首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tumor-bearing host (TBH) macrophages (M phi) exhibit immune dysfunction that is concomitant with phenotypic changes. We examined M phi subpopulations by changes in the expression of surface antigens Mac-1, -2, -3, and Ia on normal and TBH peritoneal and splenic M phi. M phi were double-labeled and analyzed by flow cytometry to observe multiple expression of surface antigens. Tumor growth alters the multiple expression of these M phi markers. Peritoneal and splenic M phi had different Mac+ and Mac+Ia+ population percentages. In TBH, peritoneal M phi had decreased percentages of Mac-1+2+, Mac-1+3+, Mac-2+3+, and Mac+Ia+ M phi. This decrease correlated with functional changes in TBH M phi. In contrast, there was an increase in Mac-2-Ia- TBH peritoneal M phi. Previously undiscovered Mac-1+2-3- and Mac-1-2-3+ populations were found. In contrast to peritoneal M phi, there was an increase in the percentage of Mac-1+2+, Mac-1+3+, and Mac-2+3+ splenic TBH M phi but, like peritoneal M phi, there was a decrease in the percentage of Mac+Ia+ M phi. Also, TBH splenic M phi showed a smaller but more uniform antigen density than normal host splenic M phi. Tumor growth modulated phenotypic alterations in peritoneal and splenic M phi subpopulations. Combined with earlier functional studies of M phi subpopulations, these data suggested a relationship between changes in M phi phenotype and tumor-induced dysfunction of M phi-modulated immune activity.  相似文献   

2.
The balance between immune activation and suppression must be regulated to maintain immune homeostasis. Tissue macrophages (MΦs) constitute the major cellular subsets of APCs within the body; however, how and what types of resident MΦs are involved in the regulation of immune homeostasis in the peripheral lymphoid tissues are poorly understood. Splenic red pulp MΦ (RPMs) remove self-Ags, such as blood-borne particulates and aged erythrocytes, from the blood. Although many scattered T cells exist in the red pulp of the spleen, little attention has been given to how RPMs prevent harmful T cell immune responses against self-Ags. In this study, we found that murine splenic F4/80(hi)Mac-1(low) MΦs residing in the red pulp showed different expression patterns of surface markers compared with F4/80(+)Mac-1(hi) monocytes/MΦs. Studies with purified cell populations demonstrated that F4/80(hi)Mac-1(low) MΦs regulated CD4(+) T cell responses by producing soluble suppressive factors, including TGF-β and IL-10. Moreover, F4/80(hi)Mac-1(low) MΦs induced the differentiation of naive CD4(+) T cells into functional Foxp3(+) regulatory T cells. Additionally, we found that the differentiation of F4/80(hi)Mac-1(low) MΦs was critically regulated by CSF-1, and in vitro-generated bone marrow-derived MΦs induced by CSF-1 suppressed CD4(+) T cell responses and induced the generation of Foxp3(+) regulatory T cells in vivo. These results suggested that splenic CSF-1-dependent F4/80(hi)Mac-1(low) MΦs are a subpopulation of RPMs and regulate peripheral immune homeostasis.  相似文献   

3.
4.
Rat anti-mouse monoclonal antibodies (mAb), anti-Mac-1, -2, and -3, directed against macrophage (M phi) glycoprotein surface antigens, were used to demonstrate a tumor-induced shift in peritoneal M phi subpopulations. This study of the tumor-induced shift was approached in two steps. First, to show that separate phenotypic M phi subpopulations existed and second, to show that a shift in these populations was involved in immunosuppression of the host during tumor growth. Endogenous peroxidase activity was examined among normal and tumor-bearing host (TBH) M phi. A significant increase in the number of peroxidase-positive M phi occurred during tumor growth. Indirect immunofluorescence showed a decrease in Mac-2+ cells and an increase in Mac-3+ cells in TBH M phi populations. When the mAb, anti-Mac-1,-2, and -3 were used in the presence of complement (C), they were cytotoxic for M phi and showed differential depletion of normal and TBH M phi. Peroxidase-positive TBH M phi were susceptible to C-mediated lysis by anti-Mac-1 and -3 but not by anti-Mac-2, whereas no direct relationship was observed among normal host M phi. To demonstrate differences between normal and TBH M phi subpopulations, soluble inhibitory factors were examined from mAb plus C-modified M phi populations. Anti-Mac plus C-treated normal and TBH M phi produced supernatants with different regulatory capabilities as assessed in the mixed-lymphocyte reaction (MLR). Anti-Mac-2 plus C treatment significantly reduced the ability of TBH M phi to produce a soluble suppressor(s) but did not alter normal host M phi-derived suppressor production. In contrast, anti-Mac-1 and -3 plus C treatment of normal host M phi significantly reduced suppressor production. In the TBH, however, anti-Mac-1 plus C had no effect, while anti-Mac-3 plus C had only a limited reduction as compared to the normal host. Determination of levels of prostaglandin E2 (PGE2) in M phi supernatants showed that normal host Mac-1+ M phi were involved in down regulation of PGE2 production. This control was missing in the TBH M phi. Mac-2+ M phi were the apparent producers of PGE2 which accounts for the factor-mediated MLR suppression attributed to TBH Mac-2+ M phi. Collectively, these data suggest that tumor-induced aberrations in immunoregulation can in part be attributed to differences in anti-Mac mAb-defined M phi subpopulations.  相似文献   

5.
Spleen cells, resting T cells, activated T cells, and T cell clones characterized as type 1 (Th1) and type 2 (Th2) were investigated for their ability to produce interferon (IFN) following in vitro culture with Newcastle disease virus (NDV). All of the above cell populations, including both Th1 and Th2 T cell clones, produced high levels of IFN following in vitro culture with NDV. This IFN was characterized as a mixture of IFN-alpha and IFN-beta with IFN-alpha being the predominate species of IFN contained in the mixture. IL-2 greatly enhanced the production of IFN-alpha/beta by all cell populations in response to NDV. These different T cell populations responded very differently to the immunoregulatory actions of IFN-gamma versus IFN-alpha/beta. IFN-alpha/beta was shown to be a potent inhibitor of Con A or IL-2-induced proliferation of different T cell populations. This inhibition was not associated with a reduction in lymphokine production since spleen cells or Th1 T cell clones cultured with Con A and IFN-alpha/beta had no decrease in IL-2 or IFN-gamma production when compared to Con A-stimulated control cultures. IFN-gamma had little to no inhibitory activity on Con A-induced proliferation of spleen cells. In fact, Con A-induced proliferation was usually enhanced by IFN-gamma when nylon wool-enriched T cells were assessed. Different results were observed when IFN-gamma and IFN-alpha/beta were investigated for their ability to inhibit IL-2-induced proliferation of different T helper cell clones. IFN-gamma and IFN-alpha/beta were both capable of inhibiting IL-2-induced proliferation of T cell clones characterized as type 2 (Th2). In contrast, IFN-gamma had no effect on IL-2-induced proliferation of Th1 clones. IFN-alpha/beta, however, inhibited IL-2-induced proliferative responses of both Th1 and Th2 T cell clones. These results document the facts that (1) IFN-gamma and IFN-alpha/beta differ in their immunoregulatory actions, (2) different T cell subpopulations vary in their susceptibility to IFN-gamma regulation, and (3) virus induction of IFN-alpha/beta appears to be a ubiquitous function associated with different T cell populations.  相似文献   

6.
An Ag-specific interleukin 1 (IL-1)-dependent bovine CD4+ Th cell clone, termed 300B1, was isolated and found to resemble the previously described IL-1-dependent murine CD4+ Th2 cell clone, D10.G4.1. Both the 300B1 and the D10.G4.1 T cell clones proliferated to bovine (Bo) IL-1 beta, human (Hu) IL-1 alpha and IL-1 beta, and murine IL-1 alpha when cells were costimulated with concanavalin A (Con A). Proliferation of the 300B1 clone, when costimulated with Con A, appeared to be IL-1-specific in that proliferation could not be promoted by BoIL-2, HuIL-3, HuIL-4, HuIL-5, or HuIL-6. The 300B1 clone produced interferon-gamma (IFN-gamma), but not IL-2 following stimulation with either Con A, Con A plus phorbol 12-myristate 13-acetate or Ag plus antigen-presenting cells. Upon stimulation with Con A, the 300B1 clone expressed IL-4 mRNA and produced an autocrine growth factor (AGF) that could be inhibited by anti-HuIL-4 but not by anti-HuIL-2 Ab. The clonal derivation of the 300B1 clone was confirmed by isolating five 300B1 subclones, all of which produced IFN-gamma and an AGF but not IL-2. Collectively, these results suggest the IL-1-dependent bovine 300B1 Th cell clone produces IL-4, but not IL-2, as an AGF. Furthermore, the bovine Th cell clone appeared to share many characteristics of previously described murine Th2 cell clones except that the bovine clone produced IFN-gamma.  相似文献   

7.
A series of macrophage (M phi) hybridomas were generated by fusion of drug-marked P388D1 (H-2d) tumor cells with CKB (H-2k) splenic adherent cells. The ability of this panel of cloned M phi hybridomas expressing various levels of surface Ia antigens to induce allogeneic mixed lymphocytes responses (MLR) was examined. All MLR stimulatory M phi hybridomas expressed surface Ia antigens. However, some Ia+ and all Ia- M phi hybridomas were unable to induce vigorous MLR responses. Furthermore, even after induction of surface Ia antigen expression with Con A supernatants (Con A Sn) or purified interferon-gamma, the nonstimulatory M phi hybridomas remained ineffective at inducing strong MLR proliferative responses. Furthermore, addition of the latter M phi hybridoma clones (both with and without Con A Sn treatment) to conventional MLR cultures resulted in inhibition of MLR responses. The series of inhibitory M phi hybridomas secreted normal levels of IL 1 upon stimulation with lipopolysaccharide. After surface Ia induction with Con A Sn, the inhibitory M phi hybridomas could stimulate secretion of IL 2 and expression of IL 2 receptors. Moreover, although they inhibited conventional MLR responses, IL 2 production and IL 2 receptor expression were not significantly inhibited. Addition of these M phi hybridomas 24 to 48 hr after initiation of MLR response also inhibited MLR proliferation. The results indicated that the group of inhibitory M phi hybridomas can inhibit MLR responses after IL 2 secretion and acquisition of IL 2 receptors. Finally, this inhibitory activity has been maintained during 1 yr of continuous in vitro culture, and the hybridomas represent a stable "homogeneous" subpopulation of inhibitory macrophages. Thus, the inhibitory phenotype appears to reflect arrest at a distinct differentiation stage.  相似文献   

8.
IL-9 is produced in vitro by activated CD4+ T cell lines of the Th2 subtype and by naive CD4+ T cells. Here we show that T cell lines stimulated with Con A in the presence of accessory cells (AC) such as irradiated spleen cells or bone marrow-derived macrophages produced substantially more IL-9 than T cells stimulated with Con A alone. These data suggest that AC influence the production of IL-9 through accessory signals that result in an at least 10-fold increase of IL-9 secretion by the respective T cells. Addition of IL-1 to T cells activated by Con A, PHA, or anti-CD3 antibodies revealed that this monokine was responsible for the potentiation of IL-9 production. This finding was confirmed by applying anti-IL-1 antibodies. The production of other lymphokines, namely, IL-3, IL-4, and IL-6, by activated T cells was not or only marginally enhanced in the presence of AC or IL-1, thus indicating that the synthesis of IL-9 is regulated differently from that of other Th2-derived lymphokines. Furthermore, it was demonstrated by Northern blot analysis that IL-1 increases IL-9 expression at the pretranslational level. Because IL-1 alone failed to induce the production of IL-9 by T cells, this monokine acts as a costimulator in combination with a T cell receptor-mediated signal.  相似文献   

9.
After Ag and/or mitogen stimulation, cloned mouse Th1 and Th2 cells produce different cytokines that contribute to induction of particular B cell isotype responses. In this regard, IL-5 produced by Th2 cells has been shown to enhance IgA synthesis in LPS-triggered splenic (SP) B cell or in unstimulated Peyer's patch (PP) B cell cultures. This raises the possibility that Th2 cells may occur in higher frequency in gut-associated tissues, because B cells in these areas are committed to IgA synthesis. We have used an ELISPOT assay to detect individual T cells producing IFN-gamma or IL-5. For the IL-5 assay, the mAb TRFK-5 and biotinylated TRFK-4 were used in coating and detection, respectively, whereas the mAb R4-6A2 and biotinylated XMG 1.2 were similarly used for enumeration of IFN-gamma-specific spot forming cells (SFC). Specificity of each assay was tested by using Con A-activated, cloned Th1 (H66-61) or Th2 (CDC-25) cells, where the Th1 cells only produced IFN-gamma SFC and the Th2 cells only gave IL-5-specific spots. Further, preincubation of biotinylated TRFK-4 or XMG 1.2 with rIL-5 or IFN-gamma, respectively, abrogated the formation of specific spots when tested with Con A-activated SP CD4+ T cells. Both IFN-gamma and IL-5 were produced de novo, because treatment of T cells with cycloheximide inhibited both IFN-gamma and IL-5 SFC. We have assessed the numbers of T cells spontaneously secreting these cytokines in PP and in lamina propria and intraepithelial lymphocyte (LPL and IEL) populations. Moderate levels of IL-5 SFC occurred in the IEL subset, whereas higher levels existed in the LPL population. Although significant numbers of IFN-gamma SFC (Th1-type) were also seen in LPLs, the frequency of IL-5 SFC was always higher (Th1:Th2 in LPL = 1:3). In IELs, equal numbers of IFN-gamma and IL-5 SFC were seen. Interestingly, CD8+ IEL T cells produced these two cytokines. In contrast, T cells freshly isolated from PP, an IgA inductive site, contained smaller numbers of IL-5- or IFN-gamma-secreting cells and SP T cells had essentially no SFC. When PP or SP T cells were stimulated with Con A, significant and approximately equal numbers of IFN-gamma- and IL-5-producing cells appeared.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Progressive lymphoproliferation and increasingly severe immunodeficiency are prominent features of a syndrome, designated mouse AIDS, which develops in susceptible strains of mice infected with the mixture of murine leukemia viruses, termed LP-BM5. Development of splenomegaly and lymphadenopathy, caused primarily by increases in B cell immunoblasts, requires the presence of CD4+ T cells and is assumed to be mediated by lymphokines produced by these cells inasmuch as progression of disease is markedly inhibited by treatment of infected mice with cyclosporin A. Studies of spleen cells from infected mice revealed spontaneous production of cytokines (IFN-gamma, IL-2, IL-4, IL-5, and IL-10) characteristic of Th0 (or a mixture of Th1 and Th2) T helper cells at 1 wk after infection. At later times, IFN-gamma and IL-2, characteristic products of Th1 helper clones, were expressed poorly, either spontaneously or after stimulation of cells with Con A. In contrast, IL-4, IL-5, IL-6, and IL-10, cytokines typically synthesized by Th2 cells, were produced in response to Con A or spontaneously through 18 wk post-infection. Increased serum IgE levels and enhanced IL-10 mRNA expression were consistent with expression of Th2 cytokines at biologically significant levels in vivo. Selective depletion of T cell subsets before stimulation with Con A showed that CD4+ T cells were the primary source of IL-2, IL-4, IL-10, and, to a lesser extent, IFN-gamma in spleens and lymph nodes of normal or infected mice. These results suggest that persistent activation of CD4+ T cells with the lymphokine profile of Th2 helper clones is responsible for chronic B cell stimulation, down-regulation of Th1 cytokines, and impaired CD8+ T cell function in mouse AIDS. This provides the first demonstration that, like many parasitic infections, viruses encoding potent antigenic stimuli can markedly affect the balance of Th subset expression.  相似文献   

11.
12.
Thiazolidinediones acting as PPAR-gamma agonists are a new generation of oral antidiabetics addressing insulin resistance as a main feature of type-2 diabetes. In accordance to our results, pre-clinical studies have demonstrated that the thiazolinedione troglitazone prevents the development of insulin-dependent autoimmune type-1 diabetes. To investigate whether TGZ acts by affecting the ICAM-1/LFA-1 pathway and/or the Th1/Th2 cytokine balance in NOD mice, we analysed the IL-1beta-induced ICAM-1 expression on islet-cells and the LFA-1, CD25, IL-2, IFN-gamma, IL-4, and IL-10 expression on splenocytes. After 200 days of oral TGZ administration, islet cells from TGZ-treated NOD mice showed a reduced ICAM-1 expression in response to the pro-inflammatory cytokine IL-1beta. The expression of the ligand LFA-1 on CD4(+) and CD8(+) T-cells was comparable to that of placebo- and untreated controls. Also, the expression of Th1/Th2 cytokines was comparable in groups receiving TGZ or Placebo. Nevertheless, the investigated NOD mice segregated into IFN-gamma low- and IFN-gamma high producers as revealed by cluster analysis. Interestingly, the majority of TGZ-treated mice belonged to the cluster of IFN-gamma low producers. Thus, the prevention of autoimmune diabetes in NOD mice by TGZ seems to be associated with suppression of IL-1beta-induced ICAM-1 expression leading to a reduced vulnerability of pancreatic beta-cells during the effector stage of beta-cell destruction. In addition, IFN-gamma production was modulated, implicating that alteration of the Th1/Th2 cytokine balance might have contributed to diabetes prevention. The findings of this study suggest that TGZ exerts its effects by influencing both the beta-cells as the target of autoimmune beta-cell destruction and the T-cells as major effectors of the autoimmune process.  相似文献   

13.
Numerous changes have been reported to occur in T cell responsiveness of mice with increasing age. However, most of these studies have examined polyclonal stimulation of spleen cells from a limited number of mouse strains. This study investigated the influence of genetic background, source of lymphocytes, and type of stimulus on age-associated changes in T cells response. Con A-induced proliferation and IL-2 and IFN-gamma production by splenic lymphocytes (SL) was significantly greater in CBA/Ca mice compared to C57BL/6 mice, regardless of age. SL of both strains exhibited the predicted age-dependent decline in proliferative response and an increase in IFN-gamma production in response to Con A. In contrast, however, only SL from C57BL/6 mice demonstrated the predicted age-dependent decline in Con A-induced IL-2 production; Con A-induced SL of young and aged CBA/Ca mice produced comparable amounts of IL-2. Differences in age-associated responses to Con A were also observed between SL and inguinal lymph node (ILN) cells of CBA/Ca mice. In contrast to SL, ILN cells demonstrated an increased proliferative response to Con A. However, lymphokine production by Con A-stimulated ILN cells from aged CBA/Ca mice was similar to that of Con A-stimulated SL from aged CBA/Ca mice. To determine if aged ILN T cells respond similarly to polyclonal and antigen-specific stimuli, keyhole limpet hemocyanin (KLH) responses of T cells isolated from ILN of aged and young CBA/Ca mice were examined. KLH-specific T cells from aged mice cultured with KLH-pulsed macrophages (M phi) from aged mice were significantly reduced in their ability to proliferate compared to KLH-specific T cells of young mice cultured with young KLH-pulsed M phi. In contrast to the expected results, the defect was not at the level of the T cells; proliferation of young T cells cultured with aged KLH-pulsed M phi was equivalent to the proliferation of aged T cells cultured with aged M phi. These results suggest that aging has differential effects on polyclonal and antigen-specific T cell proliferation and on polyclonal stimulation of T cells isolated from different lymphoid organs and from different strains of mice.  相似文献   

14.
Tick salivary gland extract (SGE) was previously shown to inhibit murine T cell proliferation. In mice, SGE has an inhibitory effect on Th1 and a stimulatory effect on Th2 cytokine elaboration. In the present study, tick-mediated immunomodulation of human T cell proliferation and cytokine elaboration was analyzed using human peripheral blood mononuclear cells (PBMCs) stimulated with concanavalin A (Con A) or lipopolysaccharide (LPS). Using flow cytometry, tick saliva-induced changes were investigated in human mononuclear cell subpopulations. SGE from Ixodes ricinus dose-dependently inhibited human T cell proliferation. This finding supports the flow cytometry data, showing that the percentage of Con A-activated HLA-DR-CD3+ T lymphocytes and CD4+ CD8+ double-positive T cells decreased after SGE treatment. SGE significantly inhibited the in vitro production of interleukin-2 (IL-2) and interferon-gamma (IFN-gamma) secreted by Th1 lymphocytes. In contrast, the elaboration of IL-4, IL-6, and IL-10 secreted by Th2 lymphocytes was significantly stimulated by I. ricinus SGE. Similarly, the production of both IL-1alpha and IL-1beta was significantly stimulated after SGE treatment. These data indicate that the tick-induced immunomodulatory events in humans are similar to those previously described in a murine model.  相似文献   

15.
The kinetics of lymphokine RNA induction and secretion of biologically active lymphokine from CD4-enriched splenic T cell populations was investigated. Cells stimulated immediately after isolation from murine spleen ("fresh" T cells) and cells restimulated after 4 days of in vitro culture ("primed" T cells) were compared. Northern blot analysis and bioassays were used to analyze and quantitate production of eight lymphokines and the IL-2R. Fresh T cells produced high levels of IL-2 and low to moderate levels of IL-3, granulocyte/macrophage-CSF, and IFN-gamma. In vitro primed T cells produced IL-2, IL-3, IL-4, IL-5, IL-6, granulocyte/macrophage-CSF, IFN-gamma, and high levels of IL-2R RNA. Comparison of RNA levels and bioassays of supernatants from these populations indicated that primed T cells produced at least 10-fold more of six of the lymphokines than fresh T cells. Only IL-2 was produced in near equal amounts by fresh and primed T cells. There were also marked differences in the kinetics of lymphokine production by fresh and primed CD4+ T cells. After restimulation with Con A and PMA, primed cells produced a short burst of lymphokine RNA that peaked between 7.5 and 13 h and declined after 18 h. Fresh T cells lagged in the initial production of lymphokine RNA, with levels peaking 18 to 44 h after mitogenic stimulation. Depletion of CD4+ cells indicated that cells of helper phenotype were responsible for the majority of lymphokine production from the primed cells. Thus different subpopulations of Th cells defined by their respective ability to respond either directly (fresh T cells) or only after culture and restimulation (primed T cells) show different patterns of lymphokine gene regulation. Other studies suggest that the activity of "fresh" Th cells is due to a population with a "memory" phenotype, while the cells which require culture have a "precursor" phenotype. These distinct patterns of lymphokine gene regulation in the two populations of Th cells may account in part for differences seen in the kinetics and magnitude of the naive and memory immune responses which are regulated by Th cells.  相似文献   

16.
The concept that IL-4 is the primary signal for Th2 lymphocyte differentiation has recently been put in doubt by studies in which the production of Th2-associated cytokines was detected in mice deficient in IL-4 synthesis or IL-4R triggering. In this study, we formally demonstrate by single cell analysis that CD4+ lymphocytes with a classical Th2 phenotype (IL-4+, IL-5+, IFN-gamma-, IL-2-) develop in significant numbers in helminth-infected mice deficient in either IL-4R alpha-chain or Stat6. While an expanded population of Th1 (IL-4-, IL-5-, IFN-gamma+, IL-2+) lymphocytes was observed in the same animals, surprisingly, cells with a mixed Th0 cytokine pattern were rare. The cytokine production phenotypes of the Th1 and Th2 subpopulations generated in infected Stat6-deficient mice were unaffected by in vitro neutralization of endogenous IL-4 or IFN-gamma. Nevertheless, while addition of exogenous rIL-12 resulted in transitory IFN-gamma production by Th2 lymphocytes from both wild-type and Stat6-deficient mice, IL-4 synthesis was preserved in the former, but temporarily ablated in the latter cells. Importantly, IL-4+ IFN-gamma- and IL-4- IFN-gamma+ populations similar to those arising in helminth-infected Stat6-deficient mice could also be generated in vitro by repetitive polyclonal stimulation of CD4+CD62Lhigh lymphocytes from uninfected mice of the same strain. Together, the results of these single cell analysis experiments demonstrate that IL-4R/Stat6 signaling, while influencing the final frequency of Th2 lymphocytes, is not essential for Th2 cell development, and suggest that this pathway has a previously unrecognized function in stabilizing Th2 populations once they have emerged.  相似文献   

17.
The involvement of specific accessory/costimulatory molecules in differentiation to Th1 and Th2 phenotypes is controversial. Reports suggest that molecules such as CD4, CD28, and Ox-40 support Th2 differentiation and suppress Th1 differentiation, whereas others such as LFA-1 support Th1 responses and suppress Th2 responses. We have previously defined an in vitro model of differentiation that is absolutely dependent on the initial dose and affinity of peptide presented to a naive CD4 cell. The dose and affinity of Ag regulate autocrine production of IL-2, IL-4, and IFN-gamma, which in turn govern differentiation to Th1 and Th2 phenotypes. We have used this system to confirm that CD4, CD28, and Ox-40 interactions can promote, and LFA-1 interactions can suppress, differentiation of cells secreting the Th2 cytokines IL-5 and IL-13. However, for CD4 and LFA-1, this is only seen over a certain range of peptide doses. In addition, CD28 and Ox-40 interactions also promote Th1 differentiation. In general, agonist Abs to accessory molecules shifted the response curves for IFN-gamma, IL-5, and IL-13 to lower doses, whereas antagonist reagents resulted in similar curves shifted toward the higher doses. We conclude that ligation of cell surface accessory receptors enables low doses of Ag to promote responses normally induced only by higher doses. Individual receptors do not intrinsically regulate one cytokine phenotype or another, suggesting that differentiation is controlled by the level of expression of multiple accessory molecule pairs integrated with the number and affinity of peptide/MHC complexes.  相似文献   

18.
IL-4 inhibits superoxide production by human mononuclear phagocytes   总被引:8,自引:0,他引:8  
The activation of mononuclear phagocytes (M phi) and their generation of oxidative products is influenced by various cytokines as well as by normal maturational changes. We examined the effects of IL-4 on superoxide (O2-) production (cytochrome c reduction) by cultured M phi and the modulation of these effects by IFN-gamma and IL-1. Incubation of IL-4 (200 U/ml) with M phi inhibited M phi PMA (100 ng/ml)-stimulated O2-. production by 23% at 24 h, 34% at 48 h, and 70 to 85% at 72 to 96 h. IL-4 similarly inhibited M phi O2-. production in response to zymosan. IL-4 did not affect M phi viability, adherence to microtiter plates, or ability to phagocytose boiled yeast. In comparison with M phi, neutrophil O2-. production was not inhibited after 4 to 20 h incubation with IL-4. When IL-4 was washed out as early as 1 h after the initiation of M phi culture, significant inhibition of O2-. production was observed 4 days later. Sequential addition of either IL-4 or IFN-gamma to cultures demonstrated reciprocal cytokine effects on M phi; IL-4 partially inhibited O2-. production by M phi previously treated with rIFN-gamma whereas rIFN-gamma partially augmented O2-. production by M phi previously treated with IL-4. Because IL-4 has been reported to inhibit IL-1 production, add-back experiments were performed; addition of IL-1 only partly reconstituted O2-. production in IL-4-treated cells. Further characterization showed that although M phi protein synthesis was enhanced by both rIFN-gamma and IL-4 treatment, acid phosphatase, a marker of maturation to the macrophage phenotype, was markedly increased at an earlier time point in IL-4-treated M phi, and correlated with a decline in O2-. production. The ability of IL-4 to suppress M phi O2-. production implicates IL-4 as an important regulator of this aspect of the inflammatory response.  相似文献   

19.
IL-6 has been demonstrated by in vitro studies to be a cytokine involved in thymocyte activation We show herein that thymocytes cultured at high concentrations in the absence of comitogen respond to IL-1 and, to a lesser degree, to GM-CSF, by producing IL-6. This phenomenon disappears rapidly with decreasing cell densities, suggesting the involvement of a minor cellular component of the thymus which may be solely responsible for or cooperate in IL-6 production. We have analysed several thymic subpopulations for IL-6 production and show that accessory cells, and eventually their precursors, are the major if not exclusive, producers of this cytokine. Mature steroid-resistant thymocytes do not secrete IL-6. Production of IL-6 by total CD4-CD8- thymic cells is largely reduced by the depletion of mature accessory cells which express I-A and Mac-1 antigens. As shown previously, accessory cell precursors within the CD4-CD8- compartment are induced to differentiate into M phi and DC in response to IL-1 and GM-CSF. We provide evidence that this maturation is associated with IL-6 production. Thymic DC and phagocytic cells of the thymic reticulum (P-TR) in vitro produce high levels of IL-6 which are enhanced by GM-CSF or IL-1. These factors have a synergistic effect on IL-6 production by total thymocytes, and on CD4-CD8- cells that are not depleted for mature I-A+ Mac-1+ accessory cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Bone marrow-derived dendritic cell (BMDC) subsets have distinct immunoregulatory functions. Th1 cytokine-induced BMDC (BMDC1), compared with Th2 cytokine-induced BMDC2, have superior activities for the differentiation and expansion of CTL. To evaluate the cellular interactions between dendritic cells and CD8+ T cells for the induction of CTL, BALB/c-derived BMDC subsets were cocultured with purified CD8+ T cells from C57BL/6 mice. Our results demonstrate that BMDC1 support the generation of allogeneic CD8+ CTL in the absence of CD4+ Th cells. In contrast, BMDC0 (GM-CSF- plus IL-3-induced BMDC) and BMDC2 failed to promote the differentiation of CD8+ CTL. Using Ab-blocking experiments and studies with gene knockout mice, IL-2 and LFA-1 are demonstrated to be critical for BMDC1-induced CTL differentiation. Unexpectedly, BMDC1 were able to induce CTL from CD8+ T cells isolated from IFN-gamma-/- and IFN-gamma receptor-/- mice. However, BMDC1 produced higher levels of IFN-beta than other BMDC subsets, and anti-IFN-beta mAb blocked BMDC1-dependent CTL generation. These results indicated an indispensable role of IFN-beta, but not IFN-gamma, during BMDC1-induced CTL differentiation. We conclude that Th1-cytokine-conditioned BMDC1 can bypass Th cell function for the differentiation of naive CD8+ T cells into CTL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号