首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《The Journal of cell biology》1996,134(6):1543-1549
Starving Dictyostelium cells aggregate by chemotaxis to cAMP when a secreted protein called conditioned medium factor (CMF) reaches a threshold concentration. Cells expressing CMF antisense mRNA fail to aggregate and do not transduce signals from the cAMP receptor. Signal transduction and aggregation are restored by adding recombinant CMF. We show here that two other cAMP-induced events, the formation of a slow dissociating form of the cAMP receptor and the loss of ligand binding, which is the first step of ligand-induced receptor sequestration, also require CMF. Vegetative cells have very few CMF and cAMP receptors, while starved cells possess approximately 40,000 receptors for CMF and cAMP. Transformants overexpressing the cAMP receptor gene cAR1 show a 10-fold increase of [3H]cAMP binding and a similar increase of [125I]CMF binding; disruption of the cAR1 gene abolishes both cAMP and CMF binding. In wild-type cells, downregulation of cAR1 with high levels of cAMP also downregulates CMF binding, and CMF similarly downregulates cAMP and CMF binding. This suggests that the cAMP binding and CMF binding are closely linked. Binding of approximately 200 molecules of CMF to starved cells affects the affinity of the majority of the cAR1 cAMP receptors within 2 min, indicating that an amplifying mechanism allows one activated CMF receptor to regulate many cARs. In cells lacking the G-protein beta subunit, cAMP induces a loss of cAMP binding, but not CMF binding, while CMF induces a reduction of CMF binding without affecting cAMP binding, suggesting that the linkage of the cell density-sensing CMF receptor and the chemoattractant cAMP receptor is through a G-protein.  相似文献   

2.
Transmembrane signal transduction was investigated in four Dictyostelium discoideum mutants that belong to the fgd A complementation group. The results show the following. (a) Cell surface cAMP receptors are present in fgd A mutants, but cAMP does not induce any of the intracellular responses, including the activation of adenylate or guanylate cyclase and chemotaxis. (b) cAMP induces down-regulation and the covalent modification (presumably phosphorylation) of the cAMP receptor. (c) The inhibitory effects of GTP gamma S and GDP beta S on cAMP binding are reduced; the stimulatory effect of cAMP on GTP gamma S binding is lost in fgd A mutants. (d) Basal high-affinity GTPase activity is reduced 40% and the stimulatory effect of cAMP is decreased from 40% in wild type to 30% in fgd A. (e) GTP-mediated stimulation and inhibition of adenylate cyclase is normal in mutant membranes. The results suggest a defective interaction between cell surface cAMP receptors and a specific G-protein in fgd A mutants. This interaction appears to be essential for nearly all signal transduction pathways in Dictyostelium discoideum.  相似文献   

3.
Recent application of the technique of fluorescence photobleaching recovery to direct measurement of the lateral mobility of plasma membrane-localized hormone receptors has shed new light on the role of receptor lateral mobility in signal transduction. Receptors for insulin and EGF have been known for some time to be largely immobile at physiological temperatures. This presumably relates to their signal transduction mechanism, which appears to require intermolecular autophosphorylation (receptor aggregation) for activation. In contrast, G-protein coupled receptors must interact with other membrane components to bring about signal transduction, and it is interesting in this regard that the adenylate cyclase (AC) activating vasopressin V2-receptor is highly laterally mobile at 37 degrees C. It has recently been possible to reversibly modulate the V2-receptor mobile fraction (f) to largely varying extents, and to demonstrate thereby a direct effect on the maximal rate of in vivo cAMP production at 37 degrees C in response to vasopressin. A direct correlation between f and maximal cAMP production indicates that f may be a key parameter in hormone signal transduction in vivo, especially at sub-KD (physiological) hormone concentrations, with mobile receptors being required to effect G-protein activation.  相似文献   

4.
cAMP receptor 1 and G-protein alpha-subunit 2 null cell lines (car1- and g alpha 2-) were examined to assess the roles that these two proteins play in cAMP stimulated adenylyl cyclase activation in Dictyostelium. In intact wild-type cells, cAMP stimulation elicited a rapid activation of adenylyl cyclase that peaked in 1-2 min and subsided within 5 min; in g alpha 2- cells, this activation did not occur; in car1- cells an activation occurred but it rose and subsided more slowly. cAMP also induced a persistent activation of adenylyl cyclase in growth stage cells that contain only low levels of cAMP receptor 1 (cAR1). In lysates of untreated wild-type, car1-, or g alpha 2- cells, guanosine 5'-O-'(3-thiotriphosphate) (GTP gamma S) produced a similar 20-fold increase in adenylyl cyclase activity. Brief treatment of intact cells with cAMP reduced this activity by 75% in control and g alpha 2- cells but by only 8% in the car1- cells. These observations suggest several conclusions regarding the cAMP signal transduction system. 1) cAR1 and another cAMP receptor are linked to activation of adenylyl cyclase in intact cells. Both excitation signals require G alpha 2. 2) cAR1 is required for normal adaptation of adenylyl cyclase. The adaptation reaction caused by cAR1 is not mediated via G alpha 2. 3) Neither cAR1 nor G alpha 2 is required for GTP gamma S-stimulation of adenylyl cyclase in cell lysates. The adenylyl cyclase is directly coupled to an as yet unidentified G-protein.  相似文献   

5.
Surface cAMP receptors on Dictyostelium cells are linked to several second messenger systems and mediate multiple physiological responses, including chemotaxis and differentiation. Activation of the receptor also triggers events which desensitize signal transduction. These events include the following: 1) loss of ligand binding without loss of receptor protein; 2) phosphorylation of the receptor protein, which may lead to impaired signal transduction; 3) redistribution and degradation of the receptor protein; and 4) decrease of cyclic AMP (cAMP) receptor mRNA levels. These mechanisms of desensitization were investigated with the use of mutant synag7, with no activation of adenylyl cyclase; fgdC, with no activation of phospholipase C; and fgdA, with defects in both pathways. cAMP-induced receptor phosphorylation and loss of ligand binding activity was normal in all mutants. In contrast, cAMP-induced degradation of the receptor was absent in all mutants. The cAMP-induced decrease of cAMP-receptor mRNA levels was normal in mutant synag7, but absent in mutant fgdC. Finally, the cAMP analogue (Rp)-cAMPS induced loss of ligand binding without inducing second messenger responses or phosphorylation, redistribution, and degradation of the receptor. We conclude that 1) loss of ligand binding can occur in the absence of receptor phosphorylation; 2) loss of ligand binding and receptor phosphorylation do not require the activation of second messenger systems; 3) cAMP-induced degradation of the receptor may require the phosphorylation of the receptor as well as the activation of at least the synag7 and fgdC gene products; and 4) cAMP-induced decrease of receptor mRNA levels requires the activation of the fgdC gene product and not the synag7 gene product. These results imply that desensitization is composed of multiple components that are regulated by different but partly overlapping sensory transduction pathways.  相似文献   

6.
Recent application of the technique of fluorescence photobleaching recovery to direct measurement of the lateral mobility of plasma membrane-localized hormone receptors has shed new light on the role of receptor lateral mobility in signal transduction. Receptor for insulin and EGF have been known for some time to be largely immobile at physiological temperatures. This presumably relates to their signal transduction mechanism, which appears to require intermolecular autophosphorylation (receptor aggregation) for activation. In contrast, G-protein coupled receptors must interact with other membrane components to bring about signal transduction and it is interesting in this regard that the adenylate cyclase (AC) activating vasopressiin V2-receptor is highly laterally mobile at 37°C. It has recently been possible to reversibly modulate the V2-receptor mobile fraction (F) to largely varuing extents and to demonstrate thereby a direct effect on the maximal rate of in vivo cAMP production at 37°C in response to vasopressin. A direct correlation between f and maximal cAMP production indicates that f may be a key parameter in hormone signal transduction in vivo, especially at sub-KD (physiological) hormone concentrations, with mobile receptors being required to effect G-protein activation.  相似文献   

7.
Many biological systems respond to environmental changes by activating intracellular signaling cascades, resulting in an appropriate response. One such system is represented by the social amoeba Dictyostelium discoideum. When food sources become scarce, these unicellular cells can initiate a cAMP-driven multicellular aggregation program to ensure long-term survival. On starvation, the cells secrete conditioned medium factors that initiate cAMP signal transduction by inducing expression of genes such as cAMP receptors and adenylate cyclase. The mechanisms involved in the activation of the first pulses of cAMP release have been unclear. We here show a crucial role for the evolutionarily conserved protein coronin A in the initiation of the cAMP response. On starvation, coronin A–deficient cells failed to up-regulate the expression of cAMP-regulated genes, thereby failing to initiate development, despite a normal prestarvation response. Of importance, external addition of cAMP to coronin A–deficient cells resulted in normal chemotaxis and aggregate formation, thereby restoring the developmental program and suggesting a functional cAMP relay in the absence of coronin A. These results suggest that coronin A is dispensable for cAMP sensing, chemotaxis, and development per se but is part of a signal transduction cascade essential for system initiation leading to multicellular development in Dictyostelium.  相似文献   

8.
Fractalkine is a novel multidomain protein expressed on the surface of activated endothelial cells. Cells expressing the chemokine receptor CX3CR1 adhere to fractalkine with high affinity, but it is not known if adherence requires G-protein activation and signal transduction. To investigate the cell adhesion properties of fractalkine, we created mutated forms of CX3CR1 that have little or no ability to transduce intracellular signals. Cells expressing signaling-incompetent forms of CX3CR1 bound rapidly and with high affinity to immobilized fractalkine in both static and flow assays. Video microscopy revealed that CX3CR1-expressing cells bound more rapidly to fractalkine than to VCAM-1 (60 versus 190 ms). Unlike VCAM-1, fractalkine did not mediate cell rolling, and after capture on fractalkine, cells did not dislodge. Finally, soluble fractalkine induced intracellular calcium fluxes and chemotaxis, but it did not activate integrins. Taken together these data provide strong evidence that CX3CR1, a seven-transmembrane domain receptor, mediates robust cell adhesion to fractalkine in the absence of G-protein activation and suggest a novel role for this receptor as an adhesion molecule.  相似文献   

9.
In experiments on isolated olfactory epithelium, cAMP was shown to have an intracellular signal system which participates in pentanol olfaction transduction. Increase in the intracellular cAMP level is associated with adenylate cyclase activation due to G-protein stimulation by odorant coupled with it.  相似文献   

10.
On starvation, the cellular slime mold Dictyostelium discoideum initiates a program of development leading to formation of multicellular structures. The initial cell aggregation requires chemotaxis to cyclic AMP (cAMP) and relay of the cAMP signal by the activation of adenylyl cyclase (ACA), and it has been shown previously that the Ras protein RasC is involved in both processes. Insertional inactivation of the rasG gene resulted in delayed aggregation and a partial inhibition of early gene expression, suggesting that RasG also has a role in early development. Both chemotaxis and ACA activation were reduced in the rasG- cells, but the effect on chemotaxis was more pronounced. When the responses of rasG- cells to cAMP were compared with the responses of rasC- and rasC- rasG- strains, generated in otherwise isogenic backgrounds, these studies revealed that signal transduction through RasG is more important in chemotaxis and early gene expression, but that signal transduction through RasC is more important in ACA activation. Because the loss of either of the two Ras proteins alone did not result in a total loss of signal output down either of the branches of the cAMP signal-response pathway, there appears to be some overlap of function.  相似文献   

11.
Regulation and function of G alpha protein subunits in Dictyostelium   总被引:28,自引:0,他引:28  
We have examined the developmental regulation and function of two G alpha protein subunits, G alpha 1 and G alpha 2, from Dictyostelium. G alpha 1 is expressed in vegetative cells through aggregate stages while G alpha 2 is inducible by cAMP pulses and preferentially expressed in aggregation. Our results suggest that G alpha 2 encodes the G alpha protein subunit associated with the cAMP receptor and mediates all known receptor-activated intracellular signal transduction processes, including chemotaxis and gene regulation. G alpha 1 appears to function in both the cell cycle and development. Overexpression of G alpha 1 results in large, multinucleated cells that develop abnormally. The central role that these G alpha proteins play in signal transduction processes and in controlling Dictyostelium development is discussed.  相似文献   

12.
Plasma membrane-spanning G-protein-linked receptors transduce approximately 60% of all extracellular stimuli in higher animals. Many G-protein-linked receptor pathways are yet to be elucidated, with the receptor, G-protein or effector system as yet unidentified. In addition, many fundamental issues pertaining to G-protein signalling remain unresolved, such as the factors governing the specificity of G-protein receptor coupling and the control of signal amplitude in response to G-protein activation. In order to address some of these issues, the use of replication-deficient adenoviruses as gene transfer vectors for investigations of G-protein signalling has been developed, facilitating dissection of G-protein-linked signal transduction pathways in an extensive range of cultured cells, as well as in vivo. The present review focuses on the versatility and utility of adenoviruses for the investigation of signalling by heterotrimeric G-proteins and explores some of the recent advances in adenoviral technology as they relate to the study of signal transduction.  相似文献   

13.
Multiple signal transduction pathways within a single cell may share common components. In particular, seven different transmembrane helix receptors may activate identical pathways by interacting with the same G-proteins. Dictyostelium cells respond to cAMP using one such receptor, cAR1, coupled by a typical heterotrimeric G-protein to intracellular effectors. However, cells in which the gene for cAR1 has been deleted are unexpectedly still able to respond to cAMP. This implies either that certain responses are mediated by a different receptor than cAR1, or alternatively that a second, partially redundant receptor shares some of the functions of cAR1. We have examined the dose response and ligand specificity of one response, cAMP relay, and the dose response of another, cyclic GMP synthesis. In each case, the EC50 was approximately 100-fold higher and the maximal response was smaller in car1- than wild-type cells. These data indicate that cAR1 normally mediates responses to cAMP. The ligand specificity suggests that the responses seen in car1- mutants are mediated by a second receptor, cAR3. To test this hypothesis, we constructed a cell line containing deletions of both cAR1 and cAR3 genes. As predicted, these lines are totally insensitive to cAMP. We conclude that the functions of the cAR1 and cAR3 receptors are partially redundant and that both interact with the same heterotrimeric G-protein to mediate these and other responses.  相似文献   

14.
昆虫性信息素多数为长链的不饱和醇、醋酸酯、醛或酮类,链长一般为10-20碳,主要在性信息素腺体内由乙酰辅酶A经过脂肪酸合成、碳链缩短、去饱和以及碳酰基的还原修饰等步骤合成的;而性信息素合成激活肽(pheromone biosynthesis activating neuropeptide,PBAN)是由昆虫食管下神经节中的部分神经细胞合成和分泌的神经肽,通常由33个氨基酸组成,在C-末端有一个相同的五肽序列,主要调控性信息素的生物合成。有关PBAN的细胞内信号转导是近几年的研究热点,研究显示 PBAN首先与性信息素腺体细胞表面的G蛋白偶联受体结合,随后依据昆虫种类的不同,其细胞内信号转导方式主要有三种:(1)以cAMP信号传导途径进行信号转导;(2)以cAMP和磷脂酰肌醇信号传导途径共同进行信号转导;(3)主要以Ca2 为第二信使进行信号传导。  相似文献   

15.
Seven transmembrane domain G-protein-coupled receptors constitute the largest family of proteins in mammals. Signal transduction events mediated by such receptors are the primary means by which cells communicate with and respond to their external environment. The major paradigm in this signal transduction process is that stimulation of the receptor leads to the recruitment and activation of heterotrimeric GTP-binding proteins. These initial events, which are fundamental to all types of G-protein-coupled receptor signaling, occur at the plasma membrane via protein–protein interactions. As a result, the dynamics of the activated receptor on cell surfaces represents an important determinant in its encounter with G-proteins, and has significant impact on the overall efficiency of the signal transduction process. We have monitored the cell surface dynamics of the serotonin1A receptor, an important member of the G-protein-coupled receptor superfamily, in relation to its interaction with G-proteins. Fluorescence recovery after photobleaching experiments carried out with the receptor tagged to the enhanced yellow fluorescent protein indicate that G-protein activation alters the diffusion properties of the receptor in a manner suggesting the activation process leads to dissociation of G-proteins from the receptor. This result demonstrates that the cell surface dynamics of the serotonin1A receptor is modulated in a G-protein-dependent manner. Importantly, this result could provide the basis for a sensitive and powerful approach to assess receptor/G-protein interaction in an intact cellular environment.  相似文献   

16.

Background  

Archaea share with bacteria the ability to bias their movement towards more favorable locations, a process known as taxis. Two molecular systems drive this process: the motility apparatus and the chemotaxis signal transduction system. The first consists of the flagellum, the flagellar motor, and its switch, which allows cells to reverse the rotation of flagella. The second targets the flagellar motor switch in order to modulate the switching frequency in response to external stimuli. While the signal transduction system is conserved throughout archaea and bacteria, the archaeal flagellar apparatus is different from the bacterial one. The proteins constituting the flagellar motor and its switch in archaea have not yet been identified, and the connection between the bacterial-like chemotaxis signal transduction system and the archaeal motility apparatus is unknown.  相似文献   

17.
A biochemical model of the receptor, G-protein and effector (RGE) interactions during transduction in the cilia of vertebrate olfactory receptor neurons (ORNs) was developed and calibrated to experimental recordings of cAMP levels and the receptor current (RC). The model describes the steps from odorant binding to activation of the effector enzyme which catalyzes the conversion of ATP to cAMP, and shows how odorant stimulation is amplified and delayed by the RGE transduction cascade. A time-dependent sensitivity analysis was performed on the model. The model output—the cAMP production rate—is particularly sensitive to a few, dominant parameters. During odorant stimulation it depends mainly on the initial density of G-proteins and the catalytic constant for cAMP production.  相似文献   

18.
Glucagon-like peptide-1 (GLP-1) is a potent incretin hormone currently under investigation for use as a novel therapeutic agent in the treatment of type 2 diabetes. One of several therapeutically important biological actions of GLP-1 in type 2 diabetic subjects is ability to induce strong suppression of glucagon secretion. The glucagonostatic action of GLP-1 results from its interaction with a specific G-protein coupled receptor resulting in the activation of adenylate cyclase and an increase in cAMP generation. In the pancreatic alpha-cell, cAMP, via activation of protein kinase A, interacts with a plethora of signal transduction processes including ion-channel activity and exocytosis of the glucagon-containing granules. In this short review, we will focus on recent advances in our understanding on the cellular mechanisms proposed to underlie the glucagonotropic action of GLP-1 and attempt to incorporate this knowledge into a working model for the control of glucagon secretion. Studies on the effects of GLP-1 on glucagon secretion are relevant to the pathogenesis of type 2 diabetes due to the likely contribution of hyperglucagonemia to impaired glucose tolerance in type 2 diabetes.  相似文献   

19.
D. A. Jans  I. Pavo 《Amino acids》1995,9(2):93-109
Summary Lateral diffusion of membrane-integral receptors within the plane of the membrane has been postulated to be mechanistically important for signal transduction. Direct measurement of polypeptide hormone receptor lateral mobility using fluorescence photobleaching recovery techniques indicates that tyrosine kinase receptors are largely immobile at physiological temperatures. This is presumably due to their signal transduction mechanism which requires intermolecular autophosphorylation through receptor dimerization and thus immobilization for activation. In contrast, G-protein coupled receptors must interact with other membrane components to effect signal transduction, and consistent with this, the phospholipase C-activating vasopressin V1- and adenylate cyclase activating V2-receptors are highly laterally mobile at 37°C. Modulation of the V2-receptor mobile fraction (f) has demonstrated a direct correlation between f and receptor-agonist-dependent maximal cAMP productionin vivo at 37°C. This indicates that f is a key parameter in hormone signal transduction especially at physiological hormone concentrations, consistent with mobile receptors being required to effect V2-agonist-dependent activation of G-proteins. Measurements using a V2-specific antagonist show that antagonist-occupied receptors are highly mobile at 37°C, indicating that receptor immobilization is not the basis of antagonism. In contrast to agonist-occupied receptor however, antagonistoccupied receptors are not immobilized prior to endocytosis and down-regulation. Receptors may thus be freely mobile in the absence of agonistic ligand; stimulation by hormone agonist results in receptor association with other proteins, probably including cytoskeletal components, and immobilization. Receptor immobilization may be one of the important steps of desensitization subsequent to agonistic stimulation, through terminating receptor lateral movement which is instrumental in generating and amplifying the initial stimulatory signal within the plane of the membrane.Abbreviations FBR fluorescence photobleaching recovery - EGF epidermal growth factor - AC adenylate cyclase - D apparent lateral diffusion coefficient - f mobile fraction - G- GTP-binding protein - Gs stimulatory G-protein - TKR tyrosine kinase receptor - PDGF platelet-derived growth factor - IL interleukin  相似文献   

20.
The binding of a drug to a G-protein coupled receptor initiates a complex series of dynamic events that ultimately leads to a cellular response. In addition to the concentrations of receptor, drug and G-protein, important determinants of the cellular response are the rates at which these species interact. However, most models for G-protein coupled receptor signaling are equilibrium models that neglect the role of reaction kinetics. A kinetic ternary-complex model of signaling through G-protein coupled receptors is presented. We demonstrate that this kinetic model can make significantly different predictions than an equilibrium ternary complex model, which provides a different perspective on multiple aspects of the signal transduction cascade, such as agonist efficacy, the effect of precoupled receptors, and the role of RGS proteins. Incorporation of the reaction kinetics is critical for a complete understanding of signal transduction and will ultimately impact the fields of drug discovery and drug design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号