首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibroblasts from patients with the adult, juvenile, and infantile form of glycogenosis type II (Pompe disease) were cultured under standardized conditions, and the activity of acid alpha-glucosidase (E.C.3.2.1.20) towards glycogen, maltose, and 4-methylumbelliferyl-alpha-D-glucopyranoside was measured. Glycogen levels in muscle biopsies and in cultured fibroblasts from patients were determined. Residual enzyme activities varying from 7%-22% were detected in fibroblasts from patients with the adult form but not from patients with the infantile form of glycogenosis II. An inverse correlation was found between the severity of the clinical manifestation and the degree of residual enzyme activity in the fibroblasts. The kinetic and electrophoretic properties of acid alpha-glucosidase in fibroblasts from the adult patients and from control individuals were similar. Immunological studies suggested that the decrease of acid alpha-glucosidase activity is caused by a mutation that affects the production or degradation of the enzyme rather than its catalytic activity. Complementation studies were carried out by fusing fibroblasts from patients with the adult, juvenile, and infantile form of glycogenosis II, but neither conventional assays on multikaryons nor enzyme assays on single binuclear heterokaryons gave any evidence for genetic heterogeneity among these forms.  相似文献   

2.
Previously isolated lysosomal alpha-glucosidase cDNA clones were ligated to full-length constructs for expression in vitro and in mammalian cells. One of these constructs (pSHAG1) did not code for functional enzyme, due to an arginine residue instead of a tryptophan residue at amino acid position 402. The mutation does not affect the rate of enzyme synthesis, but interferes with post-translational modification and intracellular transport of the acid alpha-glucosidase precursor. Using immunocytochemistry it is demonstrated that the mutant precursor traverses the endoplasmic reticulum and the Golgi complex, but does not reach the lysosomes. Pulse-chase experiments suggest premature degradation. The Trp-402-containing enzyme (encoded by construct pSHAG2) is processed properly, and has catalytic activity. A fraction of the enzyme is localized at the plasma membrane. It is hypothesized that membrane association of the acid alpha-glucosidase precursor, as demonstrated by Triton X-114 phase separation, is responsible for transport to this location. Transiently expressed acid alpha-glucosidase also enters the secretory pathway, since a catalytically active precursor is found in the culture medium. This precursor has the appropriate characteristics for use in enzyme replacement therapy. Efficient uptake via the mannose 6-phosphate receptor results in degradation of lysosomal glycogen in cultured fibroblasts and muscle cells from patients with glycogenosis type II.  相似文献   

3.
Recently, the sequence of the human receptor for insulin-like growth factor II (IGF-II) was found to be 80% identical [Morgan et al., (1987) Nature 329, 301-307] to the sequence of a partial clone of the bovine cation-independent mannose-6-phosphate receptor [Lobel et al., (1987) Proc. Natl. Acad. Sci. USA 84, 2233-2237]. In the present study, the purified receptor for insulin-like growth factor II (IGF-II) was found to react with two different polyclonal antibodies to the purified mannose-6-phosphate receptor. Moreover, mannose-6-phosphate was found to stimulate the binding of labeled IGF-II to the IGF-II receptor by two-fold. This effect had the same specificity and affinity as the reported binding of mannose-6-phosphate to its receptor; mannose-1-phosphate and mannose had no effect on the binding of labeled IGF-II to its receptor, and the half-maximally effective concentration of mannose-6-phosphate was 0.3 mM. Also, mannose-6-phosphate did not affect labeled IGF-II binding to the insulin receptor. These results support the hypothesis that a single protein of Mr-250,000 binds both IGF-II and mannose-6-phosphate. Furthermore, they indicate that mannose-6-phosphate can modulate the interaction of IGF-II to its receptor.  相似文献   

4.
A J Reuser  M Kroos 《FEBS letters》1982,146(2):361-364
The activity of acid alpha-glucosidase in cultured fibroblasts from adult patients with the lysosomal storage disease glycogenosis type II is only 10% of normal. A normal activity per molecule is found for the mature as well as for the precursor form of acid alpha-glucosidase in adult mutant fibroblasts. Excessive lysosomal breakdown of mature enzyme purified from mutant fibroblasts and taken up by acceptor cells does not occur. However, the NH4Cl-stimulated secretion of a precursor form of acid alpha-glucosidase by adult mutant fibroblasts is markedly reduced. The results are indicative of a defect during the production of acid alpha-glucosidase.  相似文献   

5.
Glycogenosis type II is an inherited lysosomal storage disease with acid alpha-glucosidase deficiency as the primary defect. Using cultured skin fibroblasts, we have studied the biosynthesis of acid alpha-glucosidase in clinically different forms of this disease. Three unrelated patients were identified (one with an infantile, one with a juvenile, and one with an adult form of the disease) producing normal quantities of the 110-kDa precursor form of acid alpha-glucosidase. However, post-translational modification to mature 76-kDa enzyme protein was either completely deficient or extremely inefficient. No abnormalities were observed in glycosylation of the mutant precursors, as measured by the incorporation of [3H]mannose, but phosphorylation was only detectable for the precursor synthesized by fibroblasts from the juvenile patient. In three other patients (one with a juvenile and two with adult forms of glycogenosis type II) apparently reduced synthesis of precursor protein was observed, but the processing to mature enzyme seemed to be undisturbed. Finally, neither precursor nor mature forms of acid alpha-glucosidase were detectable in one particular case of infantile glycogenosis type II. The studies reveal an unexpected degree of genetic heterogeneity in this disease and identify various mutants which could be of importance to further elucidate the biosynthetic events during lysosomal enzyme formation.  相似文献   

6.
acid alpha-glucosidase (EC 3.2.1.20) was purified from fetal bovine muscle by affinity chromatography on concanavalin A and Sephadex G-100 and added to the culture medium of mature muscle cultures from animals affected by glycogenosis type II. The enzyme activity in homogenates of treated cultures was significantly increased within 4 h of the addition of enzyme, was maximal by 18 h and the internalised activity was stable for at least 48 h after the removal of the enzyme from the culture medium. The acid alpha-glucosidase activity was internalised with an uptake constant of 300 nM and a Vmax of uptake of 133 nmol/h per mg protein. The glycogen concentration in affected cultures treated with exogenous acid alpha-glucosidase for 24 h had decreased by 20% and after a further 24 h of culture was comparable to the concentration observed in cultures from non-affected animals.  相似文献   

7.
Mucopolysaccharidosis type IIIB (MPS-IIIB, Sanfilippo type B Syndrome) is a heterosomal, recessive lysosomal storage disorder resulting from a deficiency of [alpha]-N-acetylglucosaminidase (NAGLU). To characterize this enzyme further and evaluate its potential for enzyme replacement studies we expressed the NAGLU-encoding cDNA in Chinese hamster ovary cells (CHO-K1 cells) and purified the recombinant enzyme from the medium of stably transfected cells by a two-step affinity chromatography. Two isoforms of recombinant NAGLU with apparent molecular weights of 89 and 79 kDa were purified and shown to differ in their glycosylation pattern. The catalytic parameters of both forms of the recombinant enzyme were indistinguishable from each other and similar to those of NAGLU purified from various tissues. However, compared to other recombinant lysosomal enzymes expressed from CHO-K1 cells, the mannose-6-phosphate receptor mediated uptake of the secreted form of recombinant NAGLU into cultured skin fibroblasts was considerably reduced. A small amount of phosphorylated NAGLU present in purified enzyme preparations was shown to be endocytosed by MPS-IIIB fibroblasts via the mannose-6-phosphate receptor-mediated pathway and transported to the lysosomes, where they corrected the storage phenotype. Direct metabolic labeling experiments with Na(2) (32)PO(4) confirmed that the specific phosphorylation of recombinant NAGLU secreted from transfected CHO cells is significantly lower when compared with a control lysosomal enzyme. These results suggest that the use of secreted NAGLU in future enzyme and gene replacement therapy protocols will be severely limited due to its small degree of mannose-6-phosphorylation.  相似文献   

8.
Lysosomal alpha-glucosidase (acid maltase) is essential for degradation of glycogen in lysosomes. Enzyme deficiency results in glycogenosis type II. The amino acid sequence of the entire enzyme was derived from the nucleotide sequence of cloned cDNA. The cDNA comprises 3636 nt, and hybridizes with a messenger RNA of approximately 3.6 kb, which is absent in fibroblasts of two patients with glycogenosis type II. The encoded protein has a molecular mass of 104.645 kd and starts with a signal peptide. Sites of proteolytic processing are established by identification of N-terminal amino acid sequences of the 110-kd precursor, and the 76-kd and 70-kd mature forms of the enzyme encoded by the cDNA. Interestingly, both amino-terminal and carboxy-terminal processing occurs. Sites of sugar-chain attachment are proposed. A remarkable homology is observed between this soluble lysosomal alpha-glucosidase and the membrane-bound intestinal brush border sucrase-isomaltase enzyme complex. It is proposed that these enzymes are derived from the same ancestral gene. Around the putative active site of sucrase and isomaltase, 10 out of 13 amino acids are identical to the corresponding amino acids of lysosomal alpha-glucosidase. This strongly suggests that the aspartic acid residue at this position is essential for catalytic function of lysosomal alpha-glucosidase.  相似文献   

9.
We have defined one type of acid alpha-glucosidase and two types of neutral alpha-glucosidases from quail skeletal muscle on the basis of differences in the elution patterns on a DEAE-cellulose column. The appearance of the two neutral alpha-glucosidase isoenzymes was age-dependent. A decrease in acid alpha-glucosidase activity was demonstrated in Japanese quails with glycogenosis type II. The characteristics of these three alpha-glucosidase isoenzymes are described.  相似文献   

10.
Using electron microscopic immunocytochemistry with gold probes, we have studied the localization of acid alpha-glucosidase, N-acetyl-beta-hexosaminidase and beta-glucocerebrosidase in cultured skin fibroblasts from control subjects and patients with mucolipidosis II (I-cell disease). In control fibroblasts, a random distribution of acid alpha-glucosidase and N-acetyl-beta-hexosaminidase within the lysosomes was observed, whereas beta-glucocerebrosidase was found to be localized on or near the lysosomal membrane. The observations confirm the soluble character of acid alpha-glucosidase and N-acetyl-beta-hexosaminidase and the membrane-bound character of beta-glucocerebrosidase. In I-cell fibroblasts an abnormal localization of the two soluble enzymes was found. Labeling in lysosomes was very weak, but instead, small 'presumptive' vesicles containing both enzymes were detected throughout the cytoplasm and close to the plasma membrane. These vesicles could be involved in the secretion of the two enzymes. In contrast, a normal membrane-bound lysosomal localization was observed for beta-glucocerebrosidase. It is concluded that the intracellular transport of beta-glucocerebrosidase to the lysosomes can occur even when the mannose-6-phosphate recognition system is defective. This explains the normal activity of beta-glucocerebrosidase in I-cells in contrast to the deficiency of most other lysosomal enzymes.  相似文献   

11.
With the use of immunoelectron microscopy we have demonstrated the presence of lysosomal enzymes (acid alpha-glucosidase and glucocerebrosidase) and fragments of the 270 kDa receptor for mannose 6-phosphate and insulin-like growth factor II in blood plasma, plasmalemmal vesicles of endothelial cells and pericapillary spaces in human skeletal muscle tissue. At these locations, the three proteins colocalized with albumin known to be transported from the capillaries into the pericapillary spaces. Immunoblot analysis of plasma revealed the presence of relatively high molecular weight polypeptides in this material. These observations strongly suggest that high molecular weight species of lysosomal enzymes can pass the endothelial barrier in skeletal muscle tissue.  相似文献   

12.
The molecular nature of lysosomal alpha-glucosidase deficiency was studied in five South African families with glycogenosis type II. Distinct ethnic origins were represented. Two new mutant acid alpha-glucosidase alleles were discovered. In two infantile patients from a consanguineous Indian family we found for the first time an acid alpha-glucosidase precursor of reduced size. The mutant precursor appeared normally glycosylated and phosphorylated but was not processed to mature enzyme. Abnormalities of the mRNA were not obvious, but digestion of genomic DNA with HindIII, BglII, and StuI revealed for each enzyme a fragment of increased length. Heterozygosity was demonstrated in the parents. Complete lack of acid alpha-glucosidase mRNA, as well as deficiency of precursor synthesis, was observed in two black baby girls from unrelated families. In these cases the length of all restriction-enzyme fragments was normal. Reduced enzyme synthesis but normal processing was registered in juvenile and young adult Cape colored patients. The extensive heterogeneity of glycogenosis type II is emphasized in these studies on various ethnic groups. The newly discovered mutants are valuable for the understanding of clinical diversity as a result of allelic variation.  相似文献   

13.
Intracellular transport of two lysosomal enzymes, acid alpha-glucosidase and beta-hexosaminidase, was analyzed in human fibroblasts. The precursors of beta-hexosaminidase in normal fibroblasts were released from the membrane fraction by treatment with mannose 6-phosphate, but the precursor of alpha-glucosidase was not. Percoll density gradient centrifugation revealed a normal amount of acid alpha-glucosidase activity in heavy lysosomes in I-cell disease fibroblasts despite impaired maturation and defective phosphorylation, and beta-hexosaminidase activity was markedly reduced in lysosomes. It was concluded that the membrane-bound precursor of acid alpha-glucosidase is transported to lysosomes by a phosphomannosyl receptor-independent system although the enzyme lacks the recognition marker for the phosphomannosyl receptor and processing of an intermediate form to mature forms does not occur in this disease.  相似文献   

14.
A convenient means was devised for the purification of milligram quantities of a soluble form of the mannose 6-phosphate/insulin-like growth factor II receptor (Man-6-P/IGF II receptor). The receptor was purified to near homogeneity from bovine serum by affinity chromatography on agarose-pentamannosephosphate in the absence of detergent. Approximately 2.5 mg of receptor were obtained from 500 ml of fetal calf serum. The concentration of receptor in serum decreased sharply with development. Fetal calf serum Man-6-P/IGF II receptor was immunologically similar to detergent-solubilized, membrane-bound Man-6-P/IGF II receptor from bovine liver. N-Terminal sequence analysis revealed that the purified serum receptor, but not the solubilized, membrane-associated receptor, contains stoichiometric amounts of bound IGF II. The results of sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and gel chromatography studies suggest that the fetal calf serum receptor (in contrast to the solubilized, membrane-bound bovine testis receptor) does not aggregate. The affinity of the fetal calf serum receptor for bovine testis beta-galactosidase approximated one-half that observed for solubilized, membrane-bound bovine testis receptor.  相似文献   

15.
An assay was developed, using two similar formats, to simultaneously measure both the lysosomal targeting receptor binding and enzyme activity of the recombinant human enzymeN-acetylgalactosamine-4-sulfatase. This assay also has potential application for all phosphorylated lysosomal enzymes that contain mannose-6-phosphate residues. The receptor was either purified from fetal bovine sera then adsorbed, or producedin situby growing and fixing diploid human fibroblast-like cells, to a solid phase. The enzyme substrate was 4-methylumbelliferyl sulfate which fluoresces after cleavage of the sulfate moiety. Both the precursor and mature forms of the recombinant enzyme were used to demonstrate the specificity and usefulness of the assay. The assay is rapid and sensitive and has a wide dynamic range. Association between the receptor and the mannose-6-phosphate residues was abrogated in the presence of a competitive inhibitor, mannose 6-phosphate. However, partial activity was still measured when the mature enzyme was incubated in the presence of mannose 6-phosphate when using the fixed fibroblast format. This would indicate that the recombinant enzymes contain at least one terminal sugar moiety other than mannose 6-phosphate which can recognize receptors on the surface of human fibroblast-like cells. Other possible applications of this assay are also discussed.  相似文献   

16.
Human α-L-fucosidase, purified from placenta, was taken up from the culture medium by skin fibroblasts from patients with fucosidosis (α-L-fucosidase deficiency). The rate of uptake was low (uptake coefficient = 6 × 10?4 ml.mg?1.h?1). Intracellular α-L-fucosidase activity was directly proportional to enzyme in the medium up to an activity of at least 40 nmoles/min/ml. No evidence for saturation of specific cell-surface receptors was seen. However, uptake was reduced by 75% by 1 mM mannose-6-phosphate and by 50% by 1 mM glucose-6-phosphate, suggesting that uptake may be mediated by a receptor recognising a phosphorylated sugar or an analagous compound. Enzyme taken up by the cells was most active in subcellular fractions enriched with lysosomes and had an isozyme pattern, by isoelectric focusing, identical to that of the original enzyme preparation. Fucosidosis fibroblasts were shown to accumulate low molecular-weight, fucose-containing compounds to a level several times greater than control cells. This stored material was eluted from Sephadex G-25 as an asymmetrical peak with an elution volume of approximately twice the void volume of the column. Addition of placental α-L-fucosidase to the culture medium of fucosidosis fibroblasts prevented excessive accumulation of fucose-containing material and accelerated the breakdown of material accumulated prior to enzyme uptake.  相似文献   

17.
Two patients in a consanguineous Indian family with infantile glycogenosis type II were found to have a G to A transition in exon 11 of the human lysosomal alpha-glucosidase gene. Both patients were homozygous and both parents were heterozygous for the mutant allele. The mutation causes a Glu to Lys substitution at amino acid position 521, just three amino acids downstream from the catalytic site at Asp-518. The mutation was introduced in wild type lysosomal alpha-glucosidase cDNA and the mutant construct was expressed in vitro and in vivo. The Glu to Lys substitution is proven to account for the abnormal physical properties of the patients lysosomal alpha-glucosidase precursor and to prevent the formation of catalytically active enzyme. In homozygous form it leads to the severe infantile phenotype of glycogenosis type II.  相似文献   

18.
Five healthy related individuals in 3 generations of a Lebanese family have been found to have highly elevated plasma lysosomal enzyme levels inherited as a dominant Mendelian trait. The same enzymes in other extracellular fluids were within normal limits. While the pattern and extent of plasma enzyme elevation was similar to that found in mucolipidoses II and III, the physicochemical properties of the elevated enzymes were different from those of both control and I-cell disease plasma. Secretion of lysosomal hydrolases into cell media by fibroblasts from one of the individuals was increased two to seven times more than that from controls. The results suggest faulty recognition between lysosomal hydrolases and mannose-6-phosphate receptors. This could be caused by a defect either in the phosphodiesterase that normally uncovers mannose-6-phosphate hydrolase markers or in the mannose-6-phosphate receptor itself.  相似文献   

19.
Endocytosis of human spleen beta-glucuronidase by human fibroblasts can be completely impaired by the competitive inhibitor mannose 6-phosphate or by pretreatment with acid phosphatase or endoglycosidases H or F. However, endocytosis of bovine spleen and liver beta-glucuronidase is partially impaired by the same treatments, suggesting that the bovine enzyme contains two endocytosis recognition markers located in separate enzyme domains. The mannose 6-phosphate recognition marker seems to be responsible for approximately 23% of the bovine enzyme endocytosis. The existence of two lysosomal endocytosis systems in human fibroblasts is supported by the following facts: (a) the rate of endocytosis of mannose 6-phosphate-containing human beta-glucuronidase was not affected by the presence of high levels of the bovine enzyme (which has only the other marker). (b) Anti-215K mannose 6-phosphate receptor antibodies selectively impair the endocytosis of the beta-glucuronidase containing mannose 6-phosphate. (c) Weak bases exert a differential effect on human and bovine endocytosis. beta-Glucuronidase internalized by either system is targeted to secondary lysosomes of human beta-glucuronidase-deficient fibroblasts, where it is able to degrade accumulated glycosaminoglycans. These results suggest that human fibroblasts have two different and independent endocytic systems for targeting of acid hydrolases to lysosomes.  相似文献   

20.
The level of glucose-1, 6-bisphosphate, a potent allosteric activator of phosphofructokinase, was markedly decreased in muscles of patients with glycogenosis type VII (muscle phosphofructokinase deficiency) and type V (muscle phosphorylase deficiency). Glucose-1-phosphate kinase activity in muscle was virtually absent in a patient with glycogenosis type VII, whereas it was normal in a patient with type V glycogenosis. Glucose-1-phosphate level was increased in type VII glycogenosis, whereas it was decreased in type V glycogenosis. Another activator of phosphofructokinase, fructose-2, 6-bisphosphate was increased in muscles of patients with both types of glycogenosis although it was much higher in type VII than in type V. This finding may be partly related to the difference of fructose-6-phosphate concentrations. The results suggest that phosphofructokinase would contribute to the major glucose-1-phosphate kinase activity in normal human muscle and would also form a kind of self-activating system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号