首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abnormal HDL metabolism among patients with diabetes and insulin resistance may contribute to their increased risk of atherosclerosis. ABCA1 mediates the transport of cholesterol and phospholipids from cells to HDL apolipoproteins and thus modulates HDL levels and atherogenesis. Unsaturated fatty acids, which are increased in diabetes, impair the ABCA1 pathway in cultured cells by destabilizing ABCA1 protein. We previously reported that unsaturated fatty acids destabilize ABCA1 in murine macrophages and ABCA1-transfected baby hamster kidney cells by increasing its serine phosphorylation through a phospholipase D (PLD) pathway. Here, we examined the cellular pathway downstream of PLD that mediates the ABCA1-destabilizing effects of unsaturated fatty acids. The protein kinase C delta (PKCdelta)-specific inhibitor rottlerin and PKCdelta small interfering RNA completely abolished the ability of unsaturated fatty acids to inhibit lipid transport activity, to reduce protein levels, and to increase serine phosphorylation of ABCA1, implicating a role for PKCdelta in the ABCA1-destabilizing effects of fatty acids. These data indicate that unsaturated fatty acids destabilize ABCA1 by activating a PKCdelta pathway that phosphorylates ABCA1 serines.  相似文献   

2.
3.
Murthy SN  Chung PH  Lin L  Lomasney JW 《Biochemistry》2006,45(36):10987-10997
This paper uses phospholipase Cepsilon as a model to demonstrate that lipids can act as ligands to bind to specific motifs and regulate protein activity via allosteric effects. Phospholipids such as phosphatidic acid and free fatty acids such as arachidonate are potent activators of PLCepsilon, increasing the rate of PI hydrolysis by 8-fold and 50-fold, respectively. The mechanism appears to be a reduction of K(m), as the substrate dependence curve is shifted to the left and K(m) is reduced 10-fold. The regulation of PLCepsilon by lipids appears to be physiologic, as reconstitution or cotransfection of either cPLA(2) or PLD with PLCepsilon leads to activation of phosphodiesterase activity. Additionally, TSA-201 cells transfected with PLCepsilon and fed arachidonic acid complexed with BSA had increased (4-5-fold) hydrolysis of polyphosphoinositides. This study demonstrates the ability of lipids to act as potent and direct mediators of protein function and identifies cross talk between different classes of phospholipase (PLD and PLA(2) with PLC) mediated via lipid products.  相似文献   

4.
GPR40 has recently been identified as a G protein-coupled cell-surface receptor for long-chain fatty acids (LCFAs). The mRNA of the bovine ortholog of GPR40 (bGPR40) was detected by RT-PCR in cloned bovine mammary epithelial cells (bMEC) and in the bovine mammary gland at various stages of lactation. Oleate and linoleate caused an increase in intracellular Ca2+ concentrations in these cells, and significantly reduced forskolin-induced cAMP concentrations. Phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and Akt kinase, which regulates cell proliferation and survival, was rapidly increased by oleate. Incubation with oleate and linoleate for 24 h significantly promoted cell proliferation. Moreover, in serum-free medium, oleate significantly stimulated cell proliferation during a 7-day culture. These results suggest that bGPR40 mediates LCFA signaling in mammary epithelial cells and thereby plays an important role in cell proliferation and survival.  相似文献   

5.
6.
7.
Abnormal lipid metabolism may contribute to the pathogenesis of non-alcoholic steatohepatitis (NASH). ATP-binding cassette transporter A1 (ABCA1) mediates the transport of cholesterol and phospholipids from cells to HDL apolipoproteins. We previously reported that unsaturated fatty acids destabilise ABCA1 in murine macrophages and ABCA1-transfected baby hamster kidney cells by increasing its protein degradation. Here, we examined the correlation between ABCA1 and hepatic lipids. In HepG2 cells, unsaturated but not saturated fatty acids suppressed ABCA1 protein levels by promoting its protein degradation. Over-expression of ABCA1 resulted in a decrease of cellular fatty acids and triglycerides, while repression by ABCA1 siRNA increased both cellular fatty acids and triglycerides. Rats with NASH also showed lower ABCA1 protein levels in liver cells, compared with that of the normal rats. These data indicate that steatosis is associated with a decrease in ABCA1 protein expression leading to an increase in lipid storage in hepatocytes. And it further suggests that this effect could be due to an excess of unsaturated fatty acids.  相似文献   

8.
Essential fatty acids and phospholipase A2 in autistic spectrum disorders   总被引:2,自引:0,他引:2  
A health questionnaire based on parental observations of clinical signs of fatty acid deficiency (FAD) showed that patients with autism and Asperger's syndrome (ASP) had significantly higher FAD scores (6.34+/-4.37 and 7.64+/-6.20, respectively) compared to controls (1.78+/-1.68). Patients with regressive autism had significantly higher percentages of 18:0,18:2n-6 and total saturates in their RBC membranes compared to controls, while 24:0, 22:5n-6, 24:1 and the 20:4n-6/20:5n-3 ratio were significantly higher in both regressive autism and ASP groups compared to controls. By comparison, the 18:1n-9 and 20:4n-6 values were significantly lower in patients with regressive autism compared to controls while 22:5n-3, total n-3 and total dimethyl acetals were significantly lower in both regressive autism and ASP groups compared to controls. Storage of RBC at -20 degrees C for 6 weeks resulted in significant reductions in highly unsaturated fatty acid levels in polar lipids of patients with regressive autism, compared to patients with classical autism or ASP, or controls. Patients diagnosed with both autism and ASP showed significantly increased levels of EPA ( approximately 200%) and DHA ( approximately 40%), and significantly reduced levels of ARA ( approximately 20%), 20:3n-6 and ARA/EPA ratio in their RBC polar lipids, when supplemented with EPA-rich fish oils, compared to controls and non-supplemented patients with autism. Patients with both regressive autism and classical autism/Asperger's syndrome had significantly higher concentrations of RBC type IV phospholipase A2 compared to controls. However, patients with autism/ASP, who had taken EPA supplements, had significantly reduced PLA2 concentrations compared to unsupplemented patients with classical autism or ASP.  相似文献   

9.
Cell cycle is one of the most fundamentally conserved biological processes of plants and mammals. Casein kinase1s (CK1s) are critical for cell proliferation in mammalian cells; however, how CK1s coordinate cell division in plants remains unknown. Through genetic and biochemical studies, here we demonstrated that plant CK1, Arabidopsis (Arabidopsis thaliana) EL1-like (AELs), regulate cell cycle/division by modulating the stability and inhibitory effects of Kip-related protein6 (KRP6) through phosphorylation. Cytological analysis showed that AELs deficiency results in suppressed cell-cycle progression mainly due to the decreased DNA replication rate at S phase and increased period of G2 phase. AELs interact with and phosphorylate KRP6 at serines 75 and 109 to stimulate KRP6’s interaction with E3 ligases, thus facilitating the KRP6 degradation through the proteasome. These results demonstrate the crucial roles of CK1s/AELs in regulating cell division through modulating cell-cycle rates and elucidate how CK1s/AELs regulate cell division by destabilizing the stability of cyclin-dependent kinase inhibitor KRP6 through phosphorylation, providing insights into the plant cell-cycle regulation through CK1s-mediated posttranslational modification.

Plant casein kinases coordinate cell cycle by regulating the stability of a cyclin-dependent kinase inhibitor through promoting interaction with E3 ubiquitin ligases and proteasomal degradation by phosphorylation.  相似文献   

10.
PKN regulates phospholipase D1 through direct interaction   总被引:4,自引:0,他引:4  
The association of phospholipase (PLD)-1 with protein kinase C-related protein kinases, PKNalpha and PKNbeta, was analyzed. PLD1 interacted with PKNalpha and PKNbeta in COS-7 cells transiently transfected with PLD1 and PKNalpha or PKNbeta expression constructs. The interactions between endogenous PLD1 and PKNalpha or PKNbeta were confirmed by co-immunoprecipitation from mammalian cells. In vitro binding studies using the deletion mutants of PLD1 indicated that PKNalpha directly bound to residues 228-598 of PLD1 and that PKNbeta interacted with residues 1-228 and 228-598 of PLD1. PKNalpha stimulated the activity of PLD1 in the presence of phosphatidylinositol 4,5-bisphosphate in vitro, whereas PKNbeta had a modest effect on the stimulation of PLD1 activity. The stimulation of PLD1 activity by PKNalpha was slightly enhanced by the addition of arachidonic acid. These results suggest that the PKN family functions as a novel intracellular player of PLD1 signaling pathway.  相似文献   

11.
12.
ATP-binding cassette transporter A1 (ABCA1) plays a crucial role in exporting cholesterol from macrophages, a function relevant to its involvement in the prevention of atherosclerosis. Quercetin, one of flavonoids, has been described to reduce atherosclerotic lesion formation. This study is aimed to investigate the effect of quercetin on regulation of ABCA1 expression and to explore its underlying mechanisms in macrophages. The results show that quercetin markedly enhanced cholesterol efflux from macrophages in a concentration-dependent manner, which was associated with an increase in ABCA1 mRNA and protein expression. Remarkably, quercetin is able to stimulate the phosphorylation of p38 by up to 234-fold at 6 h via an activation of the transforming growth factor β-activated kinase 1 (TAK1) and mitogen-activated kinase kinase 3/6 (MKK3/6). Inhibition of p38 with a pharmacological inhibitor or small hairpin RNA (shRNA) suppressed the stimulatory effects of quercetin on ABCA1 expression and cholesterol efflux. Moreover, knockdown of p38 reduced quercetin-enhanced ABCA1 promoter activity and the binding of specificity protein 1 (Sp1) and liver X receptor α (LXRα) to the ABCA1 promoter using chromatin immunoprecipitation assays. These findings provide evidence that p38 signaling is essential for the regulation of quercetin-induced ABCA1 expression and cholesterol efflux in macrophages.  相似文献   

13.
14.
Niemann-Pick type C (NPC) is an autosomal recessive lipid storage disorder characterized by lysosomal accumulation of cholesterol and gangliosides resulting from a defect in intracellular lipid trafficking. The NPC1 gene encodes a 1278-amino acid integral membrane protein involved in the sub-cellular trafficking of lipids. The exact biological function of NPC1 remains unclear. Recent evidence suggests that NPC1 is a eukaryotic member of the RND permease family of transport proteins, which when expressed in bacteria is capable of transporting fatty acids. The goal of this project was to assess the role of NPC1 in the transport of fatty acids in primary human fibroblasts using normal fibroblasts and fibroblasts from patients with three lysosomal storage diseases: NPC, mucolipidosis IV, and Sandhoff disease. If NPC1 is a fatty acid transporter, we expect to find fatty acid accumulation only in NPC fibroblasts. We used three experimental approaches to assess the role of NPC1 as a fatty acid transporter. First, we evaluated the accumulation versus metabolism of low density lipoprotein-derived oleic acid. Second, we assessed the amount of free fatty acid present after growth in lipoprotein-containing media. Third, we assessed the cellular accumulation of acriflavine, a fluorescent substrate for a number of resistance-nodulation-cell division permease transporters. Our results indicate that fatty acid flux through NPC1-deficient lysosomes is normal.  相似文献   

15.
The use of considerable amounts of ground oak to accelerate maturation of strong drinks was accompanied by the appearance of an undesirable taste due to the presence of unsaturated aldehydes (2-nonenal and 2,4-nonadienal). The greater the degree of wood grinding, the higher was the content of C18-unsaturated acids and C9-aldehydes. Wood heating was accompanied by a decrease in the content of C18-acids, but had no effect on the amount of aldehydes. An undesirable taste decreased during the maintenance of alcoholic tinctures in 70% ethyl alcohol for 6 months. It was related to the formation of acetals and ethoxy and hydroxy derivatives of unsaturated aldehydes.  相似文献   

16.
The use of considerable amounts of ground oak to accelerate maturation of strong drinks was accompanied by the appearance of an undesirable taste due to the presence of unsaturated aldehydes (2-nonenal and 2,4-nonadienal). The greater the degree of wood grinding, the higher was the content of C18-unsaturated acids and C9-aldehydes. Wood heating was accompanied by a decrease in the content of C18-acids, but had no effect on the amount of aldehydes. An undesirable taste decreased during the maintenance of alcoholic tinctures in 70% ethyl alcohol for 6 months. It was related to the formation of acetals and ethoxy and hydroxy derivatives of unsaturated aldehydes.  相似文献   

17.
Phosphatidic acid (PA), the primary metabolite of the phospholipase D (PLD)-mediated hydrolysis of phosphatidylcholine, has been shown to act as a tumor promoting second messenger in many cancer cell lines. A key target of PA is the mammalian target of rapamycin (mTOR), a serine-threonine kinase that has been widely implicated in cancer cell survival signals. In agreement with its ability to relay survival signals, it has been reported that both PLD and mTOR are required for the stabilization of the p53 E3 ubiquitin ligase human double minute 2 (HDM2) protein. Thus, by stabilizing HDM2, PLD and mTOR are able to counter the pro-apoptotic signaling mediated by p53 and promote survival. mTOR exists in at least two distinct complexes—mTORC1 and mTORC2—that are both dependent on PLD-generated PA. Although PLD and its metabolite PA are clearly implicated in the transduction of survival signals to mTOR, it is not yet apparent which of the two mTOR complexes is critical for the stabilization of HDM2. We report here that the PLD/mTOR-dependent stabilization of HDM2 involves mTORC2 and the AGC family kinase serum- and glucocorticoid-inducible kinase 1 (SGK1). This study reveals that mTORC2 is a critical target of PLD-mediated survival signals and identifies SGK1 as a downstream target of mTORC2 for the stabilization of HDM2.  相似文献   

18.
Selective activation of phospholipase D2 by unsaturated fatty acid.   总被引:3,自引:0,他引:3  
Although oleate has been implicated in the regulation of phospholipase D (PLD) activity, the molecular identity of the oleate-stimulated PLD is still poorly understood. We now report that oleate selectively stimulates the enzymatic activity of PLD2 but not of PLD1, with an optimal concentration of 20 microM in vitro. Intriguingly, phosphatidylinositol 4,5-bisphosphate (PIP2) synergistically stimulates the oleate-dependent PLD2 activity with an optimal concentration of 2.5 microM. These results provide the first evidence that oleate is a PLD2-specific activating factor and PLD2 activity is synergistically stimulated by oleate and PIP2.  相似文献   

19.
Stimulation of mammalian cells frequently initiates phospholipase D-catalyzed hydrolysis of phosphatidylcholine in the plasma membrane to yield phosphatidic acid (PA) a novel lipid messenger. PA plays a regulatory role in important cellular processes such as secretion, cellular shape change, and movement. A number of studies have highlighted that PLD-based signaling also plays a pro-mitogenic and pro-survival role in cells and therefore anti-apoptotic. We show that human PLD1b and PLD2a contain functional caspase 3 cleavage sites and identify the critical aspartate residues within PLD1b that affect its activation by phorbol esters and attenuate phosphatidylcholine hydrolysis during apoptosis.  相似文献   

20.
We have previously isolated a 22 kDa protein from a rat brain which was found to be involved in activating phospholipsae D (PLD), and identified the protein as hippocalcin through sequence analysis. Nevertheless, the function of hippocalcin for PLD activation still remains to be resolved. Here, we proposed that hippocalcin was involved in extracellular signal-regulated kinase (ERK)-mediated PLD2 expression. To elucidate a role of hippocalcin, we made hippocalcin transfected NIH3T3 cells and showed that the expression of PLD2 and basal PLD activity were increased in hippocalcin transfected cells. We performed PLD assay with dominant negative PLD2 (DN-PLD2) and hippocalcin co-transfected cells. DN-PLD2 suppressed increase of basal PLD activity in hippocalcin transfected cells, suggesting that increased basal PLD activity is due to PLD2 over-expression. Hippocalcin is a Ca2+-binding protein, which is expressed mainly in the hippocampus. Since it is known that lysophosphatidic acid (LPA) increases intracellular Ca2+, we investigated the possible role of hippocalcin in the LPA-induced elevation of intracellular Ca2+. When the intracellular Ca2+ level was increased by LPA, hippocalcin was translocated to the membrane after LPA treatment in hippocalcin transfected cells. In addition, treatment with LPA in hippocalcin transfected cells markedly potentiated PLD2 expression and showed morphological changes of cell shape suggesting that increased PLD2 expression acts as one of the major factors to cause change of cell shape by making altered membrane lipid composition. Hippocalcin-induced PLD2 expression potentiated by LPA in hippocalcin transfected cells was inhibited by a PI-PLC inhibitor, U73122 and a chelator of intracellular Ca2+, BAPTA-AM suggesting that activation of hippocalcin caused by increased intracellular Ca2+ is important to induce over-expression of PLD2. However, downregulation of PKC and treatment of a chelator of extracellular Ca2+, EGTA had little or no effect on the inhibition of hippocalcin-induced PLD2 expression potentiated by LPA in the hippocalcin transfected cells. Interestingly, when we over-express hippocalcin, ERK was activated, and treatment with LPA in hippocalcin transfected cells significantly potentiated ERK activation. Specific inhibition of ERK dramatically abolished hippocalcin-induced PLD2 expression. Taken together, these results suggest for the first time that hippocalcin can induce PLD2 expression and LPA potentiates hippocalcin-induced PLD2 expression, which is mediated by ERK activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号