首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Denitrification in floodplain soils is one of the main biological processes emitting and reducing nitrous oxide, a greenhouse gas, and the main process responsible for the buffering capacity of riparian zones against diffuse nitrate pollution. 2. The aim of this study was to measure denitrification rates under a wide range of current climatic conditions and hydrological regimes in Europe (from latitude 64°N to latitude 42°N and from longitude 2°W to longitude 25°E), in order to determine the response patterns of this microbial process under different climatic and hydrological conditions, and to identify denitrification proxies robust enough to be used at the European scale. 3. Denitrification activity was significant in all the floodplain soils studied whatever the latitude. However, we found an increase in rates of an order of magnitude from high to mid latitudes. Maximum rates (above 30 g N m−2 month−1) were measured in the maritime conditions of the Trent floodplain. These rates are similar to mineralisation rates measured in alluvial soils and of the same order of magnitude as the amount of N stored in herbaceous plants in alluvial soils. 4. We used Multivariate Adaptative Regression Splines to relate the response variable denitrification with five relevant predictors, namely soil moisture, temperature, silt plus clay, nitrate content and herbaceous plant biomass. 5. Soil moisture, temperature, and nitrate were the three main control variables of microbial denitrification in alluvial soils in decreasing order of importance. 6. The model developed for denitrification with interaction effects outperformed a pure additive model. Soil moisture was involved in all interactions, emphasising its importance in predicting denitrification. 7. These results are discussed in the context of scenarios for future change in European hydrological regimes.  相似文献   

2.
At the floodplain scale, spatial pattern and successional development of riparian vegetation are under the control of geomorphic processes. The geomorphic and hydraulic characteristics of stream channels affect the sorting of organic material and inorganic sediment through erosion/sedimentation during floods. In turn, the proportion of fine sediments fractions differs by location within a given community of riparian forest succession. In this paper we tested the effect of geomorphic features of floodplains, through soil grain size sorting, on the nitrogen cycling in riparian forest soils. Two typical riparian forests formed by vertical accretion deposits from repeated addition of sediments from overbank flow have been chosen along the River Garonne, southwest France. These riparian forests had equivalent vegetation, flood frequency and duration, differing only in soil grain size composition: one riparian forest had sandy soils and the other had loamy soils. The evolution of the main soil physical and chemical parameters as well as denitrification (DNT), N uptake (N U ) and mineralization (N M ) rates were measured monthly over a period of 13 months in the two study sites. The loamy riparian forest presented a better physical retention of suspended matter during floods. Moreover,in situ denitrification rates (DNT) and N uptake by plants (N U ) measured in the loamy riparian forest soils were significantly greater than in the sandy soils. Although DNT and N U could be in competition for available nitrogen, the peak rates of these two processes did not occur at the same period of the year, N U being more important during the dry season when DNT was minimum, while DNT rates were maximum following the spring floods. N retention by uptake (N U ) and loss by DNT represented together the equivalent of 32% of total organic nitrogen deposited during floods on the sandy riparian forest soils and 70% on the loamy ones. These significant differences between the two sites show that, at the landscape level, one should not estimate the rates of N U and DNT, in riparian forests soils only on the basis of vegetation, but should take also into account the geomorphic features of the floodplain.  相似文献   

3.
Stream, floodplain, and wetland restorations enhance water quality and ecological function; however, soil health is prioritized infrequently in restoration planning and monitoring. Buried, historic, hydric soils—common across U.S. mid-Atlantic valley bottoms beneath legacy sediments—are not included in most floodplain restoration designs, though they may retain favorable biogeochemical characteristics and host legacy microbial communities that could support ecosystem recovery if exhumed and preserved. To assess the efficacy of including historic hydric soils in floodplain restoration for nitrogen (N) removal, we characterized pre-Euro-American settlement wetland soils buried below legacy sediments and now exposed along incised streambanks across the mid-Atlantic. We compared carbon (C) and N contents; C:N ratios; nitrate-N and ammonium-N concentrations; denitrification rates; functional genes for denitrification (nosZ) and nitrification (amoA for ammonia oxidizing archaea [AoA] + ammonia oxidizing bacteria [AoB]); and phospholipid fatty acid biomasses of historic wetland soils with contemporary wetland soils before and after an 1-year incubation in a recently restored floodplain. Compared to modern wetland soils, historic hydric soils buried by legacy sediment are less nutrient-rich, have fewer functional genes for and lower rates of denitrification, and possess significantly less microbial biomass. Following the 1-year incubation, many of these concentrations, rates, and gene counts increased in historic soils, though not substantially. Ultimately, our results suggest that while inclusion of historic, hydric soils and their legacy microbiomes is valuable for N-removal in floodplain restoration, the recovery of historic, hydric soils is predictably slow, and attainment of restoration goals, such as increased denitrification, may require multiple years.  相似文献   

4.
A fundamental challenge in understanding the global nitrogen cycle is the quantification of denitrification on large heterogeneous landscapes. Because floodplains are important sites for denitrification and nitrogen retention, we developed a generalized floodplain biogeochemical model to determine whether dams and flood‐control levees affect floodplain denitrification by altering floodplain inundation. We combined a statistical model of floodplain topography with a model of hydrology and nitrogen biogeochemistry to simulate floods of different magnitude. The model predicted substantial decreases in NO3‐N processing on floodplains whose overbank floods have been altered by levees and upstream dams. Our simulations suggest that dams may reduce nitrate processing more than setback levees. Levees increased areal floodplain denitrification rates, but this effect was offset by a reduction in the area inundated. Scenarios that involved a levee also resulted in more variability in N processing among replicate floodplains. Nitrate loss occurred rapidly and completely in our model floodplains. As a consequence, total flood volume and the initial mass of nitrate reaching a floodplain may provide reasonable estimates of total N processing on floodplains during floods. This finding suggests that quantifying the impact of dams and levees on floodplain denitrification may be possible using recent advances in remote sensing of floodplain topography and flood stage. Furthermore, when considering flooding over the long‐term, the cumulative N processed by frequent smaller floods was estimated to be quite large relative to that processed by larger, less frequent floods. Our results suggest that floodplain denitrification may be greatly influenced by the pervasive anthropogenic flood‐control measures that currently exist on most majors river floodplains throughout the world, and may have the potential to be impacted by future changes in flood probabilities that will likely occur as a result of climate shifts.  相似文献   

5.
In semi-arid floodplains the average times between floods have been cited to drive metabolic and biogeochemical responses during the subsequent flooding pulse. However, the interaction effects of flood pulse duration and the length of time between floods on the carbon budget are not well understood. Using field experiments, flood pulses—dry cycles were simulated (SF plots—short flood/dry cycles: 15 flood days + 7 dry + 15 flood and LF plots—long flood/dry cycles: 21 flood + 14 dry + 21 flood) in a semi-arid floodplain in Central Spain, in order to study the effects on soil CO2 emissions. Differences on soil water content among SF, LF and control plots were statistically significant throughout the experiment (p < 0.01). Soil CO2 emission rates during drying time were significantly related with the duration of previous flooding and inter-flooding intervals (R 2 = 0.52–0.64, p = 0.03). During the first stage of desiccation, the high soil water content appears to limit aerobic metabolism. Soil respiration rates similar to those of control plots measurements occurred 1–2 weeks later. Then, soil respiration increased to a maximum rate which was delayed 5–8 weeks, as high soil water content limited microbial activity. While more than 7 days of inundation promoted denitrification, organic nutrients supplied by flood water increased 1% soil respiration during drying. Differences between SF and LF plots in soil CO2 emissions only appeared after floodplain soil had been subjected to two consecutive flood-dry cycles; 70 days after the second inundation ended, CO2 fluxes achieved similar values in all treatments. Daily soil CO2 emission rates during the entire study period (117 days) were comparable, independently of the flood duration and the time between floods (75.76 ± 1.59 and 77.94 ± 0.45 mmol CO2 m?2 day?1, in SF and LF, respectively). Flood disturbance affects site-specific microbial processes, but only during very short time periods. The mechanism by which soil microbial communities cope or adapt to new conditions needs to be reassessed in future research in order to determine the long-term effects of hydrological changes in the soil carbon balance of semi-arid floodplains.  相似文献   

6.
Denitrification losses from soils under barley and grass ley crops were simulated. The model, which includes the major processes determining inputs, transformations and outputs of nitrogen in arable soils, represents a scale compatible with information generally available in agricultural field research. The denitrification part of the model includes a field potential denitrification rate and functions for the effect of soil aeration status, soil temperature and soil nitrate content. Easily metabolizable organic matter is assumed not to limit denitrification. Simulated values were compared with denitrification measurements made during two growing seasons in the barley and grass ley treatments of a field experiment in central Sweden.Calibration revealed that the optimal parameter values describing the effect of soil aeration on denitrification rates were similar for both treatments. The response function derived agreed well with two data sets found in the literature. The potential denitrification rate constant, derived in the simulations, was higher for grass ley than for barley, which was consistent with the differences in overall rates of carbon and nitrogen turnover found between treatments.The simulated mean denitrification rates for the two seasons were within 20% of the mean of the measured values. However, simulated denitrification showed less temporal variability and a less skewed frequency distribution than measured denitrification. Some of the measured denitrification events not explained by the model could have been due to the stimulating effects of soil drying/wetting and freezing/thawing on microbial activity.  相似文献   

7.
1. This paper explores soil seed bank composition and its contribution to the vegetation dynamics of a hydrologically variable desert floodplain in central Australia: the Cooper Creek floodplain. We investigated patterns in soil seed bank composition both temporally, in response to flooding (and drying), and spatially, with relation to flood frequency. Correlations between extant vegetation and soil seed bank composition are explored with respect to flooding. 2. A large and diverse germinable soil seed bank was detected comprising predominantly annual monocot and annual forb species. Soil seed bank composition did not change significantly in response to a major flood event but some spatial patterns were detected along a broad flood frequency gradient. Soil seed bank samples from frequently flooded sites had higher total germinable seed abundance and a greater abundance of annual monocots than less frequently flooded sites. In contrast, germinable seeds of perennial species belonging to the Poaceae family were most abundant in soil seed bank samples from rarely flooded sites. 3. Similarity between the composition of the soil seed bank and extant vegetation increased following flooding and was greatest in more frequently flooded areas of the floodplain, reflecting the establishment of annual species. The results indicate that persistent soil seed banks enable vegetation in this arid floodplain to respond to unpredictable patterns of flooding and drying.  相似文献   

8.
Aims To identify the edaphic, environmental and historical factors influencing the patchy distribution of the semelparous bamboo Bambusa arnhemica F. Muell. at global, catchment and streambank scales. Location The entire range of B. arnhemica, a highly fire‐prone savanna matrix with generally infertile soils in the north‐west of the Northern Territory of Australia above the 1200 mm mean annual rainfall isohyet. Methods Distribution surveys were conducted by air, boat and on the ground. Plot data were collected throughout the range of the species. Results Bambusa arnhemica occurred predominantly in gallery forests on flood‐prone but nevertheless well‐drained and deep alluvial soils on sloping stream banks. It ranged widely along lentic watercourses from ephemeral headwater streams to the banks of major rivers and levees on the coastal floodplain. The species did not occur in savannas; savannas adjacent to B. arnhemica gallery forests were also flood‐prone and on deep alluvial soils, but were upslope on level ground. Bambusa arnhemica's infrequent non‐riparian occurrences were on a wide variety of substrates but generally on soils of moderate fertility and in coastal and/or rocky areas where at least partial topographic protection from fire is likely. Within and between catchments, the distribution of B. arnhemica was idiosyncratic, occurrence being almost always continuous downstream from highly variable ‘starting’ points to the poorly drained coastal floodplain. Main conclusions At local scales, B. arnhemica appears constrained by poor drainage and high fire‐frequencies. Enhanced soil fertility may increase its capacity to cope with fire. At the catchment and global scales, we propose that the distribution of B. arnhemica is the product of infrequent and as yet incomplete dispersal across and away from watercourses by seed that lacks specialized dispersal mechanisms, combined with passive dispersal along streams. From this we infer that B. arnhemica is neither a very recent, nor very ancient colonist from Asia. Bambusa arnhemica's circumscribed global distribution has no parallel amongst co‐occurring rain forest plants and may be the product of poor dispersal capacity and a substantial rock and floodplain barrier to the east. Limited dispersal capacity may be inextricably linked to local domination of space and the subsequent creation of regeneration space by parental death.  相似文献   

9.
Denitrification in floodplains is a major issue for river- and groundwater quality. In the Upper Rhine valley, floodplain forests are about to be restored to serve as flood retention areas (polders). Besides flood attenuation in downstream areas, improvement of water quality became recently a major goal for polder construction. Redox potential monitoring was suggested as a means to support assessment of nitrogen elimination in future floodplains by denitrification during controlled flooding. To elucidate the relationship between redox potential and denitrification, experiments with floodplain soils and in situ measurements were done. Floodplain soil of two depth profiles from a hardwood forest of the Upper Rhine valley was incubated anaerobically with continuous nitrate supply. Reduction of nitrate was followed and compared with redox potential and organic matter content. The redox potential under denitrifying conditions ranged from 10 to 300 mV. Redox potential values decreased with increasing nitrate reduction rates and increasing organic matter content. Furthermore, a narrow correlation between organic matter and nitrate reduction was observed. Experiments were intended to help interpreting redox potentials generated under in situ conditions as exemplified by in situ observations for the year 1999. Results obtained by experiments and in situ observations showed that monitoring of redox potential could support management of the flooding regime to optimize nitrogen retention by denitrification in future flood retention areas.  相似文献   

10.
Predicted changes in the timing and magnitude of storms have the potential to amplify water quality challenges associated with agricultural runoff. In agricultural streams of the Midwestern US, floodplain restoration has the potential to enhance inorganic nitrogen (N) removal by increasing the bioreactive surface area for microbially-mediated denitrification. The restoration of inset floodplains via construction of the two-stage ditch increases denitrification compared to channelized systems, however, little is known about how denitrification on restored floodplains compares to those formed naturally when stream channel management lapses. We used sacrificial microcosm incubations and membrane-inlet mass spectrometry (MIMS) to compare denitrification rates in floodplain soils collected along transects in both naturalized and restored floodplains; longitudinal transects spanned two zones in the active floodplain (near-stream, NS vs. middle, MID) and a third zone that reflected upland conditions in the riparian buffer strip (UP). Denitrification rates were 35–49% higher in the restored, inset floodplains compared to naturalized floodplains. Variation in denitrification rates were primarily explained by soil organic matter (OM) and OM was > 20% higher in restored floodplains than naturalized, highlighting the contrasts between stable, constructed floodplains with heterogeneous, depositional bars typical of naturalizing channels. Consequently, restored inset floodplains could remove > 70% more N than the naturalized floodplains during similar storm inundation events.  相似文献   

11.
Microbial characteristics of soils on a latitudinal transect in Siberia   总被引:2,自引:0,他引:2  
Soil microbial properties were studied from localities on a transect along the Yenisei River, Central Siberia. The 1000 km‐long transect, from 56°N to 68°N, passed through tundra, taiga and pine forest characteristic of Northern Russia. Soil microbial properties were characterized by dehydrogenase activity, microbial biomass, composition of microbial community (PLFAs), respiration rates, denitrification and N mineralization rates. Relationships between vegetation, latitude, soil quality (pH, texture), soil organic carbon (SOC) and the microbial properties were examined using multivariate analysis. In addition, the temperature responses of microbial growth (net growth rate) and activity (soil respiration rate) were tested by laboratory experiments. The major conclusions of the study are as follows: 1. Multivariate analysis of the data revealed significant differences in microbial activity. SOC clay content was positively related to clay content. Soil texture and SOC exhibited the dominant effect on soil microbial parameters, while the vegetation and climatic effects (expressed as a function of latitude) were weaker but still significant. The effect of vegetation cover is linked to SOC quality, which can control soil microbial activity. 2. When compared to fine‐textured soils, coarse‐textured soils have (i) proportionally more SOC bound in microbial biomass, which might result in higher susceptibility of SOC transformation to fluctuation of environmental factors, and (ii) low mineralization potential, but with a substantial part of the consumed C being transformed to microbial products. 3. The soil microbial community from the northernmost study region located within the permafrost zone appears to be adapted to cold conditions. As a result, microbial net growth rate became negative when temperature rose above 5 °C and C mineralization then exceeded C accumulation.  相似文献   

12.
Riparian ecosystems are recognized as sinks for inorganic nitrogen (N). Denitrification, a heterotrophic microbial process, often accounts for a significant fraction of the N removed. Characteristics of both riparian soils and hydrologic vectors may constrain the locations where denitrification can occur within riparian ecosystems by influencing the distribution of substrates, water, and suitable redox conditions. We employed spatially explicit methods to quantify heterogeneity of soil characteristics and potential rate of denitrification in semi-arid riparian ecosystems. These results allow us to evaluate the relative contributions of hydrologic vectors (water courses that convey materials) and soil resources (materials required by biota) to spatial heterogeneity of denitrification. During dry and monsoon seasons we contrasted a mesic site, characterized by shallow groundwater and annual inundation by floods, with a xeric site that is inundated less often and has a deeper water table. Potential denitrification was detected throughout the mesic floodplain and the average rate of denitrification was greater at the mesic site than at the xeric site, indicating the influence of water availability on denitrification. At the xeric reach, sharp declines in pools of soil resources and rate of denitrification occurred away from the stream, demonstrating the importance of the stream in determining spatial patterns. Using geographically weighted regression analysis, we determined that soil organic matter and soil nitrate were significant predictors of denitrification at the xeric site, but that factors influencing denitrification varied spatially. Spatial heterogeneity of carbon (C) and N substrates in soils likely influenced spatial patterns of denitrification, but distribution of C and N substrates was ultimately organized by hydrologic vectors. Droughts will increase the abundance of reaches with hydrogeomorphic templates similar to the xeric reach studied here. Consequences of such a transition may include a reduced rate of denitrification and patchy distribution of denitrification in floodplain soils, which will decrease the contribution of riparian ecosystems to N removal. TKH designed and completed the study and wrote the paper; EAW contributed methods and edited the paper; NBG designed the study and edited the paper.  相似文献   

13.
Restoration of species-rich flood meadows impoverished by agricultural intensification is an important challenge. The relationships between flooding regime and soil seed bank were compared in three successive meadow communities (hygrophilic, mesohygrophilic and mesophilic) distinguished along a topographic and hydric gradient. Differences in flood duration and frequency between the three associations allowed the study of the contribution of floods to soil seed bank richness and density. No significant difference was found in species richness among the three soil seed banks, whereas the densities were significantly higher in the wettest community. The three seed bank compositions were clearly distinguished along the hydric gradient. In fact, the three seed bank types constituted a species poor version of the meadow communities to which they belong. Flood contributions appear to play a minor role in seed bank enrichment. Thus, seed dispersal by flood water would probably be insufficient to enable the restoration of alluvial meadows.  相似文献   

14.
Nutrient biogeochemistry associated with the early stages of soil development in deltaic floodplains has not been well defined. Such a model should follow classic patterns of soil nutrient pools described for alluvial ecosystems that are dominated by mineral matter high in phosphorus and low in carbon and nitrogen. A contrast with classic models of soil development is the anthropogenically enriched high nitrate conditions due to agricultural fertilization in upstream watersheds. Here we determine if short-term patterns of soil chemistry and dissolved inorganic nutrient fluxes along the emerging Wax Lake delta (WLD) chronosequence are consistent with conceptual models of long-term nutrient availability described for other ecosystems. We add a low nitrate treatment more typical of historic delta development to evaluate the role of nitrate enrichment in determining the net dinitrogen (N2) flux. Throughout the 35-year chronosequence, soil nitrogen and organic matter content significantly increased by an order of magnitude, whereas phosphorus exhibited a less pronounced increase. Under ambient nitrate concentrations (>60 μM), mean net N2 fluxes (157.5 μmol N m?2 h?1) indicated greater rates of gross denitrification than gross nitrogen fixation; however, under low nitrate concentrations (<2 μM), soils switched from net denitrification to net nitrogen fixation (?74.5 μmol N m?2 h?1). As soils in the WLD aged, the subsequent increase in organic matter stimulated net N2, oxygen, nitrate, and nitrite fluxes producing greater fluxes in more mature soils. In conclusion, soil nitrogen and carbon accumulation along an emerging delta chronosequence largely coincide with classic patterns of soil development described for alluvial floodplains, and substrate age together with ambient nitrogen availability can be used to predict net N2 fluxes during early delta evolution.  相似文献   

15.
Texture is an important influence on organic matter (SOM) dynamics in upland soils but little is known about its role in riverine soils. We hypothesized that texture might be especially important to SOM accumulation in young alluvial soils. We combined the soil component of the CENTURY ecosystem model, which uses sand, silt, and clay concentration as primary variables, with a simple simulation model of fluvial deposition, and forest production to predict changes in soil carbon (C) and nitrogen (N) during primary succession on floodplains and terraces of the Queets River, Washington. Simulated soil C accumulated to a plateau of about 4000 g m−2 at 110 years, closely matching observed patterns in an empirical chronosequence. Although direct fluvial OM deposition had only a small and short-lived influence on soil C, fluvial silt and clay deposition were an important influence on equilibrium C. The model underestimated soil N by about 35%, which appears to be due to failure of the model to account for N enrichment of an OM pool after its initial formation. These results suggest that basic influences on SOM retention in these young soils are not functionally different than those that apply to upland soils, but occur within highly dynamic physical contexts. Overbank deposition of silt and clay establishes a basic capacity for SOM retention. SOM, in turn, facilitates N retention. In this way, silt and clay are instrumental in propagating N forward from N-fixing red alder (Alnus rubra) stands to mature conifer forests that are frequently N-limited.  相似文献   

16.
Persistence of Denitrifying Enzyme Activity in Dried Soils   总被引:8,自引:2,他引:6       下载免费PDF全文
The effects of air drying soil on denitrifying enzyme activity, denitrifier numbers, and rates of N gas loss from soil cores were measured. Only 29 and 16% of the initial denitrifying enzyme activity in fresh, near field capacity samples of Maury and Donerail soils, respectively, were lost after 7 days of air drying. The denitrifying activity of bacteria added to soil and activity recently formed in situ were not stable during drying. When dried and moist soil cores were irrigated, evolution of N gas began, and it maximized sooner in the dried cores. This suggests that the persistence of denitrifying enzymes permits accelerated denitrification when dried soils are remoistened. Enzyme activity increased significantly in these waterlogged cores, but fluctuations in enzyme activity were small compared with fluctuations in actual denitrification rate, and enzyme activities were always greater than denitrification rates. Apparent numbers of isolatable denitrifiers (most-probable-number counts) decreased more than enzyme activity as the soils were dried, but after the soils were rewetted, the extent of apparent growth was not consistently related to the magnitude of N loss. We hypothesize that activation-inactivation of existing enzymes by soil O2 is of greater significance in transient denitrification events than is growth of denitrifiers or synthesis of new enzymes.  相似文献   

17.
Although it has been recognized that the adsorption of organics to clay and silt particles is an important determinant of the stability of organic matter in soils, no attempts have been made to quantify the amounts of C and N that can be preserved in this way in different soils. Our hypothesis is that the amounts of C and N that can be associated with clay and silt particles is limited. This study quantifies the relationships between soil texture and the maximum amounts of C and N that can be preserved in the soil by their association with clay and silt particles. To estimate the maximum amounts of C and N that can be associated with clay and silt particles we compared the amounts of clay- and silt-associated C and N in Dutch grassland soils with corresponding Dutch arable soils. Secondly, we compared the amounts of clay- and silt-associated C and N in the Dutch soils with clay and silt-associated C and N in uncultivated soils of temperate and tropical regions.We observed that although the Dutch arable soils contained less C and N than the corresponding grassland soils, the amounts of C and N associated with clay and silt particles was the same indicating that the amounts of C and N that can become associated with this fraction had reached a maximum. We also observed close positive relationships between the proportion of primary particles < 20 m in a soil and the amounts of C and N that were associated with this fraction in the top 10 cm of soils from both temperate and tropical regions. The observed relationships were assumed to estimate the capacity of a soil to preserve C and N by their association with clay and silt particles. The observed relationships did not seem to be affected by the dominant type of clay mineral. The only exception were Australian soils, which had on average more than two times lower amounts of C and N associated with clay and silt particles than other soils. This was probably due to the combination of low precipitation and high temperature leading to low inputs of organic C and N.The amount of C and N in the fraction > 20 m was not correlated with soil texture. Cultivation decreased the amount of C and N in the fraction > 20 m to a greater extent than in the fraction < 20 m, indicating that C and N associated with the fraction < 20 m is better protected against decomposition.The finding of a given soil having a maximum capacity to preserve organic C and N will improve our estimations of the amounts of C and N that can become stabilized in soils. It has important consequences for the contribution of different soils to serve as a sink or source for C and N in the long term.  相似文献   

18.
Sluis  William  Tandarich  John 《Plant Ecology》2004,173(1):115-124
Interest in the restoration of riparian habitat is increasing. However, little is known about factors responsible for riparian communities, especially grasslands. In order to construct plant communities for a restoration project in the floodplain of a large river in the Midwestern United States, we sampled four floodplains with various disturbance regimes located in Illinois and Missouri. They were chosen to be representative of different plant communities of floodplains, with a focus on herbaceous communities. The areas included backwater lakes, alluvial fans, groundwater seep marshes, oxbow marshes, seasonally inundated grassland, and non-inundated grassland. Vegetation, soils and groundwater or standing water depth were measured at various intervals along transects. Communities were produced using TWINSPAN and tested for differences in environmental factors. The soil morphology, taxonomic classification, and fertility parameters were similar among sites. Environmental factors influencing community composition were the presence of permanent water and silt deposition. We conclude that water depth determines species composition in permanently wet areas. Silt deposition determines composition in seasonally inundated grassland. Where silt deposition is high enough to inhibit seedling emergence, dominance is attained by plants able to reproduce vegetatively by rhizomes. Such a reproductive process leads to nearly monotypic stands produced by large clones. Results are discussed in relation to models of riparian processes and succession.  相似文献   

19.
Bouma  Tjeerd J.  Bryla  David R. 《Plant and Soil》2000,227(1-2):215-221
Estimates of root and soil respiration are becoming increasingly important in agricultural and ecological research, but there is little understanding how soil texture and water content may affect these estimates. We examined the effects of soil texture on (i) estimated rates of root and soil respiration and (ii) soil CO2 concentrations, during cycles of soil wetting and drying in the citrus rootstock, Volkamer lemon (Citrus volkameriana Tan. and Pasq.). Plants were grown in soil columns filled with three different soil mixtures varying in their sand, silt and clay content. Root and soil respiration rates, soil water content, plant water uptake and soil CO2 concentrations were measured and dynamic relationships among these variables were developed for each soil texture treatment. We found that although the different soil textures differed in their plant-soil water relations characteristics, plant growth was only slightly affected. Root and soil respiration rates were similar under most soil moisture conditions for soils varying widely in percentages of sand, silt and clay. Only following irrigation did CO2 efflux from the soil surface vary among soils. That is, efflux of CO2 from the soil surface was much more restricted after watering (therefore rendering any respiration measurements inaccurate) in finer textured soils than in sandy soils because of reduced porosity in the finer textured soils. Accordingly, CO2 reached and maintained the highest concentrations in finer textured soils (> 40 mmol CO2 mol−1). This study revealed that changes in soil moisture can affect interpretations of root and soil measurements based on CO2 efflux, particularly in fine textured soils. The implications of the present findings for field soil CO2 flux measurements are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Compared to upland forests, riparian forest soils have greater potential to remove nitrate (NO3) from agricultural runoff through denitrification. It is unclear, however, whether prolonged exposure of riparian soils to nitrogen (N) loading will affect the rate of denitrification and its end products. This research assesses the rate of denitrification and nitrous oxide (N2O) emissions from riparian forest soils exposed to prolonged nutrient runoff from plant nurseries and compares these to similar forest soils not exposed to nutrient runoff. Nursery runoff also contains high levels of phosphate (PO4). Since there are conflicting reports on the impact of PO4 on the activity of denitrifying microbes, the impact of PO4 on such activity was also investigated. Bulk and intact soil cores were collected from N-exposed and non-exposed forests to determine denitrification and N2O emission rates, whereas denitrification potential was determined using soil slurries. Compared to the non-amended treatment, denitrification rate increased 2.7- and 3.4-fold when soil cores collected from both N-exposed and non-exposed sites were amended with 30 and 60 μg NO3-N g−1 soil, respectively. Net N2O emissions were 1.5 and 1.7 times higher from the N-exposed sites compared to the non-exposed sites at 30 and 60 μg NO3-N g−1 soil amendment rates, respectively. Similarly, denitrification potential increased 17 times in response to addition of 15 μg NO3-N g−1 in soil slurries. The addition of PO4 (5 μg PO4-P g−1) to soil slurries and intact cores did not affect denitrification rates. These observations suggest that prolonged N loading did not affect the denitrification potential of the riparian forest soils; however, it did result in higher N2O emissions compared to emission rates from non-exposed forest soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号