首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Purine nucleoside phosphorylase (PNP) catalyzes the phosphorolysis of the N-ribosidic bonds of purine nucleosides and deoxynucleosides. PNP is a target for inhibitor development aiming at T-cell immune response modulation and has been submitted to extensive structure-based drug design. More recently, the 3-D structure of human PNP has been refined to 2.3A resolution, which allowed a redefinition of the residues involved in the substrate-binding sites and provided a more reliable model for structure-based design of inhibitors. This work reports crystallographic study of the complex of Human PNP:guanine (HsPNP:Gua) solved at 2.7A resolution using synchrotron radiation. Analysis of the structural differences among the HsPNP:Gua complex, PNP apoenzyme, and HsPNP:immucillin-H provides explanation for inhibitor binding, refines the purine-binding site, and can be used for future inhibitor design.  相似文献   

2.
Human cytosolic 3,5,3'-triiodo-L-thyronine-binding protein, also called mu-crystallin or CRYM, plays important physiological roles in transporting 3,5,3'-triiodo-L-thyronine (T(3)) into nuclei and regulating thyroid-hormone-related gene expression. The crystal structure of human CRYM's bacterial homolog Pseudomonas putida ornithine cyclodeaminase and Archaeoglobus fulgidus alanine dehydrogenase have been available, but no CRYM structure has been reported. Here, we report the crystal structure of human CRYM bound with NADPH refined to 2.6 A, and there is one dimer in the asymmetric unit. The structure contains two domains: a Rossmann fold-like NADPH-binding domain and a dimerization domain. Different conformations of the loop Arg83-His92 have been observed in two monomers of human CRYM in the same asymmetric unit. The peptide bond of Val89-Pro90 is a trans-configuration in one monomer but a cis-configuration in the other. A detailed comparison of the human mu-crystallin structure with its structurally characterized homologs including the overall comparison and superposition of active sites was conducted. Finally, a putative T(3)-binding site in human CRYM is proposed based on comparison with structural homologs.  相似文献   

3.
Crystal structure of human dihydrofolate reductase complexed with folate   总被引:8,自引:0,他引:8  
The crystal structure of recombinant human dihydrofolate reductase with folate bound in the active site has been determined and the structural model refined at 0.2-nm resolution. Preliminary studies of the binding of the inhibitors methotrexate and trimethoprim to the human apoenzyme have been performed at 0.35-nm resolution. The conformations of the chemically very similar ligands folate and methotrexate, one a substrate the other a potent inhibitor, differ substantially in that their pteridine rings are in inverse orientations relative to their p-aminobenzoyl-L-glutamate moieties. Methotrexate binding is similar to that previously observed in two bacterial enzymes but is quite different from that observed in the enzyme from a mouse lymphoma cell line [Stammers et al. (1987) FEBS Lett. 218, 178-184]. The geometry of the polypeptide chain around the folate binding site in the human enzyme is not consistent with conclusions previously drawn with regard to the species selectivity of the inhibitor trimethoprim [Matthews et al. (1985) J. Biol. Chem. 260, 392-399].  相似文献   

4.
Baculovirus RNA 5'-triphosphatase (BVP) exemplifies a family of RNA-specific cysteine phosphatases that includes the RNA triphosphatase domains of metazoan and plant mRNA capping enzymes. Here we report the crystal structure of BVP in a phosphate-bound state at 1.5 A resolution. BVP adopts the characteristic cysteine-phosphatase alpha/beta fold and binds two phosphate ions in the active site region, one of which is proposed to mimic the phosphate of the product complex after hydrolysis of the covalent phosphoenzyme intermediate. The crystal structure highlights the role of backbone amides and side chains of the P-loop motif (118)HCTHGXNRT(126) in binding the cleavable phosphate and stabilizing the transition state. Comparison of the BVP structure to the apoenzyme of mammalian RNA triphosphatase reveals a concerted movement of the Arg-125 side chain (to engage the phosphate directly) and closure of an associated surface loop over the phosphate in the active site. The structure highlights a direct catalytic role of Asn-124, which is the signature P-loop residue of the RNA triphosphatase family and a likely determinant of the specificity of BVP for hydrolysis of phosphoanhydride linkages.  相似文献   

5.
Pyridoxal-5′-phosphate (the active form of vitamin B6) is an essential cofactor in many enzymatic reactions. While animals lack any of the pathways for de novo synthesis and salvage of vitamin B6, it is synthesized by two distinct biosynthetic routes in bacteria, fungi, parasites, and plants. One of them is the PdxA/PdxJ pathway found in the γ subdivision of proteobacteria. It depends on the pdxB gene, which encodes erythronate-4-phosphate dehydrogenase (PdxB), a member of the d-isomer specific 2-hydroxyacid dehydrogenase superfamily. Although three-dimensional structures of other functionally related dehydrogenases are available, no structure of PdxB has been reported. To provide the missing structural information and to gain insights into the catalytic mechanism, we have determined the first crystal structure of erythronate-4-phosphate dehydrogenase from Pseudomonas aeruginosa in the ligand-bound state. It is a homodimeric enzyme consisting of 380-residue subunits. Each subunit consists of three structural domains: the lid domain, the nucleotide-binding domain, and the C-terminal dimerization domain. The latter domain has a unique fold and is largely responsible for dimerization. Interestingly, two subunits of the dimeric enzyme are bound with different combinations of ligands in the crystal and they display significantly different conformations. Subunit A is bound with NAD and a phosphate ion, while subunit B, with a more open active site cleft, is bound with NAD and l(+)-tartrate. Our structural data allow a detailed understanding of cofactor and substrate recognition, thus providing substantial insights into PdxB catalysis.  相似文献   

6.
The structural X-ray map of a pig pancreatic -amylase crystal soaked (and flash-frozen) with a maltopentaose substrate showed a pattern of electron density corresponding to the binding of oligosaccharides at the active site and at three surface binding sites. The electron density region observed at the active site, filling subsites –3 through –1, was interpreted in terms of the process of enzyme-catalyzed hydrolysis undergone by maltopentaose. Because the expected conformational changes in the flexible loop that constitutes the surface edge of the active site were not observed, the movement of the loop may depend on aglycone site being filled. The crystal structure was refined at 2.01 å resolution to an R factor of 17.0% (R free factor of 19.8%). The final model consists of 3910 protein atoms, one calcium ion, two chloride ions, 103 oligosaccharide atoms, 761 atoms of water molecules, and 23 ethylene glycol atoms.  相似文献   

7.
In human, purine nucleoside phosphorylase (HsPNP) is responsible for degradation of deoxyguanosine and genetic deficiency of this enzyme leads to profound T-cell mediated immunosuppression. PNP is therefore a target for inhibitor development aiming at T-cell immune response modulation and has been submitted to extensive structure-based drug design. This work reports the first crystallographic study of human PNP complexed with acyclovir (HsPNP:Acy). Acyclovir is a potent clinically useful inhibitor of replicant herpes simplex virus that also inhibits human PNP but with a relatively lower inhibitory activity (K(i)=90 microM). Analysis of the structural differences among the HsPNP:Acy complex, PNP apoenzyme, and HsPNP:Immucillin-H provides explanation for inhibitor binding, refines the purine-binding site, and can be used for future inhibitor design.  相似文献   

8.
E Schmitt  M Panvert  S Blanquet    Y Mechulam 《The EMBO journal》1998,17(23):6819-6826
The crystal structure of Escherichia coli methionyl-tRNAfMet transformylase complexed with formyl-methionyl-tRNAfMet was solved at 2.8 A resolution. The formylation reaction catalyzed by this enzyme irreversibly commits methionyl-tRNAfMet to initiation of translation in eubacteria. In the three-dimensional model, the methionyl-tRNAfMet formyltransferase fills in the inside of the L-shaped tRNA molecule on the D-stem side. The anticodon stem and loop are away from the protein. An enzyme loop is wedged in the major groove of the acceptor helix. As a result, the C1-A72 mismatch characteristic of the initiator tRNA is split and the 3' arm bends inside the active centre. This recognition mechanism is markedly distinct from that of elongation factor Tu, which binds the acceptor arm of aminoacylated elongator tRNAs on the T-stem side.  相似文献   

9.
Receptor activator of NF-κB ligand (RANKL), its signaling receptor RANK, and its decoy receptor osteoprotegerin (OPG) constitute a molecular triad that is critical in regulating bone remodeling, and also plays multiple roles in the immune system. OPG binds RANKL directly to block its interaction with RANK. In this article, we report the 2.7-? crystal structure of human RANKL trimer in complex with the N-terminal fragment of human OPG containing four cysteine-rich TNFR homologous domains (OPG-CRD). The structure shows that RANKL trimer uses three equivalent grooves between two neighboring monomers to interact with three OPG-CRD monomers symmetrically. A loop from the CRD3 domain of OPG-CRD inserts into the shallow groove of RANKL, providing the major binding determinant that is further confirmed by affinity measurement and osteoclast differentiation assay. These results, together with a previously reported mouse RANKL/RANK complex structure, reveal that OPG exerts its decoy receptor function by directly blocking the accessibilities of important interacting residues of RANKL for RANK recognition. Structural comparison with TRAIL/death receptor 5 complex also reveals structural basis for the cross-reactivity of OPG to TRAIL.  相似文献   

10.
Purine nucleoside phosphorylase (PNP) is a ubiquitous enzyme, which plays a key role in the purine salvage pathway, and PNP deficiency in humans leads to an impairment of T-cell function, usually with no apparent effects on B-cell function. Human PNP has been submitted to intensive structure-based design of inhibitors, most of them using low-resolution structures of human PNP. Here we report the crystal structure of human PNP in complex with hypoxanthine, refined to 2.6A resolution. The intermolecular interaction between ligand and PNP is discussed.  相似文献   

11.
Sodium 4-phenylbutyrate (PB) is an orphan drug for the treatment of urea cycle disorders. It also inhibits the development of endoplasmic reticulum stress, the action of histone deacetylases and as a regulator of the hepatocanalicular transporter. PB is generally considered to have the potential for use in the treatment of the diseases such as cancer, neurodegenerative diseases and metabolic diseases. In a previous study, we reported that PB is primarily bound to human serum albumin (HSA) in plasma and its binding site is drug site 2. However, details of the binding mode of PB to HSA remain unknown. To address this issue, we examined the crystal structure of HSA with PB bound to it. The structure of the HSA–PB complex indicates that the binding mode of PB to HSA is quite similar to that for octanoate or drugs that bind to drug site 2, as opposed to that for other medium-chain length of fatty acids. These findings provide useful basic information related to drug–HSA interactions. Moreover, the information presented herein is valuable in terms of providing safe and efficient treatment and diagnosis in clinical settings.  相似文献   

12.
For better understanding of the coenzyme specificity in NAD-dependent MDH (tMDH) from Thermus flavus AT-62, we determined the crystal structures of tMDH-NADP(H) complex at maximally 1.65 A resolution. The overall structure is almost the same as that of the tMDH-NADH complex. However, NADP(H) binds to tMDH in the reverse orientation, where adenine occupies the position near the catalytic center and nicotinamide is positioned at the adenine binding site of the tMDH-NADH complex. Consistent with this, kinetic analysis of the malate-oxidizing reaction revealed that NADP(+) inhibited tMDH at high concentrations. This has provided the first evidence for the alternative binding mode of the nicotinamide coenzyme, that has pseudo-symmetry in its structure, in a single enzyme.  相似文献   

13.
Crystals of the flavin-containing enzyme p-hydroxybenzoate hydroxylase (PHBHase) complexed with its reaction product were investigated in order to obtain insight into the catalytic cycle of this enzyme involving two substrates and two cofactors. PHBHase was crystallized initially with its substrate, p-hydroxybenzoate and the substrate was then converted into the product 3,4-dihydroxybenzoate by allowing the catalytic reaction to proceed in the crystals. In addition, crystals were soaked in mother liquor containing a high concentration of this product. Data up to 2.3 A (1 A = 0.1 nm) were collected by the oscillation method and the structure of the enzyme product complex was refined by alternate restrained least-squares procedures and model building by computer graphics techniques. A total of 273 solvent molecules could be located, four of them being presumably sulfate ions. The R-factor for 14,339 reflections between 6.0 A and 2.3 A is 19.3%. The 3-hydroxyl group of the product introduced by the enzyme is clearly visible in the electron density, showing unambiguously which carbon atom of the substrate is hydroxylated. A clear picture of the hydroxylation site is obtained. The plane of the product is rotated 21 degrees with respect to the plane of the substrate in the current model of enzyme-substrate complex. The 4-hydroxyl group of the product is hydrogen bonded to the hydroxyl group of Tyr201, its carboxyl group is interacting with the side-chains of Tyr222, Arg214 and Ser212, while the newly introduced 3-hydroxyl group makes a hydrogen bond with the backbone carbonyl oxygen of Pro293.  相似文献   

14.
Crystal structure of RNase A complexed with d(pA)4   总被引:3,自引:0,他引:3  
Co-crystals of pancreatic RNase A complexed with oligomers of d(pA)4 were grown from polyethylene glycol 4000 at low ionic strength and the X-ray diffraction data were collected to 2.5 A resolution. From a series of heavy-atom derivatives a multiple isomorphous replacement-phased electron density map of the RNase-d(pA)4 complex was calculated to 3.5 A. By inspection, the disposition of the known structure of RNase in the unit cell was determined and this was confirmed by calculation of a standard crystallographic residual, R. Refinement of the protein alone in the unit cell as a strictly rigid body yielded an R factor of 0.32 at 2.8 A resolution. From difference Fourier syntheses DNA fragments were elucidated and incorporated into a model of the complex. The entire asymmetric unit was refined using a restrained-constrained least-squares procedure (CORELS) interspersed with difference Fourier syntheses. At the present time the crystal structure has been refined to an overall R value of 0.215 at 2.5 A resolution. The asymmetric unit of the complex crystals contains four oligomers of d(pA)4 associated with each molecule of RNase. In addition, there may also be partially ordered fragments of DNA at low occupancy present in the unit cell, but these have not, at this time, been incorporated into the model. One tetramer of d(pA)4 is entirely bound by a single protein molecule and occupies a portion of the active site cleft, filling the purine binding site and the phosphate site at the catalytic center with its 5' nucleotide. Two other tetramers are partly intermolecular. One passes from near the pyrimidine binding site over the surface of the protein toward arginine 39 and into a solvent region. A third tetramer is anchored at its 5' terminus by a salt link to lysine 98, passes near arginine and then through a solvent region to terminate with its 3' end near the surface of another protein molecule in the lattice. The fourth tetramer of d(pA)4 is bound at its 5' end on the opposite side of the protein from the active site in an electropositive anion trap that includes lysines 31 and 91 as well as arginine 33. There may be a DNA-DNA interaction involving the 5' phosphate of one tetramer and the 3' bases of two other tetramers and this may help to stabilize the crystalline complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The crystal structure at 2.6 A of the histidyl-tRNA synthetase from Escherichia coli complexed with histidyl-adenylate has been determined. The enzyme is a homodimer with a molecular weight of 94 kDa and belongs to the class II of aminoacyl-tRNA synthetases (aaRS). The asymmetric unit is composed of two homodimers. Each monomer consists of two domains. The N-terminal catalytic core domain contains a six-stranded antiparallel beta-sheet sitting on two alpha-helices, which can be superposed with the catalytic domains of yeast AspRS, and GlyRS and SerRS from Thermus thermophilus with a root-mean-square difference on the C alpha atoms of 1.7-1.9 A. The active sites of all four monomers are occupied by histidyl-adenylate, which apparently forms during crystallization. The 100 residue C-terminal alpha/beta domain resembles half of a beta-barrel, and provides an independent domain oriented to contact the anticodon stem and part of the anticodon loop of tRNA(His). The modular domain organization of histidyl-tRNA synthetase reiterates a repeated theme in aaRS, and its structure should provide insight into the ability of certain aaRS to aminoacylate minihelices and other non-tRNA molecules.  相似文献   

16.
The hypermodified nucleoside N6‐threonylcarbamoyladenosine resides at position 37 of tRNA molecules bearing U at position 36 and maintains translational fidelity in the three kingdoms of life. The N6‐threonylcarbamoyl moiety is composed of L ‐threonine and bicarbonate, and its synthesis was genetically shown to require YrdC/Sua5. YrdC/Sua5 binds to tRNA and ATP. In this study, we analyzed the L ‐threonine‐binding mode of Sua5 from the archaeon Sulfolobus tokodaii. Isothermal titration calorimetry measurements revealed that S. tokodaii Sua5 binds L ‐threonine more strongly than L ‐serine and glycine. The Kd values of Sua5 for L ‐threonine and L ‐serine are 9.3 μM and 2.6 mM, respectively. We determined the crystal structure of S. tokodaii Sua5, complexed with AMPPNP and L ‐threonine, at 1.8 Å resolution. The L ‐threonine is bound next to AMPPNP in the same pocket of the N‐terminal domain. Thr118 and two water molecules form hydrogen bonds with AMPPNP in a unique manner for adenine‐specific recognition. The carboxyl group and the side‐chain hydroxyl and methyl groups of L ‐threonine are buried deep in the pocket, whereas the amino group faces AMPPNP. The L ‐threonine is located in a suitable position to react together with ATP for the synthesis of N6‐threonylcarbamoyladenosine. Proteins 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

17.
Epidermin from Staphylococcus epidermidis Tü3298 is an antimicrobial peptide of the lantibiotic family that contains, amongst other unusual amino acids, S:-[(Z:)- 2-aminovinyl]-D-cysteine. This residue is introduced by post-translational modification of the ribosomally synthesized precursor EpiA. Modification starts with the oxidative decarboxylation of its C-terminal cysteine by the flavoprotein EpiD generating a reactive (Z:)-enethiol intermediate. We have determined the crystal structures of EpiD and EpiD H67N in complex with the substrate pentapeptide DSYTC at 2.5 A resolution. Rossmann-type monomers build up a dodecamer of 23 point symmetry with trimers disposed at the vertices of a tetrahedron. Oligomer formation is essential for binding of flavin mononucleotide and substrate, which is buried by an otherwise disordered substrate recognition clamp. A pocket for the tyrosine residue of the substrate peptide is formed by an induced fit mechanism. The substrate contacts flavin mononucleotide only via Cys-Sgamma, suggesting its oxidation as the initial step. A thioaldehyde intermediate could undergo spontaneous decarboxylation. The unusual substrate recognition mode and the type of chemical reaction performed provide insight into a novel family of flavoproteins.  相似文献   

18.
Yang Z  Spraggon G  Pandi L  Everse SJ  Riley M  Doolittle RF 《Biochemistry》2002,41(32):10218-10224
The crystal structure of fragment D from lamprey fibrinogen has been determined at 2.8 A resolution. The 89 kDa protein was cocrystallized with the peptide Gly-His-Arg-Pro-amide, which in many fibrinogens-but not lamprey-corresponds to the B knob exposed by thrombin. Because lamprey fragment D is more than 50% identical in sequence with human fragment D, the structure of which has been reported previously, it was possible to use the method of molecular replacement. The space group of the lamprey crystals is P1; there are four molecules in the unit cell. Although the fragments are packed head to head by the same D:D interface as is observed in other related preparations containing fragments D, the tails are uniquely joined by an unnatural association of the terminal sections of the residual coiled coils from adjacent molecules. Some features of the lamprey structure are clearer than have been observed in previous fragment D structures, including the beta-chain carbohydrate cluster, for one, and the important gamma-chain carboxyl-terminal segment, for another. The most significant differences between the lamprey and human structures occur in connecting loops at the entryways to the beta-chain and gamma-chain binding pockets.  相似文献   

19.
Two paralogous groups of liver fatty acid-binding proteins (FABPs) have been described: the mammalian type liver FABPs and the basic type (Lb-FABPs) characterized in several vertebrates but not in mammals. The two groups have similar sequences and share a highly conserved three-dimensional structure, but their specificity and stoichiometry of binding are different. The crystal structure of chicken Lb-FABP complexed with cholic acid and that of the apoprotein refined to 2.0 A resolution are presented in this paper. The two forms of the protein crystallize in different space groups, and significant changes are observed between the two conformations. The holoprotein binds two molecules of cholate in the interior cavity, and the contacts observed between the two ligands can help to explain the reason for this stoichiometry of binding. Most of the amino acids involved in ligand binding are conserved in other members of the Lb-FABP family. Since the amino acid sequence of the Lb-FABPs is more similar to that of the bile acid-binding proteins than to that of the L-FABPs, the possibility that the Lb-FABPs might be more appropriately called liver bile acid-binding proteins (L-BABPs) is suggested.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号