首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of selenomethionine (SeMet) on the growth of 17 cultured cell lines were studied. SeMet in the culture medium of three hepatoma cell lines promoted cell growth at subcytotoxic levels (1-20 microM), but the growth of malignant lymphoid and myeloid cells was not stimulated. L-SeMet was cytotoxic to all 17 cell lines when assayed after culture for 3-10 days. A 50% growth inhibition was observed by 30-160 microM-SeMet in a culture medium containing 100 microM-methionine. SeMet cytotoxicity to normal (fibroblasts) and malignant cells was rather similar, excluding specific antineoplastic cytotoxicity. Cytotoxicity was increased by decreasing concentrations of methionine. The DL form of SeMet was less cytotoxic than the L form. L-SeMet was metabolized to a selenium analogue of S-adenosylmethionine approximately as effectively as the natural sulphur analogue methionine in malignant R1.1 lymphoblasts. Concomitantly, S-adenosylmethionine pools were decreased. This occurred early and at cytotoxic SeMet levels. Methionine adenosyltransferase activity was not altered by SeMet treatment. ATP pools were not affected early, and decreases in the synthesis of DNA and protein took place late and were apparently related to cell death. RNA synthesis was slightly stimulated at low cytotoxic SeMet levels by 24 h, but was markedly inhibited after 48 h. The SeMet analogue of S-adenosylmethionine could be effectively utilized in a specific enzymic transmethylation. Neither S-adenosylhomocysteine nor its selenium analogue accumulated in the treated cells. These findings together suggest a direct or indirect involvement of S-adenosylmethionine metabolism in SeMet cytotoxicity, but exclude a gross blockage of transmethylations.  相似文献   

2.
Biological transmethylation reaction is a key step in the duplication of virus life cycle, in which S-adenosylmethionine plays as the methyl donor. The product of this reactions, S-adenosylhomocysteine (AdoHcy) inhibits the transmethylation process. AdoHcy is hydrolysed to adenosine and L-homocysteine by the action of S-adenosylhomocysteine hydrolase (SAH). Thus the virus life cycle should be cut off once the action of SAH is inhibited. Our study was focussed on the discovery of potential inhibitor against SAH. We performed a similarity search in Traditional Chinese Medicine Database and retrieved 17 hits with high similarity. After that we virtually docked the 17 compounds as well as the natural substrates to the hydrolase using Autodock 3.0.1 software. Then we discussed about the mechanism of the inhibition reaction, followed by proposing the potential inhibitors by comparing best docked solutions and possible modification for the best inhibitors.  相似文献   

3.
1. The metabolic control of adenosine concentration in the rat liver through the 24-hr cycle is related to the activity of adenosine-metabolizing enzymes [5'-nucleotidase (5'N), adenosine deaminase (A.D.), adenosine kinase (A.K.) and S-adenosylhomocysteine hydrolase (SAH-H)]. 2. Two peaks of adenosine were observed, one at 12:00 hr caused by high activity of 5'N and SAH-H, and the other at 02:00 hr, caused by a decrease in purine catabolism and purine utilization, low activity of SAH-H and de novo purine formation. 3. The similarity of the adenosine and S-adenosylmethionine (SAM) profiles through the 24-hr cycle suggests a role of adenosine in transmethylation reactions, because, during the night (02:00 hr), the metabolic conditions favor the formation and accumulation of S-adenosylhomocysteine (SAH), with consequent inhibition of transmethylation reactions. 4. In the 24-hr variation of phosphatidylcholine (PC) and phosphatidylethanolamine (PE), the lowest ratio of PC/PE was observed at 24:00-02:00 hr when SAH concentration is high, whereas the highest PC/PE ratio occurs at the same time as one of the SAM/SAH ratio maxima.  相似文献   

4.
Structural analogs of S-adenosylhomocysteine were tested in vitro for inhibition of the yeast S-adenosylmethionine:delta 24-sterol-C-methyltransferase enzyme. A wide inhibitory range by these compounds was observed, suggesting which structural features of the parent compound are important for binding to the enzyme. No analog tested had inhibitory activity specific only for this enzyme. The most active compound was sinefungin, a metabolite of Streptomyces griseolus, which was also able to inhibit growth of yeast cultures. Sterol extracts of cells grown in the presence of sinefungin revealed a dramatic increase in the levels of zymosterol, the sterol substrate in the transmethylation under study, and a concomitant decrease in the levels of ergosterol. Evidence is presented that sinefungin is transported inside the cell by the same permease as S-adenosylmethionine. We conclude that sinefungin is blocking the in vivo methylation of sterols in yeast. The implications of this finding are discussed.  相似文献   

5.
The hepatic synthesis and accumulation of S-adenosylhomocysteine, S-adenosylmethionine and polyamines were studied in normal and vitamin B-6-deficient male albino rats. A method involving a single chromatography on a phosphocellulose column was developed for the determination of S-adenosylhomocysteine and S-adenosylmethionine from tissue samples. Feeding the rat with pyridoxine-deficient diet for 3 or 6 weeks resulted in a four- to five-fold increase in the concentration of S-adenosylhomocysteine, whereas that of S-adenosylmethionine was only slighly elevated. The concentration of putrescine was decreased to half, that of spermidine was somewhat decreased and that of spermine remained fairly constant. The activities of L-ornithine decarboxylase, S-adenosyl-L-methionine decarboxylase, L-methionine adenosyltransferase and S-adenosyl-L-homocysteine hydrolase were moderately increased. S-Adenosylmethionine decarboxylase showed no requirement for pyridoxal 5'-phosphate. The major effect of pyridoxine deficiency of S-adenosylmethionine metabolism seems to be a block in the utilization of S-adenosylhomocysteine, resulting in the accumulation of this metabolite to a concentration that may inhibit biological methylation reactions.  相似文献   

6.
The effects of 3-deazaaristeromycin and 3-deazaadenosine on RNA methylation and synthesis were examined in the mouse macrophage cell line, RAW264. S-Adenosylhomocysteine accumulated in cells incubated with 3-deazaaristeromycin while S-3-deazaadenosylhomocysteine was the major product in cells incubated with 3-deazaadenosine and homocysteine thiolactone. RNA methylation was inhibited to a similar extent by the accumulation of either S-adenosylhomocysteine or S-3-deazaadenosylhomocysteine, with S-adenosylhomocysteine being a slightly better inhibitor. In mRNA, the synthesis of N6-methyladenosine and N6-methyl-2'-O-methyladenosine were inhibited to the greatest extent, while the synthesis of 7-methylguanosine and 2'-O-methyl nucleosides were inhibited to a lesser extent. Incubation of cells with 100 microM 3-deazaaristeromycin or with 10 microM 3-deazaadenosine and 50 microM homocysteine thiolactone produced little inhibition of mRNA synthesis, even though mRNA methylation was inhibited. In contrast, mRNA synthesis was greatly inhibited by treatment of cells with 100 microM 3-deazaadenosine and the inhibition of synthesis was not correlated with an inhibition of methylation.  相似文献   

7.
Aphanothece halophytica, a halophilic cyanobacterium capable of growing in saturated NaCl, accumulates high intracellular concentrations of glycinebetaine in response to increasing environmental NaCl. In this organism, intracellular levels of K+ rise dramatically with increasing external NaCl before an increase in glycinebetaine can be detected. Glycinebetaine synthesis requires three S-adenosylmethionine (AdoMet)-mediated transmethylations; each transmethylation reaction generates one molecule of the transmethylation inhibitor S-adenosylhomocysteine (AdoHcy). Thus, glycinebetaine synthesis should require continued removal of AdoHcy. In A. halophytica, catabolism of AdoHcy was shown to occur via the reversible reaction catalyzed by AdoHcy hydrolase (EC 3.3.1.1). Activity of AdoHcy hydrolase in the direction of synthesis of AdoHcy was inhibited by 0.4 M KCl in this organism. On the other hand, activity of AdoHcy hydrolase in the direction of AdoHcy hydrolysis was unaffected by 0.4 M KCl. Glycinebetaine increased synthesis of AdoHcy in the presence of 0.4 KCl, but had no effect on AdoHcy hydrolysis. Based upon these results, a mechanism is proposed for the regulation of glycinebetaine synthesis by K+ and glycinebetaine in A. halophytica. According to this mechanism, the regulatory response would be initiated by a K+-induced shift in the AdoMet/AdoHcy ratio.Abbreviations AdoMet S-adenosylmethionine - AdoHcy S-adenosyl homocysteine  相似文献   

8.
The exact role of S-adenosylhomocysteine hydrolase (EC 3.3.1.1) in mediating the toxic effects of adenosine toward mammalian cells has not been ascertained. The selection and characterization of S-adenosylhomocysteine hydrolase-deficient cell lines offers a biochemical genetic approach to this problem. In the present experiments, a mutant clone (Sahn 12) with 11-13% of wild-type S-adenosylhomocysteine hydrolase activity was selected from the murine T lymphoma cell line R 1.1 after mutagenesis and culture in adenosine, deoxycoformycin, uridine and homocysteine thiolactone-supplemented medium. In the presence of 0.5 mM homocysteine thiolactone and 10-200 microM adenosine, wild-type and mutant cells synthesized S-adenosylhomocysteine intracellularly at markedly different rates, and excreted the compound extracellularly. Thus, at time points up to 10 h, the S-adenosylhomocysteine hydrolase-deficient lymphoblasts required 5-10-fold higher concentrations of adenosine in the medium to achieve the same intracellular S-adenosylhomocysteine levels as wild-type cells. Similarly, the Sahn 12 lymphoblasts were 5-10-fold more resistant than R 1.1 cells to the toxic effects of adenosine plus homocysteine thiolactone. These results establish that (i) 11-13% of wild-type S-adenosylhomocysteine hydrolase activity is compatible with normal growth, (ii) in medium supplemented with both adenosine and homocysteine thiolactone, intracellular S-adenosylhomocysteine is synthesized by S-adenosylhomocysteine hydrolase, (iii) the net intracellular level of S-adenosylhomocysteine is determined by both the rate of S-adenosylhomocysteine synthesis and its rate of excretion, (iv) under such conditions the accumulation of S-adenosylhomocysteine is related to cytotoxicity, (v) in the absence of an exogenous homocysteine source, S-adenosylhomocysteine derives from endogenous sources, and the accumulation of S-adenosylhomocysteine is not the primary cause of adenosine induced cytotoxicity.  相似文献   

9.
We have investigated the enzymatic formation of S-adenosylmethionine in extracts of a variety of normal and oncogenically-transformed human and rat cell lines which differ in their ability to grow in medium in which methionine is replaced by its immediate precursor homocysteine. We have localized the bulk of the S-adenosylmethionine synthetase activity to the post-mitochondrial supernatant. We show that in all cell lines a single kinetic species exists in a dialyzed extract with a Km for methionine of about 3-12 microM. In selected lines we have demonstrated a requirement for Mg2+ in addition to that needed to form the Mg X ATP complex for enzyme activity and have shown that the enzyme can be regulated by product feedback inhibition. Because we detect no differences in the enzymatic ability of these cell extracts to utilize methionine for S-adenosylmethionine formation in vitro, we suggest that the failure of oncogenically-transformed cell lines to grow in homocysteine medium may result from the decreased methionine pools in these cells or from the loss of ability of these cells to properly metabolize homocysteine, adenosine, or their cellular product S-adenosylhomocysteine.  相似文献   

10.
Selenomethionine metabolism and the biochemical basis for its cytotoxicity were analyzed in cultured human and murine lymphoid cells. The metabolic pathways were also addressed, using purified mammalian enzymes and crude tissue extracts. Selenomethionine was found to be effectively metabolized to S-adenosylmethionine analog, and that analog was further metabolized in transmethylation reactions and in polyamine synthesis, similarly to the corresponding sulphur metabolites of methionine. Selenomethionine did not block these pathways, nor was there a specific block on the synthesis of DNA, RNA, or proteins when added to the culture medium. Selenomethionine showed cytotoxicity at above 40 microM levels. Yet, low selenomethionine levels (10 microM) could replace methionine and support cell growth in the absence of methionine. Selenomethionine toxicity took place concomitantly with changes in S-adenosylmethionine pools. D-form was less cytotoxic than L-form. Methionine concentration modified the cytotoxicity. Together, this indicates that selenomethionine uptake and enzymic metabolism are involved in the cytotoxicity in a yet unknown way.  相似文献   

11.
S-Adenosylhomocysteine hydrolase (AdoHcy hydrolase, E.C. 3.3.1.1) catalyzes the metabolism of S-adenosylhomocysteine (AdoHcy) to adenosine (Ado) and homocysteine (Hcy) in mouse neuroblastoma N2a cells. AdoHcy hydrolase in N2a cells can be inhibited completely by adenosine dialdehyde (Ado dialdehyde) or neplanocin A. The inhibitory effects of Ado dialdehyde (2.5 μM) and neplanocin A (1 μM) on cellular AdoHcy hydrolase were time-dependent, with total enzyme inhibition occurring after 30 min and 15 min of incubation, respectively. The inhibition of AdoHcy hydrolase produced by Ado dialdehyde and neplanocin A persisted for up to 72 h of incubation, and was paralleled by a time-dependent increase in endogenous AdoHcy levels reaching a maximum 4-fold elevation after 8 h of incubation with Ado dialdehyde and an 11-fold increase in the neplanocin A-treated cells. This increase in AdoHcy levels produced a subsequent inhibition of S-adenosylmethionine (AdoMet)-dependent cellular methylations (e.g. protein carboxylmethylation (PCM), lipid methylation). In addition, neplanocin A was metabolically converted to the corresponding AdoMet analog, S-neplanocylmethionine (NepMet), in neuroblastoma N2a cells. NepMet reached maximum levels after 8 h of incubation of the cells with neplanocin A.  相似文献   

12.
Four methionine analog inhibitors of methionine adenosyltransferase, the enzyme which catalyzes S-adenosylmethionine biosynthesis, were tested in cultured L1210 cells for their effects on cell growth, leucine incorporation, S-adenosylmethionine (AdoMet) formation and polyamine biosynthesis. The IC50 values were as follows: selenomethionine, 0.13 mM; L-2-amino-4-methoxy-cis-but-3-enoic acid (L-cis-AMB), 0.4 mM; cycloleucine, 5 mM and 2-aminobicyclo[2.1.1]hexane-2-carboxylic acid, 5 mM. At IC50 levels, the analogs significantly reduced AdoMet pools by approximately 50% while not similarly affecting leucine incorporation or polyamine biosynthesis. In combination with inhibitors of polyamine biosynthesis, growth inhibition was greatly increased with methylglyoxal bis(guanylhydrazone), an inhibitor of AdoMet decarboxylase, but only slightly increased with alpha-difluoromethylornithine, an inhibitor of ornithine decarboxylase. Overall, the data indicate that the methionine analogs, and particularly L-cis-AMB, seem to inhibit cell growth by interference with AdoMet biosynthesis. Since polyamine biosynthesis is not affected, the antiproliferative effect may be mediated through perturbations of certain transmethylation reactions.  相似文献   

13.
14.
S-Adenosylhomocysteine hydrolase (AdoHcy-nase) is a key enzyme in transmethylation reactions. The objective of the present study was to examine the potential antiretroviral activities of novel mechanism-based irreversible AdoHcy-nase inhibitors. (Z)-4',5'-didehydro-5'-deoxy-5'-fluoroadenosine (ZDDFA), (E)-4',5'-didehydro-5'-deoxy-5'-fluoroadenosine (EDDFA), (Z)-4',5'-didehydro-5'-deoxy-5'-chloroadenosine (ZDDCA) and 5'-deoxy-5'-acetylenic adenosine (DAA) inhibited AdoHcy-nase activity with Ki values of 0.55, 1.04, greater than 10.0 and 3.30 microM, respectively. These four compounds were tested for antiviral activity in vitro against Moloney leukemia virus (MoLV) in the XC-plaque assay. MoLV replication in murine fibroblasts (SC-1) was inhibited by ZDDFA, EDDFA and DAA with IC50 values of 0.05, 0.25 and 3.30 micrograms/ml, respectively. ZDDCA did not inhibit MoLV infection at the concentrations tested. Antiviral activity correlated with the ability of the individual compounds to maintain sustained elevations in intracellular S-adenosylhomocysteine (AdoHcy) concentrations in the SC-1 cells. ZDDFA, the most potent inhibitor of AdoHcy-nase and MoLV was also the most active in maintaining sustained elevations in intracellular AdoHcy levels. The antiviral activity of ZDDFA was also examined in murine C3H1OT1/2 fibroblasts which constitutively produce MoLV. Pretreatment with ZDDFA (1.0 microgram/ml) for 24 hr inhibited virus production by 88%. Similar to the SC-1 cells, and concomitant with enzyme inhibition, there was a 300-fold increase in AdoHcy levels in ZDDFA (1.0 microgram/ml) treated C3H1OT1/2 cells. Incorporation of a [3H]methyl group from tritiated S-adenosylmethionine into total RNA in C3H1OT1/2 cells was inhibited by ZDDFA without affecting cell viability. These results suggest that mechanism-based inhibitors of AdoHcy-nase, such as ZDDFA, may have potential as antiretroviral agents.  相似文献   

15.
The overall rates of S-adenosylmethionine (AdoMet)-dependent transmethylation were estimated in various tissues from the initial rate of S-adenosylhomocysteine (AdoHcy) plus AdoMet accumulation after blocking hydrolysis of AdoHcy. The rates were found to differ widely among the tissues of sheep and the highest rate was in the pancreas, being 600 times higher than that in the muscle. Sheep liver possessed approximately 75% of total-body capacity for transmethylation although the transmethylation rate was approximately half that in rat liver. The minimum estimate of daily requirement of AdoMet for transmethylation for adult sheep was approximately 18 mmol, far in excess of methionine intake. Methionine loading elevated AdoMet levels only in the tissues with a high or moderate rate of transmethylation. The kinetic properties of major methyltransferases in sheep liver along with tissue distribution of AdoMet and AdoHcy suggest that transmethylation rate is subject to physiological regulation by tissue levels of AdoMet and AdoHcy.  相似文献   

16.
Treatment of mouse peritoneal macrophages with IFN-gamma augmented the intracellular content of S-adenosylmethionine, as measured by quantitative high-performance liquid chromatography. Accumulation of S-adenosylhomocysteine, a competitive product of S-adenosylmethionine, was not detectable, either by direct measurement of absorbance or by radioisotopic techniques in IFN-gamma-treated macrophages. However, accumulation of S-adenosylhomocysteine was observed after treatment of macrophages with known inhibitors of S-adenosylhomocysteine catabolism. No inhibition of phospholipid methylation was observed upon IFN-gamma treatment, indicating that no reduction of the S-adenosylmethionine to S-adenosylhomocysteine ratio is induced by IFN-gamma in murine macrophages. The increased content of S-adenosylmethionine was associated with the acquisition of tumoricidal activity by macrophages upon IFN-gamma treatment. LPS also augmented the cellular content of S-adenosylmethionine and activated macrophages to become cytotoxic, suggesting a common mechanism of action for IFN-gamma and LPS in macrophage activation. Treatment of macrophages with cycloleucine, an agent that induces depletion of cellular S-adenosylmethionine, made the macrophages refractory to induction of cytolytic activity by IFN-gamma, suggesting a critical role for S-adenosylmethionine in macrophage activation.  相似文献   

17.
Transport of S-adenosylmethionine in Saccharomyces cerevisiae   总被引:11,自引:8,他引:3  
The properties of a specific system for the transport of S-adenosylmethionine in yeast are described. The process was pH-, temperature-, and energy-dependent, and showed saturation kinetics. The K(m) for the system was 3.3 x 10(-6)m. Of the S-adenosylmethionine moieties tested, only S-adenosylhomocysteine competitively inhibited the uptake of the adenosylsulfonium compound. Adenine, adenosine, methionine, homocysteine, and the sulfonium compound S-methylmethionine were without effect. The analogue S-adenosylethionine showed competitive inhibition. Under conditions of inhibition of protein synthesis by cycloheximide or methionine starvation, permease activity was stable. The mutant sam-p3 apparently was able to transport S-adenosylmethionine only by diffusion. Uptake by diploids containing this mutation was directly proportional to the gene dose.  相似文献   

18.
19.
To produce a severe choline-methionine deficiency, a synthetic L-amino acid diet, free of choline, methionine, vitamin B12, and folic acid and supplemented with guanidoacetic acid, a methyl group acceptor, was fed to female rats for 2 weeks. The in vitro activity of liver microsomal phosphatidylethanolamine methyltransferase was stimulated twofold when compared with basal diet controls. The activity of choline phosphotransferase was depressed by 86%; thus, the contribution of the methyltransferase in the overall synthesis of phosphatidylcholine apparently increased. However, measurement of the in vivo methylation of phosphatidylethanolamine by incorporation of [1,2-14C]ethanolamine into phosphatidylcholine indicates that the methylation pathway is markedly depressed in methyl deficiency. Hepatic concentrations of the methyltransferase substrate, S-adenosylmethionine, and the inhibitory metabolite, S-adenosylhomocysteine, were significantly altered such that an unfavorable environment for methylation was present in the deficient animal. The ratio of substrate to inhibitor was depressed from 5.2:1 in the controls to 1.7:1 in the livers of methyl-depleted rats. Control of transmethylation in accordance with the availability of substrates, phosphatidylethanolamine, or S-adenosylmethionine, and the level of S-adenosylhomocysteine is discussed.  相似文献   

20.
Tissues of the mucosa are lined by an epithelium that provides barrier and transport functions. It is now appreciated that inflammatory responses in inflammatory bowel diseases are accompanied by striking shifts in tissue metabolism. In this paper, we examined global metabolic consequences of mucosal inflammation using both in vitro and in vivo models of disease. Initial analysis of the metabolic signature elicited by inflammation in epithelial models and in colonic tissue isolated from murine colitis demonstrated that levels of specific metabolites associated with cellular methylation reactions are significantly altered by model inflammatory systems. Furthermore, expression of enzymes central to all cellular methylation, S-adenosylmethionine synthetase and S-adenosylhomocysteine hydrolase, are increased in response to inflammation. Subsequent studies showed that DNA methylation is substantially increased during inflammation and that epithelial NF-κB activity is significantly inhibited following treatment with a reversible S-adenosylhomocysteine hydrolase inhibitor, DZ2002. Finally, these studies demonstrated that inhibition of cellular methylation in a murine model of colitis results in disease exacerbation while folate supplementation to promote methylation partially ameliorates the severity of murine colitis. Taken together, these results identify a global change in methylation, which during inflammation, translates to an overall protective role in mucosal epithelia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号