analytical investigations. Binding of AGPs from plant and cell cultures to LM2, a monoclonal AGP-antibody reacting with a GlcA containing epitope, was comparable. The reactivity of a monoclonal antibody raised against the AGP from the plant recognizing a galactan epitope was also nearly similar with both AGPs. In contrast, polyclonal antibodies raised against the AGP from the plant and directed against an Araf-containing epitope of the AG side branches showed nearly no cross reactivity with the AGP from cell culture.  相似文献   

3.
Cell suspension cultures of Silybum marianum secreted polymers extracellularly containing 97% carbohydrates and 3% proteins. Fractionation of polysaccharides by anion-exchange chromatography yielded an unbound neutral fraction composed of glucose, xylose, galactose, arabinose and rhamnose and a bound fraction in which galactose and arabinose were predominantly found. The bound fraction specifically bind to Yariv phenylglycoside suggesting the presence of an arabinogalactan protein (AGP). Further purification of the AGP was done by precipitation of the culture medium with the Yariv reagent. The precipitated AGP eluated as single peak by gel permeation with an average molecular weight of 100. Eighteen aminoacids were detected, Ser, Gly, Glu, Asp, Thr and Hyp being the major ones. Linkage analysis showed terminal and 1,3-linked arabinose and almost all galactose was present in the 1,3-galactopyranoside form. The NMR spectral data revealed residues of galactopyranose and arabinofuranose as constituents of AGP. This study is the first examination of an AGP secreted by S. marianum cells in suspension culture.  相似文献   

4.
Here we demonstrate that the pectic rhamnogalacturonan-I-associated LM5 (1-->4)-beta-d-galactan epitope occurs in a restricted manner at the root surface of intact Arabidopsis seedlings. The root surface occurrence of (1-->4)-beta-d-galactan marks the transition zone at or near the onset of rapid cell elongation and the epitope is similarly restricted in occurrence in epidermal, cortical and endodermal cell walls. The extent of surface (1-->4)-beta-d-galactan occurrence is reduced in response to genetic mutations (stp-1, ctr-1) and hormone applications that reduce root cell elongation. In contrast, the application of the arabinogalactan-protein (AGP) binding beta-glucosyl Yariv reagent (betaGlcY) that disrupts cell elongation results in the persistence of (1-->4)-beta-d-galactan at the root surface and in epidermal, cortical and endodermal cell walls. This latter observation indicates that modulation of pectic (1-->4)-beta-d-galactan may be an event downstream of AGP function during cell expansion in the Arabidopsis seedling root.  相似文献   

5.
Polysaccharide composition of the fruit juice of Morinda citrifolia (Noni)   总被引:1,自引:0,他引:1  
Bui AK  Bacic A  Pettolino F 《Phytochemistry》2006,67(12):1271-1275
An ethanol-insoluble, high molecular weight fraction was collected from the juice of Morinda citrifolia fruit grown in Viet Nam. The fraction is composed primarily of carbohydrate (67% (w/w)). The polysaccharide fraction consists predominantly of GalAp (53.6mol%), Araf (13.6mol%), Galp (17.9mol%) and Rhap (9.5mol%). Glycosyl linkage analysis suggests the polysaccharide fraction contains mostly the pectic polysaccharides, homogalacturonan (4-GalAp), rhamnogalacturonan I (4-GalAp, 2-Rhap, 2,4-Rhap), arabinan (5-Araf, 3,5-Araf, t-Araf), type I arabinogalactan (4-Galp, 3,4-Galp, t-Araf) and beta-glucosyl Yariv-binding type II arabinogalactan (3,6-Galp, t-Araf). Low levels of xyloglucan (4-Glcp, 4,6-Glcp, t-Xylp, t-Fucp), heteroxylan (4-Xylp) and heteromannan (4-Manp) are also present.  相似文献   

6.
Cell biological, structural, and genetic approaches have demonstrated the presence of arabinogalactan proteins (AGPs) in the moss Physcomitrella patens and provided evidence for their function in cell expansion and specifically in the extension of apical tip-growing cells. Inhibitor studies indicated that apical cell expansion in P. patens is blocked by synthetic AGP binding beta-glucosyl Yariv reagent (betaGlcYR). The anti-(1-->5)-alpha-L-arabinan monoclonal antibody LM6 binds to some AGPs in P. patens, to all plasma membranes, and to the cell wall surface at the most apical region of growing protonemal filaments. Moreover, LM6 labeling of cell walls at the tips of apical cells of P. patens was abolished in the presence of betaGlcYR, suggesting that the localized movement of AGPs from the plasma membrane to the cell wall is a component of the mechanism of tip growth. Biochemical and bioinformatic analyses were used to identify seven P. patens ESTs encoding putative AGP core proteins from homology with Arabidopsis thaliana, Brassica napus, and Oryza sativa sequences and from peptide fragments isolated from betaGlcYR-precipitated AGPs. Gene knockout by homologous recombination of one of these genes, P. patens AGP1, encoding a classical AGP core protein, resulted in reduced cell lengths in protonemal filaments, indicating a role for AGP1 in apical cell expansion in P. patens.  相似文献   

7.
Structure and immunological characteristics of the pectic arabinogalactan Vk2a (previously reported as Vk100A2a) from the roots of Vernonia kotschyana Sch. Bip. ex Walp. were investigated after enzymatic digestion of the galacturonan moiety and the side chains of the rhamnogalacturonan structure of Vk2a. endo-alpha-D-(1-->4)-Polygalacturonase digestion released the high molecular weight 'hairy region' (Vk2a-HR) and oligogalacturonides. Vk2a-HR consisted of GalA (4-linked) and Rha (2- or 2,4-linked) in a 1:1 ratio, with 60% of Rha branched at C-4. The Rha located in the rhamnogalacturonan core was branched randomly by Gal units. Vk2a-HR was rich in neutral sugars such as Araf 5- (12.2%) and 3,5-substituted (12.8%) and terminally- (14.1%) linked and Gal 4- (13.0%), 3- (0.9%), 6- (2.2%) and 3,6- (1.1%) substituted. Arabinans with chain lengths up to 11 units were identified. Araf residues were attached to C-3 of alpha-L-(1-->5)-Araf chains and to C-4 of Gal residues. Single Gal units and chains of beta-D-(1-->6)-linked galacto di- to penta-saccharides were attached to a beta-D-(1-->3)-galactan core. All the enzyme resistant fractions expressed potent complement fixation and induction of B-cell mitogenic activity, and the present study indicates that there may be several and possibly structurally different active sites involved in the bioactivity of Vk2a. The bioactive sites may be located both in the more peripheral parts of the molecule but also in the inner core of the 'hairy region' or in larger enzyme-resistant chains.  相似文献   

8.
Serpe MD  Nothnagel EA 《Plant physiology》1995,109(3):1007-1016
Arabinogalactan-proteins (AGPs) have been purified from Paul's Scarlet rose (Rosa sp.) cell walls. As estimated by gel permeation chromatography, the apparent molecular masses of the two major cell-wall AGP fractions were 130 and 242 kD. Since the 130-kD AGP had a ratio of arabinose/glucuronic acid that was 12 times higher than that of the 242-kD AGP, the fractions were named cell-wall AGP1 (CW-AGP1) and glucuronogalactan-protein (GGP), respectively. CW-AGP1 and GGP contained predominantly t-arabinofuranosyl residues; 3-linked, 6-linked, and 3,6-branched galactopyranosyl residues; and 4-linked and t-glucuronopyranosyl residues. The 1H-nuclear magnetic resonance spectra of CW-AGP1 and GGP showed that the arabinofuranosyl and galactopyranosyl residues were predominantly in [alpha]- and [beta]-anomeric configuration, respectively, and that GGP contained a few O-acetyl residues. The protein moieties of CW-AGP1 and GGP were both rich in hydroxyproline and alanine but differed in the percentage of various amino acids, including hydroxyproline, alanine, serine, and glycine. Cell-wall AGPs bound to ([beta]-D-glucosyl)3 Yariv phenylglycoside, but the stoichiometry of binding was about 6 times greater in GGP than in other Rosa AGPs. GGP seems to be peculiar to the cell wall, since no similar molecule was found in the culture medium.  相似文献   

9.
Structural features of the acidic, highly substituted glycanoxylan (LCP; 87% yield) from the gum exudate of the palm, Livistona chinensis, family Arecaceae, were determined. It had [alpha]D -30 degrees, Mw 1.9x10(5) and a polydispersity ratio Mw/Mn of approximately 1.0. Acid hydrolysis gave rise to Rha, Fuc, Ara, Xyl, and Gal, in a 1:6:46:44:3 molar ratio, and 12% of uronic acid was present. LCP had a highly branched structure with side-chains containing nonreducing end-units (% values are approximate) of Araf (15%), Fucp (4%), Xylp (7%), GlcpA, and 4-Me-GlcpA, and internal 2-O- (5%) and 3-O-substituted Araf (8%), and 2-O-substituted Xylp (14%) units. The (1-->4)-linked beta-Xylp main-chain units of LCP were substituted at O-3 (4%), O-2 (17%), and O-2,3 (16%). Partial acid hydrolysis gave 4-Me-alpha-GlcpA-(1-->2)-[beta-Xylp-(1-->4)](0-2)-Xyl, identified by showing that the uronic acids were single-unit side-chain substituents on O-2. Milder hydrolysis conditions removed from O-3 other side-chains containing Fucp and Araf nonreducing end-units and internal Arap, and 2-O- and 3-O-substituted Araf units. Carboxyl-reduced LCP contained 4-O-methylglucose and glucose in a 3.2:1 molar ratio, arising from GlcpA and 4-OMe-GlcpA nonreducing end-units, respectively. The gum contained small amounts of free alpha-Fucp-(1-->2)-Ara, which corresponds to structures in the polysaccharide. Free myo- and D- or L-chiro-inositol were present in a 9:1 ratio.  相似文献   

10.
The polysaccharide isolated from the gum exudate of palm Scheelea phalerata (SPN) was water-insoluble and composed of Fuc, Ara, Xyl, and uronic acid moieties in a 5:34:54:7 molar ratio: 12% of phenolics were also present. A soluble polysaccharide (SPNa) was obtained after alkaline treatment, which contained Fuc, Ara, Xyl and uronic acid in a 7:44:42:7 molar ratio, with only 2% phenolics. SPNa had an M(W) approximately 1.04 x 10(5) g mol(-1) and was almost monodisperse (M(W)/M(N) : 1.25 +/-0.22). It had a branched structure with side chains of 2-O-substituted Xylp (approximately 8%) and 3-O-substituted Araf (12%) units, and a large proportion of nonreducing end-units of Araf (15%), Fucp (10%), Xylp (4%), and Arap (6%). The (1 --> 4)-linked beta-Xylp main-chain units were 3-O- (9%), 2-O- (13%), and 2,3-di-O- (13%) substituted. Its (13)C NMR spectrum contained at least 9 C-1 signals, those at delta 108.6 and 107.7 arising from alpha-Araf units. Others were present at delta 175.4 from C-6 of alpha-GlcpA and delta 15.6 from C-6 of Fucp units. The main chain of SPNa was confirmed by analysis of a Smith-degraded polysaccharide (SPDS): methylation analysis provided a 2,3-Me(2)-Xyl (65%) derivative and its (13)C NMR spectrum showed five main signals typical of a (1 --> 4)-linked beta-Xylp units. Methylation analysis of a carboxy-reduced polysaccharide (SPN-CR) revealed a 2,3,4,6-Me(4)-Glc derivative (4%) arising from nonreducing end-units of GlcpA. Alpha-GlcpA-(1 --> 2)-alphabeta-Xy1p and alpha-GlcpA-(1 --> 2)-beta-Xylp-(1 --> 4)-alphabeta-Xylp were obtained via partial acid hydrolysis of SPN, showing the structure of side-chain substituents on O-2 of the main-chain units.  相似文献   

11.
The O-antigenic polysaccharide of the Rhizobium etli CE3 lipopolysaccharide (LPS) was structurally characterized using chemical degradations (Smith degradation and beta-elimination of uronosyl residues) in combination with alkylation analysis, electrospray, and matrix-assisted laser desorption ionization-time of flight mass spectrometry, tandem mass spectrometry, and (1)H COSY and TOCSY nuclear magnetic resonance spectroscopy analyses of the native polysaccharide and the derived oligosaccharides. The polysaccharide was found to be a unique, relatively low molecular weight glycan having a fairly discrete size, with surprisingly little variation in the number of repeating units (degree of polymerization = 5). The polysaccharide is O-acetylated and contains a variety of O-methylated glycosyl residues, rendering the native glycan somewhat hydrophobic. The molecular mass of the major de-O-acetylated species, including the reducing end 3-deoxy-d-manno-2-octulosonic acid (Kdo) residue, is 3330 Da. The polysaccharide is comprised of a trisaccharide repeating unit having the structure -->4)-alpha-d-GlcpA-(1-->4)-[alpha-3-O-Me-6-deoxy-Talp-(1--> 3)]-alpha -l-Fucp-(1-->. The nonreducing end of the glycan is terminated with the capping sequence alpha-2,3, 4-tri-O-Me-Fucp-(1-->4)-alpha-d-GlcpA-(1-->, and the reducing end of the molecule consists of the non-repeating sequence -->3)-alpha-l-Fucp-(1-->3)-beta-d-Manp-(1-->3)-beta-QuiNA cp-(1-->4)-a lpha-Kdop-(2-->, where QuiNAc is N-acetylquinovosamine (2-N-acetamido-2,6-dideoxyglucose). The reducing end Kdo residue links the O-chain polysaccharide to the core region oligosaccharide, resulting in a unique location for a Kdo residue in LPS, removed four residues distally from the lipid A moiety. Structural heterogeneity in the O-chain arises mainly from the O-acetyl and O-methyl substitution. Methylation analysis using trideuteriomethyl iodide indicates that a portion of the 2,3,4-tri-O-methylfucosyl capping residues, typically 15%, are replaced with 2-O-methyl- and/or 2,3-di-O-methylfucosyl residues. In addition, approximately 25% of the 3,4-linked branching fucosyl residues and 10% of the 3-linked fucosyl residues are 2-O-methylated. A majority of the glucuronosyl residues are methyl-esterified at C-6. These unique structural features may be significant in the infection process.  相似文献   

12.
A gum that exudes from the wounded trunk of the New Zealand native tree Meryta sinclairii has been isolated. The gum was completely precipitated by the β-glucosyl Yariv reagent and was thus determined to be an arabinogalactan-protein (AGP). It contained >95% w/w carbohydrate and only 2% w/w protein with a high level of hydroxyproline. SEC-MALLS showed that the gum had a weight-average molecular weight of 4.45×106 Da compared with 6.02×105 Da for gum arabic. Constituent sugar and linkage analyses were consistent with polymers comprised of a highly branched backbone of 1,3-linked galactopyranosyl (Galp) residues, with side-chains made up of arabinofuranose- (Araf) containing oligosaccharides, terminated variously by rhamnopyranosyl (Rhap), arabinopyranosyl (Arap), Galp and glucuronopyranosyl (GlcpA) residues. Analysis by one-dimensional and two-dimensional 1H and 13C NMR experiments confirmed the linkage analyses. The structure of the gum is discussed in comparison with the structure of gum arabic and other AGPs.  相似文献   

13.
A polysaccharide, an alpha-D-glucan with an apparent molecular weight of 6.85 x 10(4), called PSa glucan, was isolated from fresh seeds of Sorghum arundinaceum by fractionation on Sephacryl S-300 HR and Sephadex G-25. Chemical and spectroscopic studies indicated that it has a highly branched glucan type structure composed of alpha-(1-->4) linked D-glucopyranose residues with (1-->3), (1-->6) branching points, and a significant amount of alpha-(1-->6) branching to alpha-(1-->3) linked D-glucopyranose residues. The anti-inflammatory activity of the polysaccharide was performed using the capillary permeability assay.  相似文献   

14.
15.
Sun Y  Wang S  Li T  Li X  Jiao L  Zhang L 《Bioresource technology》2008,99(4):900-904
A new water-soluble intracellular polysaccharide named as PTP, with a molecular mass of 3.7x10(4) Da, was obtained from the mycelium of Polyporus albicans (Imaz.) Teng. Structure features of the purified polysaccharide were investigated by a combination of chemical and instrumental analysis. The results indicated that PTP consisted of a backbone composed of (1-->3)-linked-beta-d-mannopyranosyl, (1-->3,6)-linked-beta-d-mannopyranosyl and (1-->6)-linked-alpha-d-galactopyranosyl residues in the ratio of 3:1:1, and terminated with a single non-reducing terminal (1-->)-beta-d-mannopyranosyl residues at the C-6 position of (1-->3,6)-linked-beta-d-mannopyranosyl, along the main chain. This is the first report describing the isolation and structure elucidation of a new intracellular polysaccharide produced from the mycelium of P. albicans (Imaz.) Teng. Preliminary tests in vitro showed PTP have potent stimulating effects on murine lymphocyte proliferation induced by concanavalin A or lipopolysaccharide and its branches are extremely important for the expression of the enhancement of the immunological activity.  相似文献   

16.
Extracts from pollen of timothy grass (Phleum pratense L.) contain up to 20% arabinogalactan proteins (AGPs). Separation of the AGP polysaccharide moieties by tryptic digestion, size exclusion chromatography (GPC), and reverse phase HPLC yielded arabinogalactan fractions AG-1 and AG-2 with molecular weights of approximately 15,000 and approximately 60,000Da, respectively. The backbones of both polysaccharides are composed of (1-->6)-linked beta-D-galactopyranosides with beta-D-GlcUAp or 4-O-Me-beta-D-GlcUAp at their terminal ends as revealed by chemical analysis, FT-IR, MALDI-MS, and NMR spectroscopy. AG-1 contains a small number of beta-l-Araf side chains while AG-2 possesses a variety of (1-->3)-linked units, which consist of beta-l-Araf-(1-->, alpha-l-Araf-(1-->3)-beta-l-Araf-(1-->, and alpha-l-Araf-(1-->5)-beta-l-Araf-(1--> as well as a small number of longer arabinogalactan side chains. In contrast to crude pollen extracts, the immunological properties of the arabinogalactan mixture reveal an IgG4 reactivity instead of IgE reactivity. Structural properties of timothy pollen arabinogalactan might thus influence the immune response.  相似文献   

17.
A beta-glucuronidase purified from a commercial pectolytic enzyme preparation of Aspergillus niger hydrolyzed about half of the 4-O-methyl-glucuronic acid (4-Me-GlcA) residues located at the nonreducing terminals of (1-->6)-linked beta-galactosyl side chains of the carbohydrate portion of a radish arabinogalactan-protein (AGP) modified by treatment with fungal alpha-L-arabinosidase. Digestion of the alpha-L-arabinosidase-treated AGP with exo-beta-(1-->3)-galactanase released, by exo-fission of beta-(1-->3)-galactosidic bonds in the backbone chains of the AGP, neutral beta-(1-->6)-galactooligosaccharides with various chain lengths and their acidic derivatives substituted at their nonreducing terminals with 4-Me-beta-GlcA groups. In contrast, successive digestion of the alpha-L-arabinosidase-treated AGP with beta-glucuronidase followed by exo-beta-(1-->3)-galactanase liberated much higher amounts of beta-(1-->6)-galactooligomers together with a small portion of short acidic oligomers, mainly 4-Me-beta-GlcA-(1-->6)-Gal and 4-Me-beta-GlcA-(1-->6)-beta-Gal-(1-->6)-Gal. These results indicate that beta-glucuronidase acts upon 4-Me-beta-GlcA residues in long (1-->6)-linked beta-galactosyl side chains of the AGP, whereas short acidic side chains survive the attack of the enzyme.  相似文献   

18.
An arabinogalactan protein (F2) was isolated in 1.5% yield from the seeds of Ribes nigrum L. (Grossulariaceae) by aqueous extraction and a one-step anion exchange chromatography on DEAE-Sephacel with 24% galactose, 43% arabinose, and 20% xylose as main carbohydrate residues. Methylation analysis revealed the presence of a 1,3-/1,3,6-galactose backbone, side chains from arabinose in different linkages, and terminal xylose residues. The polysaccharide which turned out to be an arabinogalactan protein had a molecular weight of >106 Da and deaggregated under chaotropic conditions. The cellular dehydrogenase activities (MTT and WST-1 tests) of human skin cells (fibroblasts, keratinocytes) as well as the proliferation rate of keratinocytes (BrdU incorporation ELISA) were significantly stimulated by the polymer at 10 and 100 μg/mL. F2 had no influence on differentiation status of keratinocytes and did not exhibit any cytotoxic potential (LDH test). The biological activity of F2 was not dependent on the high molecular weight. Influence of the polysaccharide on the gene expression of specific growth factors, growth factor receptors, signal proteins and marker proteins for skin cell proliferation, and differentiation by RT-PCR could not be shown. Gene array investigations indicated an increased expression of various genes encoding for catabolic enzymes, DNA repair, extracellular matrix proteins, and signal transduction factors. Removal of terminal arabinose residues by α-l-arabinofuranosidase did not influence the activity toward skin cells, while the treatment with β-d-galactosidase yielded an inactive polysaccharide. The FITC-labeled polysaccharide was incorporated in a time-dependent manner into human fibroblasts (laser scanning microscopy) via endosomal transport. This internalization of the polysaccharide was inhibited by Cytochalasin B.  相似文献   

19.
Fu H  Yadav MP  Nothnagel EA 《Planta》2007,226(6):1511-1524
A biochemical investigation of arabinogalactan proteins (AGPs) in Physcomitrella patens was undertaken with particular emphasis on the glycan chains. Following homogenization and differential centrifugation of moss gametophytes, AGPs were obtained by Yariv phenylglycoside-induced precipitation from the soluble, microsomal membrane, and cell wall fractions. Crossed-electrophoresis indicated that each of these three AGP fractions was a mixture of several AGPs. The soluble AGP fraction was selected for further separation by anion-exchange and gel-permeation chromatography. The latter indicated molecular masses of ∼100 and 224 kDa for the two major soluble AGP subfractions. The AGPs in both of these subfractions contained the abundant (1,3,6)-linked galactopyranosyl residues, terminal arabinofuranosyl residues, and (1,4)-linked glucuronopyranosyl residues that are typical of many angiosperm AGPs. Unexpectedly, however, the moss AGP glycan chains contained about 15 mol% terminal 3-O-methyl-l-rhamnosyl residues, which have not been found in angiosperm AGPs. This unusual and relatively nonpolar sugar, also called l-acofriose, is likely to have considerable effects on the overall polarity of Physcomitrella AGPs. A review of the literature indicates that the capacity to synthesize polymers containing 3-O-methyl-l-rhamnosyl residues is present in a variety of bacteria, algae and lower land plants but became less common through evolution to the extent that this sugar has been found in only a few species of angiosperms where it occurs as a single residue on steroidal glycosides.  相似文献   

20.
An endo-beta-(1-->6)-galactanase from Onozuka R-10, a commercial cellulase preparation from Trichoderma viride, was purified 57-fold. Apparent Mr values of the purified enzyme, estimated by denaturing gel electrophoresis and gel filtration, were 47,000 and 17,000, respectively. The enzyme was assayed with a galactan from Prototheca zopfii, which has a high proportion of beta-(1-->6)-linked galactosyl residues. It exhibited maximal activity toward the galactan at pH 4.3. The enzyme hydrolyzed specifically beta-(1-->6)-galactooligosaccharides with a degree of polymerization higher than 3 and their acidic derivatives with 4-O-methyl-glucosyluronic or glucosyluronic groups at the nonreducing terminals. The methyl beta-glycoside of beta-(1-->6)-galactohexaose was degraded to reducing galactooligomers with a degree of polymerization 2-5 as the products at the initial stage of hydrolysis, and galactose and galactobiose at the final stage, indicating that the enzyme can be classified as an endo-galactanase. The extent of hydrolysis of the carbohydrate portion of a radish root arabinogalactan-protein (AGP) increased when alpha-L-arabinofuranosyl residues attached to beta-(1-->6)-linked galactosyl side chains of the AGP were removed in advance. The enzyme released galactose, beta-(1-->6)-galactobiose, and 4-O-methyl-beta-glucuronosyl-(1-->6)-galactose as major hydrolysis products when allowed to act exhaustively on the modified AGP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号