首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This paper proposes a memory-efficient bit-split string matching scheme for deep packet inspection (DPI). When the number of target patterns becomes large, the memory requirements of the string matching engine become a critical issue. The proposed string matching scheme reduces the memory requirements using the uniqueness of the target patterns in the deterministic finite automaton (DFA)-based bit-split string matching. The pattern grouping extracts a set of unique patterns from the target patterns. In the set of unique patterns, a pattern is not the suffix of any other patterns. Therefore, in the DFA constructed with the set of unique patterns, when only one pattern can be matched in an output state. In the bit-split string matching, multiple finite-state machine (FSM) tiles with several input bit groups are adopted in order to reduce the number of stored state transitions. However, the memory requirements for storing the matching vectors can be large because each bit in the matching vector is used to identify whether its own pattern is matched or not. In our research, the proposed pattern grouping is applied to the multiple FSM tiles in the bit-split string matching. For the set of unique patterns, the memory-based bit-split string matching engine stores only the pattern match index for each state to indicate the match with its own unique pattern. Therefore, the memory requirements are significantly decreased by not storing the matching vectors in the string matchers for the set of unique patterns. The experimental results show that the proposed string matching scheme can reduce the storage cost significantly compared to the previous bit-split string matching methods.  相似文献   

3.
Discovery of local packing motifs in protein structures   总被引:1,自引:0,他引:1  
We present a language for describing structural patterns of residues in protein structures and a method for the discovery of such patterns that recur in a set of protein structures. The patterns impose restrictions on the spatial position of each residue, their order along the amino acid chain, and which amino acids are allowed in each position. Unlike other methods for comparing sets of protein structures, our method is not based on the use of pairwise structure comparisons which is often time consuming and can produce inconsistent results. Instead, the method simultaneously takes into account information from all structures in the search for conserved structure patterns which are potential structure motifs. The method is based on describing the spatial neighborhoods of each residue in each structure as a string and applying a sequence pattern discovery method to find patterns common to subsets of these strings. Finally it is checked whether the similarities between the neighborhood strings correspond to spatially similar substructures. We apply the method to analyze sets of very disparate proteins from the four different protein families: serine proteases, cuprodoxins, cysteine proteinases, and ferredoxins. The motifs found by the method correspond well to the site and motif information given in the annotation of these proteins in PDB, Swiss-Prot, and PROSITE. Furthermore, the motifs are confirmed by using the motif data to constrain the structural alignment of the proteins obtained with the program SAP. This gave the best superposition/alignment of the proteins given the motif assignment.  相似文献   

4.
5.
Many methods have been described to predict the subcellular location of proteins from sequence information. However, most of these methods either rely on global sequence properties or use a set of known protein targeting motifs to predict protein localization. Here, we develop and test a novel method that identifies potential targeting motifs using a discriminative approach based on hidden Markov models (discriminative HMMs). These models search for motifs that are present in a compartment but absent in other, nearby, compartments by utilizing an hierarchical structure that mimics the protein sorting mechanism. We show that both discriminative motif finding and the hierarchical structure improve localization prediction on a benchmark data set of yeast proteins. The motifs identified can be mapped to known targeting motifs and they are more conserved than the average protein sequence. Using our motif-based predictions, we can identify potential annotation errors in public databases for the location of some of the proteins. A software implementation and the data set described in this paper are available from http://murphylab.web.cmu.edu/software/2009_TCBB_motif/.  相似文献   

6.
A novel method is presented for predicting β-hairpin motifs in protein sequences. That is Random Forest algorithm on the basis of the multi-characteristic parameters, which include amino acids component of position, hydropathy component of position, predicted secondary structure information and value of auto-correlation function. Firstly, the method is trained and tested on a set of 8,291 β-hairpin motifs and 6,865 non-β-hairpin motifs. The overall accuracy and Matthew's correlation coefficient achieve 82.2% and 0.64 using 5-fold cross-validation, while they achieve 81.7% and 0.63 using the independent test. Secondly, the method is also tested on a set of 4,884 β-hairpin motifs and 4,310 non-β-hairpin motifs which is used in previous studies. The overall accuracy and Matthew's correlation coefficient achieve 80.9% and 0.61 for 5-fold cross-validation, while they achieve 80.6% and 0.60 for the independent test. Compared with the previous, the present result is better. Thirdly, 4,884 β-hairpin motifs and 4,310 non-β-hairpin motifs selected as the training set, and 8,291 β-hairpin motifs and 6,865 non-β-hairpin motifs selected as the independent testing set, the overall accuracy and Matthew's correlation coefficient achieve 81.5% and 0.63 with the independent test.  相似文献   

7.
8.
We introduce novel profile-based string kernels for use with support vector machines (SVMs) for the problems of protein classification and remote homology detection. These kernels use probabilistic profiles, such as those produced by the PSI-BLAST algorithm, to define position-dependent mutation neighborhoods along protein sequences for inexact matching of k-length subsequences ("k-mers") in the data. By use of an efficient data structure, the kernels are fast to compute once the profiles have been obtained. For example, the time needed to run PSI-BLAST in order to build the profiles is significantly longer than both the kernel computation time and the SVM training time. We present remote homology detection experiments based on the SCOP database where we show that profile-based string kernels used with SVM classifiers strongly outperform all recently presented supervised SVM methods. We further examine how to incorporate predicted secondary structure information into the profile kernel to obtain a small but significant performance improvement. We also show how we can use the learned SVM classifier to extract "discriminative sequence motifs"--short regions of the original profile that contribute almost all the weight of the SVM classification score--and show that these discriminative motifs correspond to meaningful structural features in the protein data. The use of PSI-BLAST profiles can be seen as a semi-supervised learning technique, since PSI-BLAST leverages unlabeled data from a large sequence database to build more informative profiles. Recently presented "cluster kernels" give general semi-supervised methods for improving SVM protein classification performance. We show that our profile kernel results also outperform cluster kernels while providing much better scalability to large datasets.  相似文献   

9.
An approximate nested tandem repeat (NTR) in a string T is a complex repetitive structure consisting of many approximate copies of two substrings x and X ("motifs") interspersed with one another. NTRs fall into a class of repetitive structures broadly known as subrepeats. NTRs have been found in real DNA sequences and are expected to be important in evolutionary biology, both in understanding evolution of the ribosomal DNA (where NTRs can occur), and as a potential marker in population genetic and phylogenetic studies. This article describes an alignment algorithm for the verification phase of the software tool NTRFinder developed for database searches for NTRs. When the search algorithm has located a subsequence containing a possible NTR, with motifs X and x, a verification step aligns this subsequence against an exact NTR built from the templates X and x, to determine whether the subsequence contains an approximate NTR and its extent. This article describes an algorithm to solve this alignment problem in O(|T|(|X| + |x|)) space and time. The algorithm is based on Fischetti et al.'s wrap-around dynamic programming.  相似文献   

10.
Explicit solvent and counterion molecular dynamics simulations have been carried out for a total of >80 ns on the bacterial and spinach chloroplast 5S rRNA Loop E motifs. The Loop E sequences form unique duplex architectures composed of seven consecutive non-Watson-Crick basepairs. The starting structure of spinach chloroplast Loop E was modeled using isostericity principles, and the simulations refined the geometries of the three non-Watson-Crick basepairs that differ from the consensus bacterial sequence. The deep groove of Loop E motifs provides unique sites for cation binding. Binding of Mg(2+) rigidifies Loop E and stabilizes its major groove at an intermediate width. In the absence of Mg(2+), the Loop E motifs show an unprecedented degree of inner-shell binding of monovalent cations that, in contrast to Mg(2+), penetrate into the most negative regions inside the deep groove. The spinach chloroplast Loop E shows a marked tendency to compress its deep groove compared with the bacterial consensus. Structures with a narrow deep groove essentially collapse around a string of Na(+) cations with long coordination times. The Loop E non-Watson-Crick basepairing is complemented by highly specific hydration sites ranging from water bridges to hydration pockets hosting 2 to 3 long-residing waters. The ordered hydration is intimately connected with RNA local conformational variations.  相似文献   

11.
Sun JM  Li TH  Cong PS  Tang SN  Xiong WW 《Molecular & cellular proteomics : MCP》2012,11(7):M111.016808-M111.016808-8
Identification of protein structural neighbors to a query is fundamental in structure and function prediction. Here we present BS-align, a systematic method to retrieve backbone string neighbors from primary sequences as templates for protein modeling. The backbone conformation of a protein is represented by the backbone string, as defined in Ramachandran space. The backbone string of a query can be accurately predicted by two innovative technologies: a knowledge-driven sequence alignment and encoding of a backbone string element profile. Then, the predicted backbone string is employed to align against a backbone string database and retrieve a set of backbone string neighbors. The backbone string neighbors were shown to be close to native structures of query proteins. BS-align was successfully employed to predict models of 10 membrane proteins with lengths ranging between 229 and 595 residues, and whose high-resolution structural determinations were difficult to elucidate both by experiment and prediction. The obtained TM-scores and root mean square deviations of the models confirmed that the models based on the backbone string neighbors retrieved by the BS-align were very close to the native membrane structures although the query and the neighbor shared a very low sequence identity. The backbone string system represents a new road for the prediction of protein structure from sequence, and suggests that the similarity of the backbone string would be more informative than describing a protein as belonging to a fold.  相似文献   

12.
13.
14.
Protein backbones have characteristic secondary structures, including α-helices and β-sheets. Which structure is adopted locally is strongly biased by the local amino acid sequence of the protein. Accurate (probabilistic) mappings from sequence to structure are valuable for both secondary-structure prediction and protein design. For the case of α-helix caps, we test whether the information content of the sequence–structure mapping can be self-consistently improved by using a relaxed definition of the structure. We derive helix-cap sequence motifs using database helix assignments for proteins of known structure. These motifs are refined using Gibbs sampling in competition with a null motif. Then Gibbs sampling is repeated, allowing for frameshifts of ±1 amino acid residue, in order to find sequence motifs of higher total information content. All helix-cap motifs were found to have good generalization capability, as judged by training on a small set of non-redundant proteins and testing on a larger set. For overall prediction purposes, frameshift motifs using all training examples yielded the best results. Frameshift motifs using a fraction of all training examples performed best in terms of true positives among top predictions. However, motifs without frameshifts also performed well, despite a roughly one-third lower total information content.  相似文献   

15.
We present a method for encoded tagging and imaging of short nucleic acid motif chains (oligomotifs) using selective hybridization of heterogeneous Au nanoparticles (Au-NP). The resulting encoded NP string is thus representative of the underlying motif sequence. As the NPs are much more massive than the motifs, the motif chain order can be directly observed using scanning electron microscopy. Using this technique we demonstrate direct sequencing of oligomotifs in single DNA molecules consisting of four 100-nt motif chains tagged with four different types of NPs. The method outlined is a precursor for a high density direct sequencing technology.  相似文献   

16.
Murray KB  Taylor WR  Thornton JM 《Proteins》2004,57(2):365-380
We present a method called DAVROS to detect, localize, and validate repeating motifs in protein structure allowing for insertions and deletions. DAVROS uses the score matrix from a structural alignment program (SAP) to search for repeating motifs using an algorithm based on concepts from signal processing and the statistical properties of the alignments. The method was tested against a nonredundant Protein Data Bank, and each chain was assigned a score. For the top 50 chains ranked by score, 70% contain repeating motifs detected without error. These represent 14 types of fold covering alpha, beta, and alphabeta protein classes. A second data set comprising protein chains in different sequence families for triosephosphate isomerase (TIM) barrel, leucine-rich repeat (LRR), trefoil, and alpha-alpha barrel folds was used to assess the ability of DAVROS to detect all motifs within a specific fold. For the second test set, the percentage of motifs detected was highest for the LRR chains (88.7%) and least for the TIM barrels (60%). This variability results from the regularity of the LRR motif compared to the alphabeta units of the TIM barrel, which generally have many more indels. These reduce the strength of the repeat signal in the SAP matrix, making repeat detection more difficult.  相似文献   

17.
Functional RNA regions are often related to recurrent secondary structure patterns (or motifs), which can exert their role in several different ways, particularly in dictating the interaction with RNA-binding proteins, and acting in the regulation of a large number of cellular processes. Among the available motif-finding tools, the majority focuses on sequence patterns, sometimes including secondary structure as additional constraints to improve their performance. Nonetheless, secondary structures motifs may be concurrent to their sequence counterparts or even encode a stronger functional signal. Current methods for searching structural motifs generally require long pipelines and/or high computational efforts or previously aligned sequences. Here, we present BEAM (BEAr Motif finder), a novel method for structural motif discovery from a set of unaligned RNAs, taking advantage of a recently developed encoding for RNA secondary structure named BEAR (Brand nEw Alphabet for RNAs) and of evolutionary substitution rates of secondary structure elements. Tested in a varied set of scenarios, from small- to large-scale, BEAM is successful in retrieving structural motifs even in highly noisy data sets, such as those that can arise in CLIP-Seq or other high-throughput experiments.  相似文献   

18.
19.
Two programs, MOTIF and PATTERN, that scan sequences for matchesto user-defined motifs and patterns of motifs based on identityand set membership are described. The programs use a simpleand logical notation to define motifs, and may be used eitherinteractively or by using command line parameters (suitablefor batch processing). The two programs described also incorporatea simple, yet reliable, algorithm that automatically detectsin which of six possible formats the sequence entry is written. Received on February 28, 1989; accepted on April 4, 1989  相似文献   

20.
SUMMARY: The database of structural motifs in proteins (DSMP) contains data relevant to helices, beta-turns, gamma-turns, beta-hairpins, psi-loops, beta-alpha-beta motifs, beta-sheets, beta-strands and disulphide bridges extracted from all proteins in the Protein Data Bank primarily using the PROMOTIF program and implemented as a web-based network service using the SRS. The data corresponding to the structural motifs includes; sequence, position in polypeptide chain, geometry, type, unique code, keywords and resolution of crystal structure. This data is available for a representative data set of 1028 protein chains and also for all 10 213 proteins in the Protein Data Bank. The three-dimensional coordinates for all structural motifs (except sheet and disulphide bridge) are also available for the representative data set. Using features in SRS, DSMP can be queried to extract information from one or more structural motifs that may be useful for sequence-structure analysis, prediction, modelling or design. AVAILABILITY: http://www. cdfd.org.in/dsmp.html  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号